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Abstract

Pseudomonas aeruginosa is a complex gram-negative facultative
anaerobe replete with a variety of arsenals to activate, modify, and
destroy host defense mechanisms. The microbe is a common cause
of nosocomial infections and an antibiotic-resistant priority
pathogen. In the lung, P. aeruginosa disrupts upper and lower
airway homeostasis by damaging the epithelium and evading
innate and adaptive immune responses. The biology of these
interactions is essential to understand P. aeruginosa pathogenesis.
P. aeruginosa interacts directly with host cells via flagella, pili,
lipoproteins, lipopolysaccharides, and the type III secretion system

localized in the outer membrane. P. aeruginosa quorum-sensing
molecules regulate the release of soluble factors that enhance the
spread of infection. These characteristics of P. aeruginosa
differentially affect lung epithelial, innate, and adaptive immune
cells involved in the production of mediators and the recruitment
of additional immune cell subsets. Pathogen interactions with
individual host cells and in the context of host acute lung
infection are discussed to reveal pathways that may be targeted
therapeutically.
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Conclusions

Pseudomonas aeruginosa is a predominant
organism within the hospital environment,
an increasingly multidrug-resistant
microbe, and the most common gram-
negative pathogen causing nosocomial
pneumonia in the United States (1, 2).
Nearly all P. aeruginosa infections are
associated with compromised host defenses,
which may include patients with severe
burns, diabetes, cancer, organ transplants,
or additional immunodeficiencies (3). In
the lung, P. aeruginosa is known to
opportunistically colonize patients with
cystic fibrosis (4) and chronic obstructive
pulmonary disease (5). The biology and
impact of P. aeruginosa chronic lung
infection in patients with cystic fibrosis and
chronic obstructive pulmonary disease have
been extensively reviewed elsewhere (6–9).
The aim of this review is to assess the
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pathogenesis of acute P. aeruginosa lung
infections and to provide insight into
potential host- and pathogen-associated
therapeutic targets.

P. aeruginosa is a leading cause
of acute nosocomial infections and
pneumonias in particular (10–12).
Nosocomial pneumonia has a mortality rate
ranging from 13% to 50%, lengthens
hospital stays, and adds approximately
US$40,000 in excess cost per patient (13, 14).
Ventilator-associated pneumonia (VAP)
is a significant cause of morbidity and
mortality in critically ill patients, and the
isolation of P. aeruginosa is associated
with worse clinical outcomes (15). Prior
exposure to quinolones and carbapenems,
commonly used in ICUs, is linked to
the development of multidrug-resistant
P. aeruginosa (16), making this pathogen
of great concern. P. aeruginosa expresses
efflux pumps, b-lactamases, impermeable
outer membrane proteins, and an adaptable
genome that allows the microbe to acquire
resistance to many classes of antibiotics
(17). The number of multidrug-resistant
P. aeruginosa strains (resistant to one or
more drugs in three or more antibiotic
categories) has steadily increased, and
many clinical isolates possess carbapenem
resistance or, rarely, colistin resistance
(10, 18). Because of the increasing
frequency of antimicrobial resistance
in P. aeruginosa, the World Health
Organization has listed it as a “Priority
1: Critical” pathogen in need of research
and development of new therapeutic
approaches to treating infections (19).
The genetic diversity in antibiotic-
resistant P. aeruginosa strains obtained
from clinical isolates highlights the ability
of the microbe to selectively adapt to
environmental challenges (20). Therefore,
the biology of the bacteria and the host
microenvironment are essential to disease
progression.

Clinical Presentation and
Standard Therapy of Acute
Nosocomial Pneumonia

P. aeruginosa accounts for up to 18% of
nosocomial pneumonia cases, making it
one of the most frequently isolated
pathogens (10–13). The diagnosis of
nosocomial pneumonia is associated with
the appearance of new or progressive
radiographic infiltrate plus fever, purulent

sputum, leukocytosis, and a decline in
oxygenation (21). Hospital-acquired
pneumonia (HAP) is defined as pneumonia
occurring 48 hours or more after admission
to the hospital, whereas VAP is defined as
pneumonia occurring 48 hours after
endotracheal intubation (13). Some of the
complications associated with pseudomonal
HAP and VAP are empyema (in 4–8%
of patients), bacteremia (in 4–17% of
patients), and shock (in up to 46% of
patients) (22, 23). Attributable mortality
rates associated with VAP and caused by
P. aeruginosa are estimated to range from
13% to 32% (14, 24). Delayed or
inappropriate therapy is associated with
increased mortality, extended hospital
stays, and the development of resistant
organisms (13). Therefore, microbial
identification and selection of targeted
therapies for this pathogen are essential to
effective treatment. Initial empiric therapy
for HAP and VAP includes a b-lactam
(antipseudomonal penicillin or
cephalosporin, or a carbapenem) plus a
fluoroquinolone (ciprofloxacin,
levofloxacin) or aminoglycoside (amikacin,
gentamicin, tobramycin) (13). In some
cases of multidrug-resistant P. aeruginosa,
polymyxins (colistin) may also be
considered (25). The prevalence of
P. aeruginosa nosocomial infections, their
associated morbidity and mortality, and the
increased presence of multidrug-resistant
P. aeruginosa strains (10, 18) highlight the
need for new therapeutic approaches. In the
sections that follow, we discuss the biology
of P. aeruginosa and the host response to
highlight potential molecules and pathways
for targeted intervention.

The Bacterium

P. aeruginosa is a gram-negative, rod-
shaped, facultative anaerobe that adheres
to host airway epithelia via its flagellum,
pili, and components of the outer plasma
membrane (26). P. aeruginosa breach of
the epithelium may require weakened
tight junctions, as occurs during cell
proliferation or death, or in response to
a significant focal concentration of the
bacterium, which circumvents the
immune response and allows for
P. aeruginosa exotoxin-S (ExoS)-dependent
cytotoxic damage to the epithelium (27,
28). Individuals with a compromised
immune system or a damaged epithelium,

often present in mechanically ventilated
patients, are highly susceptible to
P. aeruginosa infections (3, 29). In addition,
previous exposure to antibiotics has been
identified as an additional risk factor (30),
which may be linked to antibiotic-induced
changes in the lung microbiome (31)
and the innate immune subsets (e.g.,
macrophages) that reside in the
microenvironment (32). The mechanisms
that allow P. aeruginosa to home in on
damaged tissue or colonize hospitalized
patients with different underlying disorders
(e.g., extrapulmonary infection, congestive
heart failure, renal failure, or surgery) are
not fully elucidated (27, 29, 30, 33, 34).
Quorum sensing (QS), or the ability of the
bacterium to “sense” and respond to its
environment, in association with adhesion
factors, membrane components, and
secretion systems, is fundamental to the
initiation, propagation, and maintenance
of acute P. aeruginosa infection (35)
(Figure 1).

