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Abstract: This paper presents a novel structural piezoresistive pressure sensor with four-grooved
membrane combined with rood beam to measure low pressure. In this investigation, the design,
optimization, fabrication, and measurements of the sensor are involved. By analyzing the stress
distribution and deflection of sensitive elements using finite element method, a novel structure
featuring high concentrated stress profile (HCSP) and locally stiffened membrane (LSM) is built.
Curve fittings of the mechanical stress and deflection based on FEM simulation results are
performed to establish the relationship between mechanical performance and structure dimension.
A combination of FEM and curve fitting method is carried out to determine the structural dimensions.
The optimized sensor chip is fabricated on a SOI wafer by traditional MEMS bulk-micromachining
and anodic bonding technology. When the applied pressure is 1 psi, the sensor achieves a sensitivity
of 30.9 mV/V/psi, a pressure nonlinearity of 0.21% FSS and an accuracy of 0.30%, and thereby the
contradiction between sensitivity and linearity is alleviated. In terms of size, accuracy and high
temperature characteristic, the proposed sensor is a proper choice for measuring pressure of less
than 1 psi.

Keywords: piezoresistive pressure sensor; high sensitivity; low pressure nonlinearity error;
SOI structure; micro-pressure measurement

PACS: J0101

1. Introduction

The phenomenon by which the electrical resistance of a material changes in response to mechanical
stress is known as piezoresistivity. Piezoresistivity in semiconductor is widely applied in different
sensors including pressure sensors, accelerometers, cantilever force sensors, and inertial sensors [1].
Piezoresistive pressure sensors utilize piezoresistive effect as the detection mechanism. A Wheatstone
bridge is built through electric connections with four piezoresistors to transduce the resistance
change into output voltage when pressure is applied on the membrane surface. Owing to their
small scale, easy integration, direct signal transduction mechanism, etc. [2], piezoresistive pressure
sensors have been most commonly used in automobile [3], aerospace [4,5] and petrochemical [6]
fields for pressure measurements.

For many years in the past, monocrystalline silicon strain gauges have been mainly chosen
as the detection elements in pressure sensors. Their main characteristics include good sensitivity,
high mechanical stability and batch fabrication capability owing to the single crystal structure [7,8].
For such traditional type of sensors, the p-n junction formed by the resistor with the bulk plays a main
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role in isolation of the resistors from substrate. However, once the temperature exceeds 125 ◦C,
there exists serious degradation in the performance of the sensor due to leakage currents [9]. To solve
this problem, some wide band gap semiconductors such as SiC and diamond have been explored as
alternatives, but their microfabrication process is not mature enough [10,11]. Polysilicon can also be
a viable candidate at high temperature because of an isolating oxide layer under the polysilicon resistor.
However, some undesirable characteristics, such as low sensitivity, high noise, and repeatability
problems, limit its further development [12,13].

By considering the working condition, the device should maintain their functionalities even at high
temperatures. SOI (silicon on insulator) stands out as the most promising candidate. The fabrication of
the SOI wafer has been generically described as the bonded wafer approach. As the name implies,
two wafers are bonded together by thermally grown silicon oxide (SiO2) [14]. This structure solves
many drawbacks, such as sensibility to radiation, current leakage and instability at high temperature.
Thus, SOI allows piezoresistive pressure sensors to work at an operating temperature range up to
300 ◦C [15,16]. Besides, SOI piezoresistive pressure sensors give the combined advantages of standard
silicon technology and isolation of piezoresistors from substrate, which makes SOI one of the best
recognized and promoted material for piezoresistive pressure sensors [17].

For conventional structural pressure sensors, the trade-off between sensitivity and linearity is
always irreconcilable, especially in the field of low pressure measurements [18]. Since sensitivity is
proportional to the ratio (membrane length)/(membrane thickness), namely (L/H). Unfortunately,
the nonlinearity increases with this ratio at a faster rate, as the nonlinearity of the pressure-to-stress
conversion is proportional to (L/H)4 [19]. However, both sensitivity and linearity are important
performance indicators, which may directly determine consumer satisfaction degree and market
share. To achieve a higher sensitivity and alleviate the contradiction between the sensitivity
and linearity simultaneously, many novel structurally sensitive membranes, such as E-type
membrane [20], hollow reinforced membrane [21], circular grooved membrane [22], peninsula
structural membrane [23], cross-beam membrane (CBM) [24], beam-membrane-mono-island
(BMMI) [25], beam-membrane-dual-island (BMDI) [26], beam-membrane-quad-island (BMQI) [27],
etc., were developed in the past decades. By comparing and analyzing such novel structures, it is found
they have some common features. Either they create stress concentration regions (SCRs) and localize
more strain energy within a relatively narrow space, or they locally stiffen the membrane thereby
restricting partially the deformation but not affecting the stress concentration in the sensitive areas.
Just because of the formation of stress concentration and locally stiffened membrane, the sensitivity
and linearity both achieve a big improvement.

