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Abstract

Rationale: Short- and long-term fine particulate matter (particulate
matter<2.5 mm in aerodynamic diameter [PM2.5]) pollution is
associated with asthma development and morbidity, but there are
fewdata on the effects of long-term exposure to coarse PM (PM10–2.5)
on respiratory health.

Objectives: To understand the relationship between long-term fine
and coarse PM exposure and asthma prevalence and morbidity
among children.

Methods: A semiparametric regression model that incorporated
PM2.5 and PM10 monitor data and geographic characteristics
was developed to predict 2-year average PM2.5 and PM10–2.5 exposure
during the period 2009 to 2010 at the zip-code tabulation area level.
Data from 7,810,025 children aged 5 to 20 years enrolled inMedicaid
from 2009 to 2010 were used in a log-linear regression model
with predicted PM levels to estimate the association between PM
exposure and asthma prevalence and morbidity, adjusting for
race/ethnicity, sex, age, area-level urbanicity, poverty, education, and
unmeasured spatial confounding.

Measurements and Main Results: Exposure to coarse PM was
associated with increased asthma diagnosis prevalence (rate ratio
[RR] for 1-mg/m3 increase in coarse PM level, 1.006; 95% confidence
interval [CI], 1.001–1.011), hospitalizations (RR, 1.023; 95% CI,
1.003–1.042), and emergency department visits (RR, 1.017; 95% CI,
1.001–1.033) when adjusting for fine PM. Fine PM exposure was

more strongly associated with increased asthma prevalence and
morbidity than coarse PM. The estimates remained elevated across
different levels of spatial confounding adjustment.

Conclusions: Among children enrolled in Medicaid, exposure to
higher average coarse PM levels is associated with increased
asthma prevalence and morbidity. These results suggest the need for
direct monitoring of coarse PM and reconsideration of limits on
long-term average coarse PM pollution levels.
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At a Glance Commentary

Scientific Knowledge on the Subject: Long- and short-
term exposure to fine particulate matter (particulate matter
<2.5 mm in aerodynamic diameter [PM2.5]) is associated with
asthma morbidity, but little is known about the long-term
effects of coarse PM (PM10–2.5) on asthma prevalence or
morbidity.

What This Study Adds to the Field: This study found that
coarse PM exposure was associated with higher asthma
prevalence and morbidity among U.S. children enrolled in
Medicaid and that this association was independent of fine PM
exposure. This finding suggests that long-term limits on coarse
PM exposure be reconsidered.
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Asthma affects more than 7 million U.S.
children and is responsible for more than
3,000 deaths, 400,000 hospitalizations,
and 1.8 million emergency department (ED)
visits per year in the United States (1).
Particulate matter (PM) air pollution
has been shown repeatedly to have
significant short- and long-term effects on
both the development of asthma and
asthma morbidity (2). To date, most of the
research has focused on fine particles
(particulate matter<2.5 mm in aerodynamic
diameter [PM2.5]), for which epidemiologic
studies have now provided enough evidence
for the Environmental Protection Agency
(EPA) to determine that both long- and
short-term exposure are likely to be
causally related to negative respiratory
health outcomes (3).

In contrast, the coarse fraction of PM
(PM10–2.5) is generally believed to be less
harmful than fine PM, both because of the
particle size, which limits penetration deep
into the lungs, and because the sources
of coarse PM are believed to be less harmful
(4). However, coarse PM can deposit in
the upper airways involved in obstructive
lung diseases such as asthma and chronic
obstructive pulmonary disease, and there
is emerging evidence that short-term
coarse PM exposure may be associated with
cardiovascular and respiratory morbidity
(5–7). Little is known about long-term
effects of coarse PM on respiratory
health (2).

One of the reasons for the relative
lack of data about the health effects of
coarse PM is the paucity of monitor
locations that measure PM10 and PM2.5

simultaneously. Concentrations of coarse
PM are not directly measured but
instead are calculated by subtracting the
concentrations of directly measured PM2.5

from PM10 at collocated monitors.
Because fewer than half of the monitoring
locations measure both PM2.5 and PM10,
studies that rely on observed coarse PM
data from collocated monitors are limited
in geographic scope.