Adhesion Factors
P. aeruginosa flagellum and pili play roles
in the motility and adherence of the
bacterium to host tissue and are therefore
therapeutic targets of interest (36, 37).
P. aeruginosa has a single, polar flagellum
(38) that is essential for motility and
establishing acute infections (39). The
flagellar cap protein, FliD, is responsible for
adhesion to mucins in the upper airways
(40). On the apical surface of respiratory
epithelial cells, both flagella and pili bind to
glycosphingolipids called asialo ganglio-
N-tetraosylceramides (41, 42), and on the
basolateral surface, flagella and pili
respectively bind heparan sulfate
proteoglycans and N-glycans (26).
Induced cell signals from interactions
between glycosphingolipids and flagella
or pili on the apical surface of respiratory
epithelial cells initiate the transcription
and mobilization of Toll-like receptor
(TLR)-2 and TLR-5, where the latter is
another well-characterized flagellar
receptor (41). Damaged or immature
epithelial cells express higher quantities
of glycosphingolipids and heparan sulfate
proteoglycans, which may explain
P. aeruginosa’s predisposition for these
cells (33). Pili can also operate as
receptors for certain bacteriophages,
and these bacterial viruses are currently
being examined therapeutically in the
treatment of P. aeruginosa infections (43).

STATE OF THE ART

State of the Art 709



Membrane Components
The P. aeruginosa outer membrane exhibits
very low permeability because of the
expression of certain porins and
lipoproteins (44). These outer membrane
proteins provide maintenance of cell
structure, passive and active transport of
extracellular molecules, adhesion to other
cells, activation of TLR-2, and antibiotic
resistance via various mechanisms (45–47).
For example, the outer membrane porin
F (OprF) allows nonspecific diffusion of
solutes. However, in P. aeruginosa, OprF
has much lower permeability than other
gram-negative bacteria (48). This reduced
permeability decreases the free diffusion
of small hydrophilic antibiotics (e.g.,

b-lactams and tetracyclines) across the cell
membrane and offers b-lactamases and
efflux pumps greater efficiency in removing
antibiotics that may gain access to the
bacterium (44, 48). Outer membrane
protein H (OprH) overexpression confers
antibiotic resistance to cationic peptides
and antibiotics such as aminoglycosides
and polymyxin B by displacing Mg21 and
Ca21 from the outer membrane and
making tight cross-linking interactions with
LPS, which consequently reduces outer
membrane permeability (49). Increased
production of additional proteins by the
microbe, which may operate in either the
diffusion or efflux of antibiotics (e.g.,
OprM, OprJ, and OprN), is also linked to

multidrug resistance (45), whereas OprI is
an identified susceptible target and
potential receptor for the internalization
of host cationic antimicrobial
peptides/proteins (e.g., LL-37 and
defensins) (50, 51). Therapeutic
opportunities may therefore exist in
targeting outer membrane proteins.

Also within the gram-negative outer
membrane are molecules of LPS (Figure 1).
This virulence factor contains a lipid A
moiety that is recognized by the host cell
TLR-4 complex consisting of TLR-4, the
coreceptor MD-2, and either membrane or
soluble CD14 (52). In addition to the lipid
A moiety, LPS consists of inner and outer
core oligosaccharides and the O antigen (53).

Flagella

Pili

Lipoprotein

Porin

Phospholipids

CpG Motifs
Efflux pump

Type lll

Protein

LPS

Alkaline
Proteases

Siderophores

Elastase Pyocyanin

ExoS
ExoT
ExoU
ExoY

VgrG2b

ExoA

Host cell
membrane

1
4

2

5 3

3

3
5

5

2

Antibiotic

-lactamases

OUTER MEMBRANE

PEPTIDOGLYCAN

PERIPLASMIC SPACE

PLASMA MEMBRANE

CYTOPLASM

Lipid A

NUCLEUS

Ca2+
Mg2+

Type Vl Type ll

Type l Type V

Figure 1. Pseudomonas aeruginosa structure and biology with respect to host interactions. (1) P. aeruginosa adheres to the host via flagella (e.g., binds to
mucin, asialo ganglio-N-tetraosylceramide 1 [GM1], heparin sulfate proteoglycans, Toll-like receptor [TLR]-5, and TLR-2) and pili (e.g., binds to asialo
GM1, asialo GM2, and N-glycans). (2) The microbe uses five secretion systems (type I, II, III, V, and VI). Type II secretion system releases exotoxin (Exo)A.
Direct cell contact enables T3SS to inject toxins into host cells. T6SS-mediated injection of the effector molecule VgrG2b permits microtubule-dependent
internalization of the pathogen. (3) Membrane proteins (lipoprotein:TLR-2, peptidoglycan:nucleotide-binding oligomerization domain [NOD]1 or NOD2) and
molecules (LPS:TLR-4) as well as nucleic DNA motifs (CpG:TLR-9) also interact with host receptors. (4) Quorum-sensing (QS) molecules regulate the release
of soluble factors (proteases, siderophores, elastase, and pyocyanin) in propagating infection. Pyocyanin also interacts with the host receptor, aryl
hydrocarbon receptor. (5) P. aeruginosa efflux pumps, b-lactamases, and porins that regulate slow diffusion of solutes mediate antibiotic resistance.
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The O antigen can also serve as a receptor
for bacteriophages (54). However, the
heterogeneity of the lipid A and O antigen
components in P. aeruginosa limits the
opportunities to target LPS (52). Recent
advances in understanding LPS biogenesis
and the transport proteins involved in
transporting the molecule from the inner
membrane to the outer membrane have
identified targets in modifying LPS
virulence that warrant further study (53).

Peptidoglycan, another structural
component of the membrane, is located just
below the outer membrane (Figure 1). The
muropeptides contained in peptidoglycan
from either gram-negative or gram-positive
bacteria are known to activate the
intracellular innate immune receptor
nucleotide-binding oligomerization domain
(NOD)-2 (55). NOD-1, however, primarily
responds to a unique muropeptide found in
gram-negative bacteria (56). Because TLR-4
and NOD-1 are specific to gram-negative
bacteria and induce synergistic cell signals,
attempts to block or antagonize these
pathways in severe infections have been
investigated, albeit without success (57, 58).
Routes of administration, animal models
versus human clinical syndromes, patient
comorbidities, and type, location, and
duration of infection may contribute to
the difficulties in developing effective
interventions that target TLRs and NODs.