In this paper, a novel structural piezoresistive pressure sensor with four-grooved membrane
combined with rood beam was proposed for low pressure measurement (0~1 psi) based on
SOI substrate. By choosing SOI as the sensor chip, a good high temperature performance was
desired. By introducing the grooves and rood beam to sensitive membrane, a high sensitivity
and a low nonlinearity error were anticipated to be achieved simultaneously. To optimize the
structural dimensions, the finite element method (FEM) and the nonlinear curve fitting method
were implemented. Based on the optimization results, the proposed structure was fabricated as the
sensor chip, which was assembled to form a pressure sensor. Finally, experiments were carried out to
evaluate the performance.

2. Structure Design and Simulation

2.1. Structure Design

In this paper, a novel structure featuring four-grooved membrane combined with rood beam
was designed for the sensor chip to measure low pressure of less than 1 psi. A 4 inch n-type (100)
oriented SOI wafer with 30 µm top silicon, 2 µm buried SiO2 layer and 300 µm bottom silicon was
chosen as substrate.
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On the front side, there are four bending grooves on the membrane surface as shown in Figure 1a.
Moreover, four ribs are located between every two grooves which are just on the top of the gap between
each beam and membrane edge. Then, a Wheatstone bridge is built up through electric connections
with the four piezoresistors on the surface of the rib regions.
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Figure 1. Sketch of the proposed membrane: (a) front view; (b) rear view; and (c) partial section view
and detailed structure around the rib place.

On the rear side, a rood beam structure is placed as shown in Figure 1b. The end of each rood
beam is not connected with membrane edge but remains at a distance between them, which can be
seen clearly in Figure 1c. Meanwhile, the rib width is equal to the groove width, and the rib length is
equal to the rood beam width, which not only simplifies the fabrication processes, but facilitates the
dimension variables optimization. By incorporating four grooves and a rood beam into the membrane,
a high concentrated stress profile (HCSP) was anticipated to maximize the sensitivity. Meanwhile,
a locally stiffened membrane (LSM) structure was anticipated to be generated to decrease the deflection
of the plate but not reduce the stress around the HCSP.

2.2. Mechanical Simulation

To better display the geometry of the structure, the front view and cross-sectional view along
A-A of the proposed chip are presented in Figure 2, marked with structural dimension variables.
L is the membrane length, H is the membrane thickness, b is the groove width, g is the groove depth,
and a and h are rood beam width and thickness, respectively. Meanwhile, the bonding BF33 glass
on the rear side can be found obviously from the cross-sectional view. Based on the previous design
experiences [7,9,14], the scope for each structural dimension variable is followed by:

3000 ≤ L ≤ 4000
20 ≤ H ≤ 40
20 ≤ h ≤ 50
160 ≤ a ≤ 240
40 ≤ b ≤ 120
0 ≤ g ≤ 20
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Figure 2. Front view and cross-sectional view for the proposed structure.