Here, we estimate long-term average
fine and coarse PM concentrations using
an exposure prediction model based on
monitor observations and geographic data.
We apply these predictions to healthcare
use data from children enrolled in
Medicaid across the United States during
2009 to 2010 to assess the relationship
between long-term exposure to PM and
asthma morbidity and prevalence.

Methods

Participants
Subjects were children aged 5 to 20 years
old enrolled in Medicaid in the United
States between 2009 and 2010. As
previously described (8), the data were
obtained from the Research Data
Assistance Center (University of
Minnesota, Minneapolis, MN). Medicaid
data were collected and aggregated on the
state level and then processed by the
Centers for Medicare and Medicaid into
the Medicaid Analytic Extract (MAX). Use
of the data was approved by the Johns
Hopkins School of Medicine Institutional
Review Board.

Children were only included if they
were enrolled for the full 24-month period.
Six states were excluded from the analysis
because of concerns about utilization
data quality: Maine, which had incomplete
utilization data, and Pennsylvania, Ohio,
Idaho, Arkansas, and Kansas, which all
had rates of asthma care use that were
either abnormally low and inconsistent with
other sources of data (9–12) (Pennsylvania,
Arkansas, and Ohio) or had large
inconsistencies in asthma care use between
2009 and 2010 (Idaho and Kansas).
Further examination showed that most of
the abnormally low rate of asthma care
use reported in Pennsylvania was due to
very low rates of asthma care use in the
Pittsburgh and Philadelphia areas (0.6%
and 0.3% prevalence from utilization
data, respectively), which is not consistent
with external data on asthma prevalence
in this area (15% and 18% self-reported
prevalence, from one source [13]).
Alaska and Hawaii were excluded because
of the difficulty in predicting PM in
the noncontiguous states. Because prior
investigations, including our own
investigation of this Medicaid data, have
shown that race/ethnicity is strongly
associated with asthma prevalence and
morbidity (8, 14), eight states were
excluded because more than 10% of
subjects had missing data for race/ethnicity.
These states were: Colorado, Iowa,
Massachusetts, New Jersey, Rhode Island,
Vermont, Washington, and Wisconsin.

PM Data
Twenty-four-hour average measurements of
PM2.5 and PM10 for the period January 1,
2009, through December 31, 2010, were
obtained from the EPA Air Quality System

(AQS) database (15). We restricted to
monitors using Federal Reference Methods.
For both PM2.5 and PM10, the annual
average concentration was computed for
locations with at least 28 observations
and gaps of no more than 30 days between
measurements. A long-term concentration
at each PM2.5 and PM10 site for the period
2009 to 2010 was created by averaging
together the 2009 and 2010 annual
averages, using the value for a single year
when one year was missing.

Exposure Prediction
We developed a semiparametric regression
model to predict long-term average PM
concentrations across the entire contiguous
United States. We built separate models
for PM2.5 and PM10 and used the difference
of predictions to compute PM10–2.5. By
building separate models for each fraction,
we can incorporate monitoring locations
that only measure one type of PM. The
mean component of the prediction
models comprised penalized spatial splines
and principal component analysis (PCA)
scores derived from geographic variables.
Generalized additive models of this form,
and related approaches such as land-use
regression and universal kriging, have
been used throughout the literature to
predict long-term average air pollution
concentrations for epidemiological
analyses (16–20).