Secretion Systems
P. aeruginosa has secretion systems that
release virulence factors directly into
targeted cells or into the extracellular space.
Gram-negative bacteria use at least seven
secretion systems to transport bacterial
proteins (59). P. aeruginosa secretes
proteins via type I, type II, type III, type V,
and type VI, but the major virulence factors
of P. aeruginosa are secreted via either the
type II secretion system (T2SS) or type III
secretion system (T3SS) (60). General
secretory pathway molecules have been
identified in the transmembrane assembly
of P. aeruginosa T2SS (61) that could be
potential targets in antagonizing T2SS
function. ExoA, elastases, lipases, and
proteases are released into the extracellular
space via the T2SS (62). Additional
exotoxins, ExoS, ExoT, ExoU, and ExoY,
are injected directly into host cells by the
T3SS needle-like apparatus, which consists
of a network of proteins (63). One product
of the T3SS needle complex, PcrV, has been
assessed as a therapeutic target (64, 65).

Other molecules involved in the needle
complex, translocation apparatus, or
associated regulatory proteins and
chaperones may also represent areas for
therapeutic interventions.

QS
QS is a form of bacterial cell-to-cell
communication that regulates gene
expression. P. aeruginosa has three well-
described QS pathways termed Las, Rhl,
and Pqs that respectively generate the
autoinducers 3-oxo-C12-homoserine
lactone (3-oxo-C12-HSL), N-butyryl
homoserine lactone (C4-HSL), and
2-heptyl-3-hydroxy-4-quinolone (PQS) (66).
Each autoinducer freely diffuses into cells,
and at high bacterial cell densities, these
molecules reach a threshold concentration
and bind to their respective receptor, which
also serves as an inducible transcription
factor for the induction of genes involved
in the production of autoinducers, QS
receptors, and virulence genes (67, 68). The
Las pathway activates the transcription of
the Las synthase, LasI, for the induction of
3-oxo-C12-HSL, the Rhl receptor (RhlR),
and the RhlR cognate synthase, RhlI (68).
In addition, the Las receptor (LasR)
activates the transcription of the Pqs
receptor (PqsR), but the transcription is
negatively regulated by RhlR (69). The Pqs
pathway is also dependent on anthranilate
generated from chorismate (a nonmammal
precursor of aromatic amino acids) by
P. aeruginosa anthranilate synthases or via
the kynurenine pathway, where tryptophan
is catabolized (70, 71). PQS is produced
by proteins that are encoded by the
pqsABCDH genes, where pqsE is not
involved but is linked to the increased
production of pyocyanin and the
expression of the efflux pump, MexGHI-
OpmD (72). Additional virulence factors
are generated by each pathway (35, 73, 74)
and are highlighted in Figure 2.

In addition, activation of QS results in
the production of virulence factors that not
only damage host cells but also exhibit
crosstalk with host cells through direct and
indirect mechanisms (60) (Figure 2). For
example, the Las pathway generates the
siderophore pyoverdine, which sequesters
iron away from host cells (35), and this
pathway also generates the autoinducer
3-oxo-C12-HSL, which induces myeloid
cell production of IL-10, the expression of
the tolerogenic nonclassical class I HLA-G,
and an inhibition of tumor necrosis factor

(TNF)-a release (75, 76). Both 3-oxo-C12-
HSL and the PQS autoinducer inhibit
in vitro mitogen-induced human T-cell
proliferation and IL-2 release (76). The Rhl
and Pqs pathways produce hydrogen
cyanide and pyocyanin that generate
reactive oxygen species (ROS) (35, 73, 77).
Pyocyanin also induces the activation of a
characterized host receptor called the aryl
hydrocarbon receptor (AHR) (78). This
receptor is also activated by kynurenine
generated in the Pqs system (79). Adding to
the complexity, AHR is an identified
receptor for various xenobiotic chemicals, a
transcriptional activator of cytochrome
P450 enzymes, and an essential factor in the
development and function of hematopoietic
cells (80).

Moreover, the QS pathways are
activated by host factors (Figure 2).
Although natriuretic peptides are
predominantly characterized as cardiac
hormones known to regulate blood
pressure (through control of sodium and
water balance, for example) (81),
endothelial cell-produced C-type
natriuretic peptide also induces LasI
transcription and the subsequent
production of soluble 3-oxo-C12-HSL (81,
82). The human cathelicidin, LL-37, is a
host defense peptide secreted by a variety of
cells (e.g., macrophages, natural killer cells,
and epithelial cells) but is best characterized
in neutrophils (83). Treatment of
P. aeruginosa with LL-37 induces the
production of pyocyanin, which may occur
through the activation of pqsE (84).
Dynorphin, a k-opioid peptide produced by
pulmonary neuroendocrine cells and
alveolar macrophages, has been implicated
in the activation of pqsABCDE (85, 86).
Last, IFN-g has been shown to bind
to the outer membrane protein OprF,
subsequently activating the Rhl system and
the production of C4-HSL and pyocyanin
(87). The above QS studies reflect a
constant interplay between the microbe
and the host and highlight the need to
understand the biology of both the microbe
as well as the host response in designing
novel therapies.

The Innate Immune Response

In the development of a pulmonary bacterial
infection, the microbe must first overcome
innate host defense responses. Goblet,
ciliated, basal, club, and neuroendocrine
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cells line the epithelium in the upper airway
mucosa and contribute to an extensive
mucociliary escalator to defend against
particulate matter and organisms (88).
Mucins protect the epithelium in
association with plasma cell–secreted
immunoglobulins, which opsonize foreign
matter (89, 90). P450 enzymes detoxify
xenobiotics throughout the lung (91). In the
alveolar lumen, macrophages are charged
with regularly clearing debris, surfactant,

and microorganisms in maintaining lung
compliance and protecting the epithelium
composed of type I and II pneumocytes
(92, 93) (Figures 3 and 4).

Phagocytes
During infection, macrophages and
neutrophils preferentially phagocytose
motile bacteria irrespective of opsonization
(94). Nonopsonic phagocytosis
mechanisms are not well defined, might be

strain specific, and may require
P. aeruginosa flagella, macrophage
complement receptor 3 (CR3), or CD14
(95, 96). Antibodies (IgA, IgG) (97),
complement (C2, C3, C3b, C4) (98–100),
and surfactant protein-A (101) opsonize
P. aeruginosa and enhance phagocytic
uptake via binding interactions with Fc or
complement receptors. To evade these
mechanisms, P. aeruginosa uses 3-oxo-C12-
HSL to modulate the activation state of
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Figure 2. Quorum sensing (QS). Pseudomonas aeruginosa QS is a bacterial intercellular communication system that also interacts with the host. (1) The
autoinducers 3-oxo-C12-homoserine lactone (3-oxo-C12-HSL), N-butyryl homoserine lactone (C4-HSL), and 2-heptyl-3-hydroxy-4-quinolone (PQS)
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Dynorphin activates the pqsABCDH operon. (5) The indole isatin antagonizes AmiC activation. (6) LL-37 activates pqsE, which generates the multidrug
efflux pump MexGHI-OpmD. Th1 = T-helper cell type 1.
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myeloid cells (75, 76) (Figure 2). The
virulence factors elastase and alkaline
protease degrade opsonins (100, 102–104).
ExoA and pyocyanin induce apoptosis
(62, 105), and pyocyanin also impairs
macrophage ingestion of apoptotic cells
(106). In a murine model of P. aeruginosa
pneumonia, macrophages and neutrophils
are also susceptible to T3SS ExoS

