Skip to main content
. 2018 Feb 24;18(2):679. doi: 10.3390/s18020679

Table 3.

Hyper-parameters of the deep-learning-based models found for T=64 on the OPPORTUNITY dataset. The parameters values are given assuming that the input of the models is of size T×S. Convolutional kernels and pooling sizes are, respectively, given as (fT(k),fS(k)) and (pT(k),pS(k)) (based on their definition in Section 2.3.2).

Model Parameter Value
MLP · # neurons in dense layers 1,2 and 3 2000
CNN · Conv. kernel size for blocks 1, 2 and 3 (11,1), (10,1), (6,1)
· Conv. siding stride for blocks 1, 2 and 3 (1,1), (1,1), (1,1)
· # conv. kernels in blocks 1, 2 and 3 50, 40, 30
· Pool. sizes for blocks 1, 2 and 3 (2,1), (3,1), (1,1)
· # neurons in dense layer 1000
LSTM · # LSTM cells in layers 1 and 2 64, 64
· Output dim. of LSTM cells in layers 1 and 2 600, 600
· # neurons in dense layer 512
Hybrid · Conv. kernel size (11,1)
· Conv. sliding stride (1,1)
· # conv. kernels 50
· Pool. size (2,1)
· # LSTM cells in layers 1 and 2 27, 27
· Output dim. of LSTM cells in layers 1 and 2 600, 600
· # neurons in dense layer 512
AE · # neurons in encoder & decoder dense layer 5000