Four types of publicly available
geographic data were incorporated in the
models. Population density at the county
and zip-code tabulation area (ZCTA) level
was obtained from Census 2010 data (21).
Primary and secondary road network data
were also obtained from the 2010 Census
(22). Satellite measurements of impervious
surface, which can indicate anthropogenic
development, were obtained from the
National Land Cover Database (23). Data
on point source emissions were obtained
from the 2008 National Emission Inventory
(24). Within circular buffers of varying
radii, we computed the sum of road
lengths, the sum of PM2.5 emissions, the
sum of PM10 emissions, and the percentage
of impervious surface. PCA was then
performed on these buffer measures and
log-transformed county- and ZCTA-level
population density to obtain a set of
five PCA scores. This procedure allows
information from multiple buffers for each
covariate to be included, without requiring
a manual variable selection procedure.
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The PCA scores were combined with
thin-plate regression splines (TPRS) (25)
as the mean component of the generalized
additive model. The model was fit via the
mgcv package in R, and the coefficients
for the TPRS were penalized using a
generalized cross-validation criterion (26).
The number of PCA scores (from between
1 and 5) and degrees of freedom (df) for
the splines before penalization (from
25 to 400) were selected via tenfold cross-
validation (CV). The performance of
CV models was assessed via mean-squared
error-based R2 (CV R2), which incorporates
precision and bias (27, 28).

Predictions from the fitted models were
made at 10 randomly selected locations
within each ZCTA. The average of the PM2.5

predictions was taken as the ZCTA-level
predicted exposure value. The average of
the difference between the PM10 and PM2.5

predictions was taken as the ZCTA-level
PM10–2.5 predicted exposure.

Outcome
Asthma hospitalizations were defined as
hospitalizations with a primary diagnosis of
an asthma-related condition (International
Classification of Diseases, Ninth Revision
diagnosis code of an asthma-related
condition [493.x]; see Table E1 in the online
supplement). ED visits were defined as
outpatient visits occurring in hospital-based
EDs with a primary or secondary diagnosis
code of an asthma-related condition.
Prevalent diagnosed asthma was defined
as having at least one asthma-related
outpatient visit (defined as an outpatient
visit with a primary or secondary diagnosis
code of an asthma-related condition),
ED visit, or hospitalization during the
24-month period.

Analysis
To account for area-level confounding due
to socioeconomic status and other factors,
we obtained data on county-level urbanicity
and ZCTA-level poverty and education.
Urbanicity was quantified using the six-level
scale developed by the National Center
for Health Statistics, which ranges from
“large central metropolitan” counties to
rural, “non-core” counties (29). The
percentage of families below the poverty
level and the percentage of adults with
highest education level of high school or
below were obtained from the U.S. Census
Bureau (30, 31). To allow for possible
nonlinear relationships, we represented

poverty and education in the models using
natural splines with 4 df.

We estimated associations between
long-term PM exposure and asthma
prevalence and morbidity using generalized
estimating equations with a logarithmic link
function and clustering within ZCTA. For
the prevalence analysis, the number of
subjects with asthma was the outcome
variable, and an offset was included for the
total number of children enrolled in
Medicaid. Separate morbidity models were
fit for hospital admissions and ED visits,
with the number of events included as the
outcome variable and number of person-
months at risk, equivalent to 24 months
times the number of enrollees, included via
offset. We fit models that included additive
terms for both fractions of PM, as well as
models that included each fraction
separately. The models were adjusted for the
individual variables age category (5–8, 9–11,
12–14, 15–17, or 18–20 yr), sex (male or
female), and race/ethnicity (Asian, black,
Hispanic, white, or other) and the area-level
variables of urbanicity, poverty and its
interaction with urbanicity, education,
and state. The models further included
an unpenalized TPRS with 15 df to account
for unmeasured, large-scale spatial
differences across the country.

Sensitivity analyses
We considered the sensitivity to the spatial
confounding adjustment by fitting models
without spatial splines and with TPRS with
100 df, which approximately accounts for
medium-scale spatial differences within
states. In addition, we explored restricting
the cohort to persons 11 years of age or
younger and examined including
adjustment for estimated county-level adult
smoking prevalence (32).