cytotoxicity (28). P. aeruginosa–induced
release of IL-8 by macrophages (107), mast
cells (108), and epithelial cells (109) elicits
the recruitment of neutrophils from the
peripheral blood (110). To replace a
depleted pool of macrophages in the lung is
more complex, given that the vast majority
of tissue-resident macrophages originate
from the yolk sac and not hematopoietic

stem cell precursors (111). In a murine
Escherichia coli primary pulmonary
infection model followed by secondary
P. aeruginosa pneumonia, populations of
dendritic cells (DCs) and macrophages
were reconstituted in an altered
phenotype involving diminished antigen
presentation and reduced production of
proinflammatory cytokines (IL-6, TNF-a,
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VgrG2b. (5) Activation of quorum sensing (QS) encourages the accumulation of P. aeruginosa and the production of QS molecules that in turn generate
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production of pyocyanin, which is characterized in goblet cell hyperplasia and enhanced mucin production. (7) Released siderophores compete with cells
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(9) The production of kynurenine formidase (KF) induces tryptophan (TRP) catabolism into kynurenine (KYN). (10) Infection triggers cell signals for the
formation of the inducible bronchus-associated lymphoid tissue (BALT) that coordinates with the lymphatic system in mediating secondary responses.
NET = neutrophil extracellular trap.
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IL-12) (112). CD11b1 DC populations
characterized in this study exhibited
increased B-lymphocyte–induced
maturation protein (Blimp)-1, which is an
identified transcription factor regulated
by AHR (112, 113). In neutrophils, the
P. aeruginosa–produced AHR ligand,
pyocyanin, induces nicotinamide adenine
dinucleotide phosphate(H) (NADPH)
oxidase and the uncontrolled release of
neutrophil extracellular traps (NETs) (114).
Neutrophil bacterial uptake also involves the
activation of NADPH oxidase, the release
of antibacterial molecules, and ROS
involved in the killing of the pathogen
(115). These activities may be countered by
an additional P. aeruginosa–derived AHR
ligand, kynurenine, which scavenges
neutrophil ROS (116). In addition, T3SS

blocks neutrophil ROS production via
ADP-ribosyltransferase activities of ExoS
and ExoT (117). These competing processes
may allow the microbe to evade host
phagocytes and interact with additional
immune subsets and the epithelium.

Innate Lymphoid Cells
Lung innate lymphoid cells (ILCs) are
composed of three subsets (ILC1, ILC2,
ILC3), which are derived from common
lymphoid progenitors. The ILC2s have been
characterized in murine and human lung
tissue and may be recruited to the airway
(118). This subset is maintained by various
cytokines (e.g., IL-33 and IL-25) and is
implicated in the maintenance of lung
homeostasis (118, 119). In a murine model,
P. aeruginosa infection altered mediator

production and induced the formation of
the ILC3 variant (120). This subgroup is
formed not only in response to IL-1b
and IL-23 but also in response to AHR
cell signals (119), suggesting that the
AHR ligands, particularly pyocyanin
and kynurenine from QS (Figure 2),
or the production of kynurenine via
indoleamine-2,3-dioxygenase (IDO)
released from CpG DNA-activated
dendritic cells (121), may influence the
proliferation or recruitment of ILC3s (122).
These cells are also characterized by the
production of IL-17 and IL-22 (119), which
are essential cytokines in the formation of
bronchus-associated lymphoid tissues
(BALT) during the adaptive immune
response (123).

Bronchial Epithelium
P. aeruginosa flagella and pili interact with
mucin and cell surface receptors on the
apical surface of the respiratory bronchial
epithelium (41, 42) (Figures 1 and 3).
Epithelial cell invasion by the microbe may
be induced by T6SS-mediated injection of
the effector molecule VgrG2b, which
targets the host cell microtubule network
and permits microtubule-dependent
internalization of the pathogen (124, 125).
This mechanism may be linked to the
activation of epithelial cell signals,
specifically phosphatidylinositol 3-kinase
(PI3K) and protein kinase B/Akt (Akt),
which are required for internalization of the
bacterium (126). Release of ExoA via T2SS
(62) and injection of additional toxins via
T3SS (63) into epithelial cells damage the
epithelium and provide pathways to the
basolateral surfaces. There the bacteria
preferentially adhere and localize via
binding interactions between the
epithelium and bacterial flagella (26, 127)
(Figure 3). QS activates cell signals
involved in the production of virulence
factors (35) (Figure 2). Proteases and
elastases degrade mucin (128), IgA (102),
and the epithelial tight junctions (3).
Pyocyanin slows ciliary beating (129) and
induces goblet cell hyperplasia and mucin
hypersecretion (130), possibly as a result of
increased club cell differentiation into
goblet cells (130, 131). Furthermore, the
differentiation of club cells may also involve
pyocyanin or kynurenine (79) binding to
AHR in club cells, because AHR is highly
expressed in these cells and known to bind
additional AHR ligands in human club cells
in vitro (132). Distinct xenobiotic AHR
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ligands (curcumin, indole-3-carbinol,
2,3,7,8-tetrachlorodibenzo-p-dioxin) are
also characterized in modulating lung
inflammation and fibrosis (133), suggesting
that microbe AHR ligands are integral to
the host response.

Alveolar Epithelium
In the alveolar epithelium, type I
pneumocytes cover approximately 95% of
the gas exchange surface area, and the type II
pneumocytes cover the remaining area and
secrete surfactant in maintaining lung
compliance (134). P. aeruginosa type IV
pilus accounts for about 90% of the
adherence capability of the microbe to the
adenocarcinomic human alveolar basal
epithelial cell line, A549 (135). Invasion of
rat and murine type I–like pneumocytes
in vitro and in vivo is mediated by
P. aeruginosa coopting host cell caveolin-
2–dependent lipid raft endocytosis (136,
137), suggesting that this host–microbe
interaction could be a therapeutic target. In
cell lines and murine models, type I
and type II pneumocytes endocytose
P. aeruginosa, protect the bacteria from
host defenses by shielding them from
phagocytes, and allow bacterial
proliferation (138, 139). In a murine
pneumonia model, type I pneumocytes
accounted for nearly 40% of all cells
injected with ExoS 18 to 24 hours after
P. aeruginosa infection (28). Damaged type
I pneumocytes are replaced by type II
pneumocytes, and this increases the
production of surfactant and decreases gas
exchange in the alveoli (134). In A549 cells,
pyocyanin accepts electrons from
nicotinamide adenine dinucleotide(H)
(NADH), NADPH, or reduced glutathione
and transfers the electrons to O2,
generating superoxide (O2*) and hydrogen
peroxide (H2O2) (77). These ROSs also
induce the release of histamine from
murine primary mast cells (140), leading to
increased vascular permeability and
therefore encouraging immune cell influx
from circulation (Figure 4).