In the scope for each structural dimension variable, take some fixed size as an example. The stress
of the proposed membrane is calculated under 1 psi by non-linear static analysis and model analysis
using the commercially-available FEM software COMSOL Multiphysics®. Only a quarter of the model
is established for the sensitive membrane due to the symmetry as shown in Figure 3a. It can be
found that the stress is mainly concentrated at the hinge area which is located at the rib surface,
as displayed by the dotted square, which is indicated as HCSP. For P-type [110] oriented piezoresistors,
the sensitivity is actually determined by the magnitude of the difference between the transversal stress
σx and the longitudinal stress σy, namely, σ = σx − σy. It can be seen that the maximum stress along
x-path appears at HCSP, but the stress in other regions of membrane is close to zero, as shown in
Figure 3b. It illustrates that the strain energy is strictly limited in a narrow area and the energy is not
spread easily outside the HCSP. There is a small distance between the rood beam and edge on the back
side of the membrane. This gap is used to form a stiffness mutation, which can further enhance the
stress concentration. Then, the resistors can experience more stresses and strains, the sensitivity will
be improved again.
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According to the ratio between membrane deformation and thickness, the deflection theory
can be divided into small-deflection theory and large-deflection theory. Small-deflection theory is
always chosen to describe the principle of the sensor but large-deflection theory is usually adopted
to illustrate the phenomenon of nonlinearity error. Once the deflection exceeds the definite value
compared to the thickness of the membrane, the large deflection theory works, and, then, linearity
between deflection and pressure will change to nonlinearity [28]. Based on the large deflection curve,
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the relationship between pressure and deflection is no longer linear when the ratio of (membrane
deflection)/(membrane thickness) is larger than 0.2 [29]. It indicates the small-deflection theory only
works when the deflection is smaller than 1/5 of the membrane thickness. Thus, the maximum
deflection should be less than 1/5 of the membrane thickness, which is beneficial for obtaining a low
pressure nonlinearity error. The simulation of surface displacement only displays a 1/4 model of the
membrane because of the symmetry. The maximum surface displacement appears at the center of the
membrane as shown in Figure 4a. The maximum displacement value reaches 2.8 µm, which is almost
1/10 of the membrane thickness (30 µm), as shown in Figure 4b, and totally satisfies the principle of
small-deflection theory.
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2.3. Geometry Optimization

To determine the geometry of the sensitive membrane, the relationship between the dimension
variables and mechanical performance should be discussed. In this section, a combination of
FEM simulation and curve fitting method is chosen to deduce the theoretical formulas of the
proposed membrane.

Based on the formulas of traditional C-type membrane, the maximum stress and deflection of
the membrane are the power functions of each single structural dimension variable [30,31]. In theory,
the formulas for the proposed structure should be similar to C-type. Consequently, the functional
forms are followed by:

σmax = Q1·Pc1·Ed1·Li1·Hk1·hm1·an1·br1·gs1 (1)

ωmax = Q2·Pc2·Ed2·Li2·Hk2·hm2·an2·br2·gs2 (2)

σoverload = Q3·Ed3·Li3·Hk3·hm3·an3·br3·gs3 (3)

where L, H, h, a, b, and g are the structural dimensions as shown in Figure 2; P and E are the applied
pressure and Young’s elastic modulus, respectively; σmax, ωmax and σoverload are the maximum von
Mises stress, maximum deflection, and maximum von Mises stress under a fixed pressure (100 psi),
respectively; and Q1, Q2, Q3, c1, c2, d1, d2, d3, i1, i2, i3, k1, k2, k3, m1, m2, m3, n1, n2, n3, r1, r2, r3, s1, s2,
and s3 are the curve fitting coefficients.

To calculate above coefficients, each single dimension variable should be discussed separately.
For instance, when membrane length L is discussed, other variables have to be assumed as constants.
The values of these variables are given initially and arbitrarily in the ranges of actual microfabrication.
Thus, Equations (1)–(3) can be simplified to:

σmax = Q1l ·Li1 (4)

ωmax = Q2l ·Li2 (5)
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σoverload = Q3l ·Li3 (6)

where Q1l, Q2l and Q3l are the coefficients for the variable L, and other parameters have been mentioned.
Since the variation of the membrane length L, a series of σmax,ωmax and σoverload will be obtained by
FEM numerical calculation. Then, fitting curves and the coefficients Q1l, Q2l, Q3l, i1, i2, and i3 are
obtained by utilizing the software Origin in accordance with simulation results. Then, Equations (4)–(6)
are followed by:

σmax = 7.8396 × 10−8L2.51041 (7)

ωmax = 4.5474 × 10−15L4.15924 (8)

σoverload = 6.5390 × 10−6L2.5313 (9)

Using the same approach, the fitting equations and curves related to other membrane dimensions
can also be deduced. Then, equations about membrane thickness H are derived as:

σmax = 7.2646 × 104H−2.0675 (10)

ωmax = 8.0452 × 103H−2.34447 (11)