Results

Exposure Assessment
There were 860 PM2.5 monitors and 581
PM10 monitors with data for the 2009 to
2010 period that met inclusion criteria,
corresponding to 834 and 518 distinct
ZCTAs, respectively. The mean long-term
average concentration at monitor locations
was 9.4 and 18.7 mg/m3 for PM2.5 and
PM10, respectively. The models with the
best CV performance included four PCA
scores and 350 df TPRS for PM2.5 and four
PCA scores and 250 df TPRS for PM10. The

corresponding CV R2 values were 0.75
(root-mean-squared error, 1.13 mg/m3) and
0.51 (root-mean-squared error, 4.85
mg/m3), respectively. Scatterplots of CV
predictions and monitor observations are
provided in Figure E1. Prediction model
accuracy was generally better in the eastern
United States (Figure E2). Maps of the
predicted values of PM2.5 and PM10, and
the derived PM10–2.5, aggregated by county
for presentation, are shown in Figure 1. The
correlation between PM2.5 and PM10

predictions was similar to correlation
between observations at collocated
monitors (Table E2). The mean (SD)
predicted ZCTA-average concentration
across all 48 contiguous states was 8.44
mg/m3 (2.01) for PM2.5 and 6.87 mg/m3

(2.89) for PM10–2.5.

Characteristics of the Cohort
A total of 7,810,025 subjects were included
in the analysis. Demographics of included
subjects are in Table 1. The overall
prevalence of asthma was estimated to be
12.8%. On average, there were two
hospitalizations and 32 emergency department
visits per 1,000 person-years (Table 2), and
these rates were higher among children aged
5 to 11 years (Table E2). As can be seen
from Figure 2, there is substantial variation
in asthma prevalence and morbidity
throughout the United States.

Associations between Predicted PM
and Asthma Diagnosis Prevalence
An average increase of 1 mg/m3 predicted
PM2.5 was associated with a 2.3% increase
in the prevalence of diagnosed asthma (rate
ratio [RR], 1.023; 95% confidence interval
[CI], 1.014–1.031; P, 0.001), whereas an
increase of 1 ug/m3 predicted PM10–2.5 was
associated with a 1.1% increase in asthma
prevalence (RR, 1.011; 95% CI, 1.007–1.015;
P, 0.001). These relationships were robust
to inclusion of the other pollutant in the
model; the adjusted relative rates were
1.018 for PM2.5 (95% CI, 1.008–1.027;
P, 0.001) and 1.006 for PM10–2.5 (95% CI,
1.001–1.011; P = 0.01) (Figure 3).

Associations between Predicted
PM2.5 and PM10–2.5 and Asthma
Morbidity
An average increase of 1 mg/m3 predicted
PM2.5 was associated with a 7.2% increase
in asthma hospitalizations (RR, 1.072; 95%
CI, 1.042–1.102; P, 0.001) and a 4.2%
increase in asthma ED visits (RR, 1.042;
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Figure 1. Predicted average (A) particulate matter less than or equal to 2.5 mm in aerodynamic diameter (PM2.5), (B) PM10, and (C) PM10–2.5 for the period
2009 to 2010 across the contiguous United States. Dots represent monitor locations.
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95% CI, 1.019–1.066; P, 0.001) (Figure 3).
An average increase of 1 mg/m3 PM10–2.5

was associated with a 3.6% increase in
asthma hospitalizations (RR, 1.036; 95% CI,
1.018–1.053; P, 0.001) and 2.6% increase
in ED visits (RR, 1.026; 95% CI,
1.015–1.038; P, 0.001).

In a model that included both PM2.5

and PM10–2.5, associations between asthma
morbidity and both fractions of PM were
somewhat attenuated but remained
statistically significant. After adjustment,
PM2.5 was associated with an RR of 1.048
(95% CI, 1.016–1.081; P = 0.003) for
hospitalizations and 1.030 (95% CI,
1.001–1.060; P = 0.040) for ED visits, and
PM10–2.5 was associated with an RR of
1.023 (95% CI, 1.003–1.042; P = 0.02) for

hospitalizations and 1.017 (95% CI,
1.001–1.033; P = 0.040) for ED visits.
(Figure 3).