The Adaptive Immune
Response

The adaptive immune response is a
delayed response that requires directives
from the innate immune system for the
generation of pathogen-specific lymphocytes.
P. aeruginosa antigens in the lung are taken

up, processed, and presented to T-cell
subsets mainly by DCs (141, 142).
Additional professional antigen-presenting
cells, such as B cells and macrophages, can
also perform this function (143). Atypical
epithelial cells called microfold (M) cells
and ILC3s may also present antigen and
interact with T-cell subsets (143, 144).
In mice, M cells are localized above
nasopharynx-associated lymphoid tissue
and BALT (145) and may translocate
pathogens to macrophages and dendritic
cells directly beneath the epithelium (145,
146). The activation of T cells occurs
mostly in lymph nodes but can also occur
in the BALT, where distinct subsets
(T-helper cell type 22 [Th22], Th17, T
regulatory) are generated (123). Animal
studies examining the effect of Th1
cytokines, such as IFN-g and IL-18, in
response to P. aeruginosa pulmonary
infection, demonstrate that a Th1 response
impairs bacterial clearance in the lung (147,
148). This contrasts with a murine model
involving P. aeruginosa subcutaneous
footpad injections, where IFN-g is critical
to the local containment of bacteria and the
prevention of systemic dissemination (149).
Possibly, this is due to the ability of P.
aeruginosa to “sense” IFN-g through the
QS system in the lung microenvironment,
thus leading to increased virulence
(Figure 2). This may explain the proliferation
of additional T-cell subsets and B cells
that can both be influenced by AHR
ligands.

T Cells and BALT
The most robust adaptive immune response
occurs within the regional mediastinal
lymph nodes, where migratory dendritic
cells interact with T cells to generate and
induce the proliferation of antigen-specific
T cells (142, 150). Dendritic cells pulsed
with the heat-killed bacterium in vitro are
able to protect mice against an in vivo lethal
challenge in CD82/2 but not CD42/2 mice,
indicating a requirement for CD41 cells
(151). Subsets of CD4 cells that are
generated after P. aeruginosa challenge
include Th17 and Th22 cells (152) that
provide cytokines (IL-17, IL-22) in
promoting the organization of B cells and
T cells into BALT (123). IL-17 also
contributes to lymphangiogenesis within
BALT (153), forming around major
bronchi and pulmonary blood vessels, thus
allowing for enhanced recruitment of
innate and adaptive immune cells into the

lung (154). IL-17 and IL-22 are also
important to host defense, as deletion or
blockade of IL-17 or IL-22 in murine
models of P. aeruginosa and other gram-
negative pulmonary infections results in
increased lung injury and mortality
(155–158). Cell signals that yield IL-17
and IL-22 in T-cell subsets are similar,
particularly in that some murine Th17 cells
can produce both IL-17 and IL-22 (159).
Similar to the ILC3s (119), both Th17 and
Th22 cells are regulated by the cytokines
IL-1b and IL-23 (160, 161) and are
influenced by the transcription factor AHR.

Moreover, the activation of T-cell
subsets by AHR is critical to the
development and function of immune
responses. The microenvironment and type
of AHR ligand determine the formation
of Th17, Th22, the immunosuppressive
T regulatory lymphocytes (80), and
ILC3s (120, 162). P. aeruginosa
pigment molecules, pyocyanin and
1-hydroxyphenazine, in association with the
tryptophan catabolic product kynurenine,
produced by both the bacterium and host,
appear sufficient to activate AHR during
infection (78, 79, 163). In a rat catheter-
related lung infection model examining
P. aeruginosa QS mutants, the production
of suppressive cytokines (IL-10, TGF-b)
and the presence of T regulatory
lymphocytes were higher in the animals
infected with the wild-type bacteria than in
animals challenged with the mutants (164),
suggesting that QS molecules also affect the
induction of certain T-cell subsets.

B Cells
In a murine model of P. aeruginosa lung
infection, IL-17–producing gd T cells were
found to be essential for B-cell production
of antibodies detected in serum and
bronchial lavage fluid (165). An additional
model demonstrated that B cells also
produced IL-17, but in mice lacking B cells
(mMT mice), pathogenesis was not affected
(166), which highlights the lack of target
specificity of the antibodies generated. Of
interest, B-cell receptor cross-linking
significantly induces the expression of
AHR, and AHR activation affects the
processes of class-switch recombination
and plasma cell differentiation, which
induce the formation of distinct effector
B cells and antibody-secreting cells,
respectively (113). The production of AHR
ligands by the host and microbe may
therefore affect the humoral response to
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P. aeruginosa infection. These adaptive
immune responses involving lymphocyte
subsets, coupled with innate host defense
mechanisms, provide insight into the
pathophysiology of clinically evident
P. aeruginosa pneumonia.

Pathophysiology of
P. aeruginosa Pneumonia

Barriers exist in the respiratory tract to
prevent the establishment of infection, such
as the presence of mucus, opsonins, innate
immune cells, and additional factors
(Figures 3 and 4). These barriers may
be altered by physical injury (29), a
compromised immune system (3), or
previous exposure to antibiotics (30), which
render the host susceptible to P. aeruginosa
lung infections. Activation of P. aeruginosa
QS alters innate and adaptive responses
(Figure 2) and, along with the associated
cytotoxic effects of the virulence factors,
allows for the establishment of a severe
lower respiratory tract infection, as
discussed in detail above (Figures 5 and 6).
The corresponding inflammatory response
includes P. aeruginosa–mediated release
of IL-8 by various cell types and the
recruitment of neutrophils to the lung
(110). NET proteins can induce
endothelial and epithelial cell death, alter
the extracellular matrix, and expose
autoantigens, which may contribute to
mucus viscosity, autoantibody production,
and impaired lung function in certain
P. aeruginosa infections (167, 168). Red
hepatization, tissue necrosis, thrombosis
of the blood vessels, and obstruction of
small airways by lymphocytic infiltrates
are linked to the oxidative effects of
QS-mediated release of pyocyanin in the
murine lung (169). These various
interactions combined with sequestration
of iron by the pathogen converge to
create a hypoxic environment where host
lung function declines (170, 171).