σoverload = 7.0142 × 106H−2.05714 (12)

In addition, the equations related to groove width b are shown as:

σmax = 131.9712b−0.16719 (13)

ωmax = 1.2189b0.20466 (14)

σoverload = 1.2834 × 104b−0.016643 ≈ 1.2834 × 104 (15)

According to Equation (15), it can be concluded that groove width b has little influence on the
σoverload. Moreover, the equations with respect to groove depth g are listed as:

σmax = 32.2032g0.32476 (16)

ωmax = 2.1207 × 103g0.12861 (17)

σoverload = 3.2382 × 103g0.32139 (18)

For rood beam width a, the relative equations are followed by:

σmax = 218.3372a−0.22859 (19)

ωmax = 20.6422a−0.37743 (20)

σoverload = 2.4904 × 104a−0.25478 (21)

In the same way, the equations regarding rood beam thickness h are:

σmax = 116.5183h−0.17377 (22)

ωmax = 17.7924h−0.52592 (23)

σoverload = 1.1682 × 104h−0.017581 ≈ 1.1682 × 104 (24)

Equation (24) reveals that there is tiny impact of the rood beam thickness h on the σoverload.
The equations about pressure P are followed by:

σmax = 9.4421 × 10−3P1.00062 ≈ 9.4421 × 10−3P (25)
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ωmax = 3.7268 × 10−4 × P0.99547 ≈ 3.7268 × 10−4P (26)

From Equations (25) and (26), the stress and deflection of the membrane show linear relationships
with the pressure P. Finally, the equations related to Young’s elastic modulus E are expressed as follows:

σmax = 9.3215 × 106E−0.0025789 ≈ 9.3215 × 106 (27)

ωmax = 1.2453 × 105E−0.98451 ≈ 1.2453 × 105E−1 (28)

σoverload = 6.895 × 109E−0.0421 ≈ 6.895 × 109 (29)

Equations (27)–(29) not only illustrate that the Young’s elastic modulus E has almost no effect
on σmax and σoverload, but also reveal the inverse proportional relationship between E and maximum
deflectionωmax. By combining all the equations related to each single variable, the particular equations
of Equations (1)–(3) can be determined. Simultaneously, to calculate the constant coefficients Q1, Q2,
and Q3, a set of particular solutions are introduced, and thus the relative main equations can be derived
as follows:

σmax = 7.36 × 10−2 PL2.51041g0.32476

H2.0675h0.17377a0.22859b0.16719 (30)

ωmax = 5.64 × 10−3 PL4.15924b0.20466g0.12861

EH2.3447h0.52592a0.37743 (31)

σoverload = 2.45 × 103 L2.5313g0.32139

H2.05714a0.25478 (32)

From Equations (30)–(32), it can be found that with the increase of the membrane length L,
the maximum stress and deflection, both, experience a rise, namely, improve sensitivity, but worsen
linearity. Meanwhile, the impacts for the membrane thickness H, rood beam thickness h, rood beam
width a and groove depth g on the sensitivity and linearity are same except groove width b. It is the
only variable which is inversely proportional to the stress and directly proportional to the deflection.
It means that the sensitivity and linearity can be improved synchronously when the groove width is
chosen appropriately. Besides, groove width b and rood beam thickness h have nearly no influences
on σoverload.

The impacts of structural dimension variables on the stress and deflection variations are presented
in Figure 5a,b. To determine the optimal solution of the nonlinear optimization problem, MATLAB is
used. By the fine adjustment of the MATLAB calculated results, a series of structural dimensions are
finally determined based on comprehensively regarding the influences on stress and deflection of the
membrane as listed in Table 1.
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Table 1. Optimized dimensions of the proposed membrane.