Sensitivity Analyses
Associations between both pollutants and
asthma morbidity and prevalence were
sensitive to the scale of spatial adjustment
(Table E4) but remained positive for all
measures and ranges of spatial adjustment.
When we restricted to those aged 11 years
and younger, all observed associations
between both pollutants and asthma
morbidity and prevalence were stronger
(Table E5). When county-level smoking
prevalence was included, the estimated
associations were slightly stronger
(Table E6).

Discussion

In this analysis of children across the United
States enrolled in Medicaid, we found that
it is not only fine PM (PM2.5) but also
coarse PM (PM10–2.5) that is associated with
long-term effects on asthma diagnosis
prevalence and morbidity. For each 1-mg/m3

increase in average coarse PM, there was
a 0.6% increase in asthma prevalence,
2.3% more asthma hospitalizations, and
1.7% more ED visits. These associations
are adjusted for exposure to fine PM and
suggest that there is an effect of coarse
PM on asthma-related outcomes that is
independent of fine PM.

Our findings fill a key gap in the
evidence that long-term coarse PM
pollution negatively affects respiratory heath
in children. The most recent provisional
Integrated Science Assessment by the EPA
found that there was insufficient evidence to
conclude that coarse PM exposure causes
negative health effects, and the 2012 rule-
making did not include specific limits on
coarse PM but only provided daily PM10

limits (3, 33). However, recent data,
including our findings here, suggest that
coarse PM may have both short- and long-
term effects on human health, with
potentially stronger effects on respiratory
health (33). Short-term effects have been
demonstrated in several time series studies
in a variety of communities that have linked
daily changes in coarse PM to mortality
(34–36), hospitalizations (2, 5, 6, 37),
cardiac events (38), and asthma admissions
(39). Evidence for long-term effects is much
sparser. The few studies published on

chronic coarse PM exposure and
cardiovascular disease or mortality have
failed to find an association (40–43). In
contrast, long-term coarse PM exposure
was associated with decreased lung function
and increased bronchitic symptoms in
Southern Californian children (44, 45) and
with bronchitis in children in four Chinese
cities (46). This study expands those
findings in a national-level analysis of long-
term coarse PM, finding associations with
both prevalent asthma and asthma
morbidity.

The composition of coarse PM and
fine PM are distinct, reflecting different
pollution sources. Fine PM is typically
generated by combustion or through
reactions in the atmosphere, whereas coarse
PM is commonly formed by grinding and
resuspension of solid materials. Thus
includes crustal elements and organic debris
from soil in rural areas as well as heavy
metals and roadway-derived particles
(e.g., from brake wear) in urban areas
(33, 47, 48). Roadway and crustal sources
impact coarse PM composition in most
areas, although the precise elemental profile
can vary between cities (48, 49). Differences
in composition could cause regional
heterogeneity in the association between
PM and asthma morbidity.

The biologic rationale for negative
pulmonary effects of coarse PM is strong.
Notwithstanding compositional differences,
controlled exposure of healthy adult
volunteers to coarse PM leads to systemic
and pulmonary inflammation similar in
magnitude to that of fine PM (50–52)
and may lead to skewing of the immune
system that predisposes to allergy (53).

That our findings were stronger for
children 11 years of age and younger might
be expected, as it is at younger ages that
asthma develops. In addition, younger
childrenmay bemore susceptible to outdoor
air pollution, both for biologic reasons
and because they spendmore timeoutdoors (2).
Finally, because younger children have
had less time to change residences than
older children, exposure over the 2 years
studied may correlate more closely with
lifetime exposure in younger than in older
children.