Moreover, ineffective clearance of
the pathogen occurs in response to
P. aeruginosa–mediated phagocyte
apoptosis (62, 105). This decreased
clearance allows the bacteria to further
degrade tight junctions (172), which
induces the expression of adhesion
molecules (173) that permit fluid and
immune cell influx into the lung
parenchyma and subsequently impairs
gas exchange. Preferential damage to club

cells in the bronchioles and type I
pneumocytes in the alveoli increases the
proliferation of mucin-producing goblet
cells and surfactant-generating type II
pneumocytes, respectively, thus altering
the mix of cytochrome P450 enzymes
that are produced by these cells to
mediate the clearance and detoxification
of AHR ligands (91). The AHR ligand,
pyocyanin, also enhances the production
of free radicals (77) that are also
produced by neutrophil respiratory burst
activity (115). Increased production of
ROS, damage-associated molecular
patterns, and pathogen-associated
molecular patterns sustain cellular
inflammasome activation and induce the
production of mediators that enhance the
alveolar filling process, dramatically decreasing
gas exchange within the alveoli (174).

Last, bacterial virulence factors also
have a role in promoting bacteremia.
P. aeruginosa elastase degrades surfactant
proteins A and D, which are known to
opsonize bacteria and affect the phenotype
and function of macrophages (93, 175).
P. aeruginosa proteases that degrade tight
junctions also degrade IL-22 (176), which
protects the integrity of the epithelium
(156). The combined effect is increased
destruction of the epithelial barrier, which
may allow the bacteria to interact with the
endothelium, where proteases and toxins
released from T2SS and T3SS further
disrupt endothelial tight junctions and
destroy endothelial cells (172). Migration of
P. aeruginosa into the bloodstream
produces bacteremia (29). In a murine
in vivo model of severe infection, TLR-4–
activated platelet-bound neutrophils
within the vasculature significantly and
predominantly induced NET activity,
mediating intravascular bacterial trapping
while at the same time causing tissue damage
(177). In summary, the delicate balance
between bacterial factors and host responses
determines the severity of infection and thus
host outcomes. Therefore, modulating
bacterial factors, the host response to
infection, or both offer opportunities for
novel therapeutic interventions.

Novel Therapeutic Interventions

The acquisition of resistance genes
(e.g., genes for b-lactamases and
enzymes inactivating aminoglycosides),
overexpression of efflux pumps, or

decreased expression of porins may affect
treatment success of P. aeruginosa
infections (178). Ceftolozane/tazobactam
and ceftazidime/avibactam are new
combinations of b-lactam/b-lactamase
inhibitors that have been approved for use
against certain infections caused by
multidrug-resistant strains of P. aeruginosa
(179). Vaccines using live-attenuated or
irradiated P. aeruginosa (180–182), the LPS
O-antigen (52), a 3-oxo-C12-HSL-carrier
protein conjugate (183), and various
recombinant proteins (PcrV [184, 185],
flagellin B [186], OprL [187], OprF [186],
OprI [184, 186], OprF/I fusion [188], pili
[189, 190], T6SS hemolysin coregulated
protein 1 [184]) are being investigated to
prevent P. aeruginosa infections. Because
P. aeruginosa is a World Health
Organization “Priority 1: Critical” pathogen
in need of new approaches to treatment
(19), preclinical models of biologics are
being assessed (Table 1). Expanding on
these factors that are unique to the
pathogen as well as those linked to the host
response may aid in devising new
therapeutic interventions to combat
P. aeruginosa infections.

Interventions Targeting the
Pathogen

Protein Epitope Mimetics
Small synthetic molecules called protein
epitope mimetics resemble functional
epitopes of physiologically important
proteins. A protein epitope mimetic of
LptD, a porin protein critical to LPS
transport to the outer membrane, has
demonstrated antimicrobial activity
in vitro (191). Intratracheal administration
of this mimetic significantly reduced
lung bacterial counts and pulmonary
inflammation in an in vivo P. aeruginosa
pneumonia mouse model (192)
(Table 1). LptE forms a complex with
LptD and is being similarly assessed as a
target for peptidomimetic antibiotics (191,
193). In addition to targeting LPS
transport, examination of antibiotic
resistance OM proteins (e.g., OprF, -H,
-J, -L, -M, and -N) or structural proteins of
secretion systems (T2SS, T3SS, and T6SS)
as potential targets of protein mimetics or
binding molecules such as aptamers
may provide a needed mechanism
in treating resistant P. aeruginosa
infections.
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Iron
P. aeruginosa siderophores, pyochelin and
pyoverdine, sequester iron from the
surrounding environment and are
respectively internalized by their outer
membrane receptors, FpvA and FptA (194).
Tagging pyochelin or pyoverdine with an
antibiotic or a redox-inactive metal ion
such as gallium, which interferes with
P. aeruginosa iron metabolism, has been
proposed as a potential therapeutic
intervention (194). In the absence of
siderophores, some P. aeruginosa strains
may use another iron chelating system
involving nicotianamine (171), which could
be similarly explored.

Pyocyanin
Strategies to neutralize pyocyanin activity or
block pyocyanin production in the host
with antioxidants, antibodies, or acyl-
homoserine lactone analogs may prevent
severe P. aeruginosa infections (195, 196)
(Table 1). Selective estrogen receptor
modulators have unique effects on
pyocyanin production. One member of this
class of drugs, raloxifene, binds and inhibits
the activity of a P. aeruginosa biosynthesis
protein, PhzB2, involved in the conversion
of chorismate to pyocyanin (197). In
additional in vitro analyses, raloxifene and
similar compounds (toremifene, tamoxifen)
in combination with polymyxin B were

shown to exhibit synergistic activity against
polymyxin-resistant P. aeruginosa
proliferation and survival (198), suggesting
that modifying cell signals leading to
pyocyanin production may be beneficial in
severe infections.

Adhesion Factors
Because flagella and pili are the primary
means by which P. aeruginosa adheres to
the host (36, 37), these molecules are being
explored as therapeutic targets. Human
antiflagellar antibodies administered
intravenously have shown efficacy in a rat
P. aeruginosa pneumonia model (36)
(Table 1). Studies with chicken antiflagellar
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antibodies have shown a potential
prophylactic effect against P. aeruginosa
colonization in patients with cystic
fibrosis who gargled the antibodies
(199, 200). In a murine burn wound
sepsis model involving P. aeruginosa,
mouse antiflagellar antibodies given
intraperitoneally significantly improved
morbidity and mortality (201), highlighting
the therapeutic potential of antiflagellar
antibodies. With respect to pili, extensive
study of P. aeruginosa type IV pili
biogenesis is anticipated to identify small
molecule inhibitors that may block the
dynamic assembly and disassembly of pili

or the adhesion of pili (202, 203). However,
P. aeruginosa pili and flagella are also
susceptible to genetic changes in expression
in certain microenvironments and species,
and this may create difficulties in targeting
these adhesive factors (204–206).