Parameters L H h a b g

Dimension (µm) 3600 30 35 200 60 10

3. Fabrication and Measurements

A 4-inch (100 ± 0.5 mm) n-type SOI wafer oriented in the (100) direction with a resistivity of
10 Ω·cm was chosen as the substrate of the sensor chip. It is 330 ± 5 µm thickness and double sides
polished with a total thickness variation of less than 5 µm. The specific fabrication process of the
proposed sensor chip is summarized as follows. The first step is to grow SiO2 protective layers on
both sides of the wafer by thermal oxidation. A 300 ± 20 nm SiO2 deposition layer is formed using
wet oxidation at 1000 ◦C. Then, lithography is performed on the front side of silicon oxide to pattern
the piezoresistors. The front side of wafer is implanted with boron ions (dose 4.86 × 1014 atoms/cm2,
energy 70 keV) and subsequently annealed at 1000 ◦C for 30 min in N2 ambient for dopant activation.
P-type resistors (210 ± 10 Ω/Sq.) and heavy doping of contact regions are formed in the doped region.
After that, the low pressure chemical vapor deposition (LPCVD) is adopted to grow the passivation
layers of Si3N4 to protect the piezoresistors. Subsequently, the reactive ion etching (RIE) process is
used to etch the ohm contact regions between the piezoresistors and the metal lead. Next, Cr/Au
(50 nm/200 nm) coatings are deposited and patterned for the purpose of connecting of resistors
and forming of bonding pads as presented in Figure 6a. In the following, RIE is applied to create
four grooves on the front side, and DRIE is used to form the cavity and rood beam on the rear side.
Moreover, it is noteworthy that the rear side etching is processed in two steps. The first step is to etch
rood beam patterning by one mask (etching depth was 35 µm). The second step is to form the cavity
and rood beam structure simultaneously by another mask. To obtain an absolute pressure reference
chamber, the bottom side of the wafer is attached to the BF33 glass by anodic bonding process under
vacuum condition (5 × 10−6 Bar) at 360 ◦C with an electric field of 600 V (20 min). The photographs of
the sensor chip after laser cutting are shown in Figure 6b.
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The pressure sensor is assembled with the fabricated sensor chip as shown in Figure 7a. The sensor
is mainly constituted by chip, shell, soleplate, aviation cable, etc. The metal material of the external
structure is 304 stainless steel which is beneficial to improve the corrosion resistance. To increase
the sealing and insulation characteristics of the sensor, the epoxy adhesive (60% ethoxyline resin,
30% quartz powder, 10% dioctyl phthalate) is filled in the shell and solidified for about 24 h at room
temperature (25 ◦C). An aviation cable is used to connect the sensor and the plug, which can resist high
temperatures (>200 ◦C). To protect the welding spot, the fluororubber heat shrink tube is covered at the
connection between every two wires. Between the stainless steel shell and fixing ring, laser welding
is chosen for connection, which can improve the long term stability and application of the sensor.
As a result, the assembled sensor is presented in Figure 7b.
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Figure 7. Schematic diagram of the assembling: (a) interconnecting structure; and (b) assembled sensor.

The performances of the sensor are measured and the experimental schematic diagrams for
testing are shown in Figure 8. The bridge resistance is measured by a digital multimeter (VC890D).
The pressure is from a pressure pump and the pressure value can be adjusted by controlling switch.
To ensure the airtightness of the measurement, the joint between the sensor port and connecting
tube should be twined several laps using the rubber belt. A constant voltage of 5 V is provided to
the Wheatstone bridge of the sensor using a High Current Switching DC Power Supplier (Model
BK1694). The output of the sensor at different pressure loads is read by a digital multimeter (FLUKE
8845A). The output voltages at different temperatures are measured in a high and low temperature
test chamber (GDC4010) with the working range of −20 to 150 ◦C. To test the characteristics of the
sensor at different temperatures, nine temperature points are tested in the range of −20 to 150 ◦C:
−20 ◦C, −10 ◦C, 0 ◦C, 25 ◦C, 50 ◦C, 75 ◦C, 100 ◦C, 125 ◦C and 150 ◦C. The purpose is to check the
temperature characteristic of the device. In the process of high temperature measurement, the test step
change of pressure is set as 0.1 psi, namely, a total number of eleven test points is selected. Based on
the pressure sensor calibration procedures, the pressure signals increase from low to high until 1 psi,
and then decrease from 1 psi to 0. The above process is called “one trip”. For each temperature point,
three trips are carried out for a precise measurement. For each test point in each trip, the output data
will be not read until the pressure is stable. Finally, the various indicators of the sensor are calculated.
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different temperatures.