Our finding that long-term higher
average fine PM exposure was associated
with asthma prevalence and morbidity is
consistent with a large body of literature
showing long-term respiratory effects of
fine PM exposure in children (3). Data from

Table 1. Demographics of Study Cohort

Characteristic

Full Cohort
(N = 7,810,025)

n %

Age, yr
5–8 2,154,581 28
9–11 1,944,164 25
12–14 1,724,497 22
15–17 1,567,168 20
18–20 419,615 5

Sex
Female 3,821,081 49
Male 3,988,944 51

Race/ethnicity
Asian 198,149 3
Black 2,292,236 29
Hispanic 1,771,789 23
White 2,589,294 33
Other 958,557 12

Urbanicity
Large central metro 2,973,197 38
Large fringe metro 1,280,101 16
Medium metro 1,583,297 20
Small metro 679,014 9
Micropolitan 721,913 9
Noncore 572,503 7

Prevalent asthma 996,843 12.8

Table 2. Summary of Asthma Events

Event Type

Full Cohort

Count
Rate per 1,000
Person-Years

Hospital
admissions

31,122 2.0

Emergency
department
visits

492,730 31.5
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Figure 2. (A) Asthma prevalence, (B) emergency department (ED) visits, and (C) hospitalizations by county among children enrolled in Medicaid in the
contiguous United States. Data are smoothed to account for variation in the number of Medicaid enrollees. p-y = person-years.
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regional and national studies have shown
higher rates of asthma diagnosis, asthma
symptoms, respiratory infections, and
hay fever with higher fine PM exposure
(45–63). Even more importantly, when
fine PM concentrations have dropped,
respiratory symptoms and infections in
children have also decreased (64, 65).
Although less novel than the coarse PM
analysis, our findings emphasize that
despite overall decreases in fine PM over
the past decades with the Clean Air Act
(66), we still see respiratory morbidity
attributed to fine PM exposure among
children.

In general, the asthma diagnosis
prevalence found here is somewhat higher
than reported in national surveys (for
example, the estimate of asthma prevalence
in 2010 by the CDC on the basis of self-
report was 9.4% [67] compared with our
prevalence of 12.8%). This is not surprising,
both because asthma prevalence is higher in
low-income children (14), such as those
enrolled in Medicaid, and because not all
families who have received a visit diagnosis
of asthma may consider their child to have
asthma. Demographic risk factors for
asthma, including black race/ethnicity and
male sex, are consistent between the
Medicaid population and national surveys,

as detailed in previous analyses of similar
data (8).

One challenge of estimating health
effects of long-term exposure to coarse PM
is the limited amount of monitoring data
available. Because federal monitors do not
directly assess PM10–2.5, measurement of
this fraction requires collocated PM2.5 and
PM10 monitors. Such monitors are rare, as
the majority of PM monitoring locations
only measure one of PM2.5 and PM10.
Exposure prediction models based on
monitoring data are widely used to estimate
long-term PM exposures for air pollution
epidemiology cohorts (18, 20, 68, 69). Such
models allow estimation of health effects
of pollutants in areas where there is not
direct monitoring of both pollutants
simultaneously. The accuracy of our
prediction models (CV R2 of 0.75 and 0.51
for PM2.5 and PM10, respectively) is similar
to spatial accuracy reported for exposure
prediction models in other studies across the
United States, which ranged from 0.62 to
0.88 for PM2.5 (20, 68, 70) and 0.55 to 0.69
for PM10 (19, 71). PM10, because of its
greater mass, has shorter residence times in
the air than PM2.5. This makes it more
spatially heterogeneous than PM2.5 and more
difficult to predict. Predictive accuracy for
PM10 is also impacted by the decline in the

number of operational PM10 monitors since
the widespread PM2.5 monitoring began in
1999, which is likely why the prediction
accuracy of our PM10 model is somewhat
less than reported in earlier studies.