Bacteriocins and QS Inhibition
Bacteriocins are bacterial toxins that
an individual bacterium uses to kill
neighboring bacteria (207). Bacteria have
also devised mechanisms to inhibit QS of
neighboring bacteria. This phenomenon is
termed quorum quenching and occurs by
bacterial production of bioactive molecules

that affect a neighboring cell’s autoinducer
gene activation, structure, or receptor
binding interactions (208). Attempts to
identify and engineer P. aeruginosa–specific
bacteriocins called pyocins, native quorum
quenchers, and synthetic or plant-derived
QS inhibitors as antimicrobial agents
against P. aeruginosa are in process. For
example, the pyocin SD2 binds the
common polysaccharide antigen of
P. aeruginosa LPS and interacts with an
outer membrane receptor, which facilitates
the killing of the microbe (209). In diabetic
foot ulcer isolates, a quorum quencher
lactonase (SsoPox-W263I), which cleaves
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acyl side chains from 3-oxo-C12-HSL (210),
inhibits the virulence of P. aeruginosa by
decreasing the secretion of proteases and
pyocyanin (211). The PA2385 gene of
P. aeruginosa encodes a quorum quencher
acylase that removes the fatty acid side chain
from 3-oxo-C12-HSL and effectively reduces

the production of PQS, elastase, and
pyocyanin in vitro (212). A synthetic
C4-HSL inhibitor, N-(2-pyrimidyl)
butanamide, called C11, decreases expression
levels of both las and rhl virulence genes
(213). Targeting pqsA via substrates that bind
the gene reduces autoinducer production

for this pathway (214). The compounds
brominated furanone C-30 and
5-fluorouracil as well as plant-derived
zingerone from ginger root and garlic extract
also inhibit P. aeruginosa QS systems in vitro
(215–218). Additional in vivo studies are
highlighted in Table 1.

Table 1. Biologics Targeting Pseudomonas aeruginosa Pneumonia in Animal Models

Target Biologic Model Outcomes

LPS transport protein LptD Intratracheal POL7001 protein
epitope mimetic molecule
(192)

Mouse ↓ cfu/lung
Acute pneumonia ↓ Leukocyte recruitment

↓ Cytokine/chemokine profiles

Bacteriophage-induced
Pseudomonas aeruginosa lysis

Intranasal PAK-P1
bacteriophage (245)

Mouse ↓ IL-6 and TNF-a
Acute pneumonia ↑ Survival rate

↓ Bacterial load

Bacteriophage-induced
P. aeruginosa lysis

Intranasal YH6 or YH30-phage
(246, 247)

Mouse or mink ↓ cfu/lung, spleen, blood
Hemorrhagic pneumonia ↑ Survival rate

PcrV, nonspecific P. aeruginosa
neutralization, FcgRs on target
cells

Intravenous anti-PcrV antibodies
and immunoglobulins (248)

Mouse ↓ cfu/lung
Lethal P. aeruginosa infection ↑ Survival rate

↓ Cytokines

Nonspecific P. aeruginosa
neutralization, FcgRs on target
cells

Intravenous immunoglobulins
(249)

Immunocompromised mice ↑ Serum TGF-b
Acute pneumonia ↑ T regulatory cells

↓ Lung injury

Lymphocytes Recombinant human IL-7
immunotherapy via
subcutaneous injection (250)

Murine secondary pneumonia
(intratracheal P. aeruginosa
infection subsequent to cecal
ligation puncture)

↑ Lung ILCs and CD8 T cells
expressing IL-17, IFN-g, TNF-a

↑ Survival rate
↑ Spleen T cells expressing IFN-g,
TNF-a, IL-17, IL-22

Pyocin S2, pyocin AP41 (DNase
activity), pyocin S5
(pore-forming toxin), pyocin L1
(cytotoxic mechanism is
unknown)

Intranasal or peritoneal
recombinant protein toxins
(molecules produced by
P. aeruginosa to inhibit the
growth of closely related
strains) “pyocin cocktail” (251)

Murine acute lung injury ↓ Bacterial counts
↑ Survival rate

Pyocin SD2 (tRNase activity) Intranasal recombinant
P. aeruginosa SD2 1 h
postinfection (209)

Murine ↓ Bacterial counts
Acute lung injury ↑ Survival rate

3-oxo-C12-HSL Intratracheal lactonase (252) Rat ↑ Survival rate
Acute lung injury ↓ Lung injury

All TLR-4/MD2–expressing cells,
primarily immune cells

Intraperitoneal TLR-4/MD2
agonistic monoclonal antibody
UT12 (253)

Murine chronic lung infection
(bronchi-implanted sterile
plastic P. aeruginosa–coated
tubes)

↓ cfu counts/lung
↑ Neutrophil recruitment and
bactericidal activity

P. aeruginosa outer membrane Aerosolized recombinant human
lysozyme (254)

Hamster ↓ cfu/lung
Acute pneumonia ↓ BAL neutrophils

↓ Lung injury

P. aeruginosa flagella Intravenous anti–type a and
type b flagellar protein
antibodies (36)

Rat ↑ PaO2

Acute pneumonia ↓ Respiratory rate
↓ Lung injury

P. aeruginosa quorum sensing Subcutaneous injections of a
halogenated furanone (C-30)
(255)

Murine ↓ cfu counts/lung
Acute lung injury ↓ QS as identified by LasB-GFP

reporter in infected lungs

Definition of abbreviations: cfu = colony-forming unit; HSL = homoserine lactone; ILC = innate lymphoid cell; LasB-GFP = las gene that encodes elastase
labeled with green fluorescent protein; QS = quorum sensing; TGF = transforming growth factor; TNF = tumor necrosis factor; TLR = Toll-like receptor.
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Bacteriophages
Bacteriophages are ubiquitously expressed
in the biosphere and provide a reservoir of
genetic diversity to the bacterial hosts they
infect (219). These bacterial viruses,
consisting of a single-stranded or double-
stranded DNA or RNA, either integrate
their genome into the host chromosome or
inject and replicate their DNA in the host,
resulting in lytic death and the release of
progeny phages (219, 220). Lytic phages
(Myoviridae, Podoviridae, Siphoviridae)
are being assessed for the treatment of
P. aeruginosa infections (220). Some of
these bacteriophages also bind to additional
intervention targets. For example, the
Myoviridae phage fCTX uses LPS as a
receptor, and the Podoviridae 116 phage as
well as Siphoviridae D3112 and B3 phages
bind type IV pili (219). A recently isolated
Myoviridae, OMKO1, depends on the porin
OprM for entry, and, in the absence of
OprM, P. aeruginosa becomes resistant to
the phage but susceptible to drugs such as
tetracycline and erythromycin, because
these antibiotics are commonly removed
from the bacterium by OprM-specific
multidrug efflux systems (MexAb-OprM,
MexXY-OprM) (221). This research
suggests that microbial defenses involved
in the generation of phage resistance may
also increase the microbe’s susceptibility to
antibiotics, which may suggest that these
approaches could be combined therapeutically
(221). Bacteriophages, used individually or as
a mixture of various phages, have also
shown improved survival in some animal
models of P. aeruginosa infection (220)
(Table 1). Despite regulatory hurdles
involved in the manufacturing and handling
of bacteriophages for personalized patient
use as well as safety concerns regarding the
host immune response and changes to
mucosal microbiota (222–224), bacteriophages
continue to be evaluated as noted in a
clinical trial involving patients with severe
burns or diabetic foot ulcers (225).