4. Results and Discussion

After assembling the sensor, the first step is to connect the plug and socket to measure the bridge
resistance. The resistances of three samples are listed in Table 2. Test results show that the consistency of
the resistance is not high enough. This is mainly because the connecting regions between piezoresistors
and Cr-Au wires have some different degrees of the defects. Besides, most of the measured resistances
are smaller than the designed value 6.7 kΩ. This is due to the errors involved in ion implantation and
sputtering processes. The resistance of Device 2 is the closest to the design value, so it is chosen as the
sample to be tested at different conditions.

Table 2. Test results of the Wheatstone bridge resistance.

Sample R1 (kΩ) R2 (kΩ) R3 (kΩ) R4 (kΩ)

Device 1 5.123 4.866 5.469 4.773
Device 2 6.678 6.125 6.904 6.439
Device 3 5.562 5.245 5.417 5.183

The performance of one pressure sensor is usually evaluated by the static characteristics of
technical indicators including full scale output, sensitivity, pressure nonlinearity error, repeatability,
hysteresis, zero output, accuracy, etc. [32]. The measured output voltage and pressure nonlinearity
error are shown in Figure 9. In this paper, the accuracy is calculated using root of the sum squared to
combine nonlinearity, repeatability, and hysteresis into a total accuracy percentage. Finally, the detailed
technical data of the sensor at room temperature (25 ◦C) are listed in Table 3. The results illustrate that
the proposed sensor achieves a high sensitivity of 30.9 mV/V/psi and a low nonlinearity error of 0.21%
FSS (full scale span). Meanwhile, there is a deviation of 8.4% between the simulated and experimental
results. It is illustrated that the estimated data are similar to the actual data, which proves the validity
of the simulation and optimization methods.

The sensitivity and zero output analyses are the study of change in output voltage with respect
to the applied pressure at different temperatures. Figure 10 illustrates the relationship between the
output of the sensor and the standard pressure under different temperatures. It can be observed
that the lower the temperature is, the larger the output voltage is. It is also observed that the output
increases linearly with the applied pressure. However, the output curves of the sensor at different
temperatures are not coincident and there are also differences in the zero output voltage as well as the
sensitivity, which demonstrates that the proposed sensor has a temperature drift. It is consistent with
the conclusion of References [33,34].
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Table 3. Technical data of the sensor at the room temperature.

Parameter Value Parameter Value

Input voltage (V) 5 Repeatability (%FSS) 0.17
Resistance (kΩ) 6.7 Hysteresis (%FSS) 0.12

Zero output (mV) 14.6 Accuracy (%FSS) 0.30
Full range output (mV) 169.1 TCS (%FSS/◦C) −0.15
Sensitivity (mV/V/psi) 30.9 TCO (%FSS/◦C) 1.8

Pressure nonlinearity (% FSS) 0.21 TCR (%FSS/◦C) 0.19
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To be more intuitional, Figure 11 displays the sensor’s sensitivity changes with the temperature
increasing when the test pressure is 1 psi. The results show that the sensitivity reduces almost by
50% when the temperature increases from −25 ◦C to 150 ◦C. This is mainly because the piezoresistive
coefficient decreases when the temperature rises. However, the sensitivity is still as high as
21.2 mV/V/psi at 150 ◦C. The temperature coefficient of sensitivity (TCS) is calculated using the
full output at 150 ◦C and reference temperature 25 ◦C, where the TCS of the sensor is −0.15% FSS/◦C,
indicating that the sensitivity of the sensor has a negative temperature coefficient.
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Figure 11. Curve of the sensitivity variation at different temperatures under 1 psi.

The zero output voltage increases substantially when the temperature is rising, as shown in
Figure 12. The zero output comes from two aspects. The first reason is due to some residual stress on the
membrane. The second reason is because of the non-uniformity in the doping of the four piezoresistors.
The high value of zero output at high temperature may be attributed to the difference in the shapes of
piezoresistors experiencing longitudinal and transverse stresses [35]. It is found that the zero output
increases 15.5 times when the temperature is changing from −20 ◦C to 150 ◦C, which indicates the
proposed sensor possesses an obvious temperature-sensitive character. By calculation, the temperature
coefficient of voltage offset (TCO) of the sensor is 1.8% FSS/◦C.
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Generally, two methods are usually adopted to reduce offset voltage. On the one hand,
the piezoresistive coefficients are the function of the temperature and doping concentration, namely,
π(N,T) = π0 × P(N,T). According to the piezoresistance factor influenced by the temperature and
impurity concentration for monocrystalline silicon, a lower doping concentration is commonly
needed [36]. On the other hand, the offset voltage can also be decreased by incorporating compensation
circuits and signal-conditioning circuits either by using them on the silicon die itself or by employing
hybrid components/signal conditioning ICs/resistor.