Limitations to our analysis include the
inherent limitations of using claims data to
measure disease activity. Access to health
care, health behaviors such as compliance
with medications, and individual health
choices can all influence whether an asthma
exacerbation leads to an ED visit or
hospitalization, although one of the benefits
of using Medicaid data is that all subjects
should be able to access all types of care.
Miscoding or missing data could add bias;
we excluded a number of states where
important data were missing (such as for
race) or where utilization data showed very
improbable rates of asthma care use, but we
cannot exclude the possibility that other
data were flawed. We were unable to adjust
for individual-level economic status,
household tobacco exposure, or other
individual-level factors that could confound
the relationship between pollution exposure
and asthma, although we did adjust for
race and zip-code–level education and
poverty and did sensitivity analyses adjusting
for county-level tobacco exposure. Our results
are limited by the assumption of a linear
exposure–response relationship, although
in sensitivity analyses we did not find
evidence that the linearity assumption
was violated. Furthermore, although
nonlinearity of exposure response is of
great interest across large exposure ranges,
the limited range of exposures in the
current data make it difficult to detect.
The prediction of exposures introduces
correlated measurement error in point
estimates (72, 73), and calculation of coarse
PM as the difference of PM10 and PM2.5

predictions can introduce additional
measurement error (74). However, for
linear health models with a single pollutant,
analytic measurement error corrections
have identified relatively small amounts of
bias (16, 75). Differences in the spatial
distribution of monitors and cohort
subjects has been shown to introduce bias
in some settings (73, 76), but its overall
impact is unclear (77, 78). Finally, our
analysis may not be generalizable to
non–low-income children, but our focus on
this population may be a strength, as there
is evidence that low-income children are
particularly vulnerable to the effects of
pollution (2).
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Figure 3. Estimated ratios of asthma prevalence and rates of asthma morbidity associated with a
1-mg/m3 difference in particulate matter less than or equal to 2.5 mm in aerodynamic diameter (PM2.5)
or PM10–2.5. Single pollutant: not adjusted for PM2.5 or PM10–2.5, respectively. Adjusted for other
pollutant: model including both PM2.5 and PM10–2.5. ED = emergency department.
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Our findings were sensitive to the
extent of spatial adjustment. The long-range
spatial adjustment chosen for our primary
analysis can account for unmeasured
differences that occur on a spatial scale
similar to the differences between states, but
in a smooth manner not restricted by state
boundaries. Our choice of adjustment scale
also preserves smaller-scale variation in the
PM exposure, which provides informative
contrasts between ZCTAs that allow us to
estimate the association of interest. The
finer-scale adjustment in the sensitivity
analysis effectively removes a large
proportion of the spatial variability in the
exposure surfaces. For predicted coarse PM,
which was more spatially smooth than
predicted PM2.5 (Figure 1), this reduces
power and results in attenuated point
estimates. In contrast, predicted PM2.5 had
smaller-scale contrasts that were not
removed by the greater adjustment, and the
estimates were larger in the sensitivity

analysis. Nonetheless, the estimates for
exposure to both fractions of PM were in
the same direction for all levels of
adjustment. Further research should
consider the application of automated
procedures for selecting the extent of spatial
confounding adjustment. Algorithms such
as minimizing quasi-likelihood information
criteria (79), which target the modeled
outcome, may introduce additional bias
and are not necessarily appropriate (80, 81).

The sensitivity of results to adjustment
for unmeasured spatial confounding and
additional pollutants merits further
investigation in future research. This
includes considering other pollutants, such
as ozone, that have been associated with
asthma morbidity (82). Ozone in particular
can present challenges for the exposure
modeling framework, because there are
limited year-round measurements.
Additional avenues of further inquiry are
possible nonlinearity of the

exposure–response relationship and spatial
heterogeneity of the effect because of
compositional differences in coarse PM.

Conclusions
Among children enrolled in Medicaid in the
United States between 2009 and 2010, we
found that long-term exposure to coarse PM
was independently associated with higher
rates of prevalent asthma, asthma
hospitalizations, and asthma ED visits. This
first-ever analysis of the long-term effects of
coarse PM on asthma in a nationwide
sample of U.S. children provides evidence
supporting the harmful effects of coarse PM
on respiratory health. Our results suggest
that direct monitoring of coarse PM may
need to be implemented and that long-term
coarse PM standards should be
reconsidered. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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