Interventions Targeting the
Host

IL-22
In animal models of ventilator-induced lung
injury or allergic inflammation, inhalation
or intranasal doses of IL-22 ameliorated
disease progression (226). Because IL-22
supports epithelial integrity (156, 227, 228),
and the activity of the cytokine may be

weakened by P. aeruginosa protease
degradation (176), inhalation therapy with
IL-22 may be an approach to protect host
airways against P. aeruginosa damage.

Desulfated Heparin
During a bacterial infection, heparin may
inhibit the activation of platelets and
disrupts neutrophil NET activity (229,
230). Heparin also inhibits mast cell
degranulation, which may be important in
mast cell protection of the host epithelium
(231). However, the clinical use of heparin
in the treatment of patients with severe
infections has not shown significant
benefits (229). Partially desulfated heparin
(2-O, 3-O-desulfated heparin: ODSH), a
heparin derivative with significant
antiinflammatory properties but minimal
anticoagulative effects, reduced P.
aeruginosa–induced neutrophilic lung
injury and also increased P. aeruginosa
clearance when delivered subcutaneously to
mice. This may be due to the ability of
ODSH to inhibit neutrophil elastase-induced
macrophage release of the proinflammatory
molecule high-mobility group box 1, which
is known to bind to TLR-2, TLR-4, and
the receptor for advanced glycation end
products (RAGE) (232, 233). Understanding
the functions of ODSH with respect to mast
cells, platelets, or additional cells in the lung
may increase insight into the use of ODSH
as a therapeutic for P. aeruginosa infections.

ACE2 Activation
Mast cells produce heparin and renin (234).
The latter cleaves angiotensinogen into
angiotensin I, which is also cleaved by
angiotensin-converting enzyme (ACE)
into angiotensin II, which then binds
type 1 and type 2 receptors involved in
vasoconstriction and blood pressure
regulation (235). The ACE homolog, ACE2,
further cleaves angiotensin II into
angiotensin 1 to 7, inactivating angiotensin
II, thus functioning as an endogenous
inhibitor of the ACE pathway (235). In a
murine ACE2 knockout model of lung
injury, knockout mice exhibited increased
vascular permeability, lung edema, and
neutrophil influx in association with
decreased lung function, which is a
phenotype that was rescued with the
administration of recombinant ACE2 or
with a pharmacological inhibitor of the
angiotensin II type 1 receptor. Additional
research in this study also revealed that

ACE knockout mice showed reduced
disease severity, whereas ACE2 knockout
mice increased disease severity in an
endotoxin-induced model of lung injury
(236), highlighting the divergent function
of these two enzymes. These responses may
be explained by ACE2 catabolism of
angiotensin II into seven peptides
(angiotensin 1–7) that exhibit additional
mechanisms that are not yet elucidated (235).
These studies emphasize the potential of
angiotensin II type 1 receptor inhibitors,
ACE inhibitors, ACE2, and possibly
angiotensins 1 to 7 in treating lung infections.

Interventions Targeting the
Host and the Pathogen

Indoles
C-type natriuretic peptide is produced by
lung epithelial, club, and endothelial cells
and activates QS via the bacterial sensor
protein, AmiC (237). The molecule AmiC
has structural and pharmacological profiles
similar to those of the human C-type
natriuretic peptide receptor and is similarly
inhibited by an interspecies indole called
indole-2,3-dione or isatin, thus inhibiting
QS-mediated virulence (237). The
molecules 7-fluoroindole and curcumin are
also able to inhibit P. aeruginosa QS signals
in vitro and block pyocyanin production
(238, 239). Indoles and curcumin are AHR
ligands where dietary indole-3-carbinol and
intraperitoneally administered curcumin
have been shown to suppress LPS-induced
lung injury in murine models (240, 241). If
AHR ligands, particularly the indoles, also
affect the C-type natriuretic peptide receptor
AmiC is not clear. Nonetheless, nontoxic AHR
ligands may be beneficial in targeting
P. aeruginosa virulence factors and modulating
the immune response to P. aeruginosa.

Cationic Molecules
Lactoferrin and LL-37 are both cationic
molecules released from neutrophils that
can then neutralize LPS but also function
in the activation of TLR-4 (83, 242).
Although the characterized functions of
these molecules confound possible
therapeutic approaches, they are pivotal to
understanding pathogenesis. For example,
lactoferrin also sequesters iron as a
mechanism of host defense, where
P. aeruginosa pyoverdine has been found
to acquire the metal from lactoferrin
(243). The peptide fragment of lactoferrin,
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lactoferricin, also exhibits P. aeruginosa
antimicrobial functions but lacks the ability
to sequester iron, thereby suggesting an
alternative antibacterial mechanism (244).
LL-37 is an activator of the QS system (35)
(Figure 2), suggesting that blocking LL-37
activity could be therapeutic. Continued
exploration of lactoferrin, lactoferricin, and
LL-37 may yield valuable insight into
P. aeruginosa infections and treatment.

Conclusions

Current therapies are increasingly insufficient
in the treatment of P. aeruginosa infections.

The ability of the microbe to readily adapt to
the host microenvironment, by modulating
the expression of cell surface molecules
and virulence factors, directly affects
the efficiency of the host’s innate and
adaptive immune responses. This constant
interplay between the microbe and host
requires new and innovative approaches
to effectively eradicate the pathogen
from the most vulnerable populations.
With increased resistance to antibiotics,
effective treatments in the future may
include combined therapies involving a
QS inhibitor, pyocins, bacteriophages,
an immunomodulatory agent, or

neutralizing antibody or aptamer with
conventional antibiotic therapy to increase
the clinical cure rate and improve
survival. n
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226. Mühl H, Scheiermann P, Bachmann M, Härdle L, Heinrichs A,
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