With the temperature increases, the resistance experiences a rise until reaching the largest value at
150 ◦C, as shown in Figure 13. Commonly, one requirement of analog electronics is the positive
temperature coefficient of the sensitivity over the entire temperature range. Thus, the positive
temperature coefficient of resistivity (TCR) has to predominate the negative temperature coefficient of
the gauge factor [37]. Based on the resistance variation, TCR is calculated as 0.19% FSS/◦C.
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The proposed sensor demonstrates that it does have the ability to alleviate the contradiction
between sensitivity and linearity to realize the micro measurement with high accuracy, as shown in
Table 4. Compared with the four other reported sensors, the sensitivity of the proposed sensor is the
second largest, which is more than three times larger than that reported in [38]. At the same time,
the pressure nonlinearity for the sensor is intermediate among the five types of sensors, unlike [39]
where the small pressure nonlinearity is obtained but its sensitivity is too low. Thus, it can be
concluded that the proposed sensor achieves a high sensitivity and a low pressure nonlinearity error
when compared with the reported sensors. The proposed sensor not only achieves a good performance
by nonlinear optimization of the structure, but also obtains a good output characteristic at high
temperature using SOI as the substrate. In other words, the sensor in this work is the only candidate
that can work in high temperature, when compared to the four other reported devices.

Table 4. Comparison in performance with other pressure sensors at room temperature.

Sensor Sensitivity (mV/V/psi) Pressure Nonlinearity (% FSS) Accuracy (% FSS) Full Range Pressure (kPa)

Proposed sensor 30.9 0.21 0.30 6.894
Sensor in [38] 10.1 0.19 0.24 10
Sensor in [39] 12.1 0.05 0.68 10
Sensor in [23] 25.4 0.36 - 5
Sensor in [40] 32.1 0.25 0.34 5

Based on the measurement at different temperatures, the temperature characteristic for the
proposed sensor is illustrated. The sensitivity is 21.2 mV/V/psi, the nonlinearity is 0.25% FSS,
the repeatability is 0.19% FSS, the hysteresis is 0.13% FSS, and so the accuracy is up to 0.34% FSS.
Obviously, the sensor also satisfies the linearity at high temperature. As the temperature is rising,
the characteristic has some degradation, but, overall, the change in accuracy is not obvious. The sensor
maintains fine characteristic at high temperature. The contrast in accuracy between the proposed
sensor and several previously reported sensors is displayed in Table 5. Compared with the other
reported sensors, the proposed sensor achieves the best linearity. Moreover, the accuracy for the
sensor is intermediate among the four sensors. Therefore, it can be concluded that the proposed sensor
achieves a high accuracy at high temperature when it is compared with several reported sensors.



Sensors 2018, 18, 439 14 of 16

Table 5. Comparison in accuracy with other pressure sensors at high temperature.

Sensor Pressure Nonlinearity
(% FSS)

Repeatability
(% FSS)

Hysteresis
(% FSS)

Accuracy
(% FSS)

Temperature
(◦C)

Proposed sensor 0.25 0.19 0.14 0.34 150
Sensor in [41,42] 0.33 0.22 0.13 0.72 60

Sensor in [43] 0.26 0.11 0.11 0.3 200
Sensor in [6] 0.3 0.16 0.14 0.48 200

5. Conclusions

In this study, a novel structural piezoresistive pressure sensor was developed by introducing
a rood beam into a four-grooved membrane. The proposed structure provided a solution for enhancing
sensitivity and linearity simultaneously. To testify the feasibility of the scheme, the proposed model
was simulated, optimized, fabricated and measured. Test results illustrated the effectiveness of
incorporating grooves and a rood beam to improve accuracy and alleviate the trade-off between
sensitivity and linearity. Besides, the fabricated pressure sensor exhibited high linearity and accuracy
at high temperature. Thus, in terms of micro size, accuracy and high temperature characteristic,
the proposed structure was a good candidate for measuring low pressure in the range of 0–1 psi
under 150 ◦C.
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