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Abstract

Objective—The present study examined the extent to which the covariance structure of the 

WAIS-IV is best accounted for by models that assume that test performance is the result of group 

level factors and multiple independent general factors.

Method—Structural models with one to four general factors were evaluated with either four or 

five group-level factors. Simulations based on four general factors were run to clarify the adequacy 

of the estimates of the allocation of covariance by the models.

Results—Four independent general factors provided better fit than a single general factor for 

either models with four or five group-level factors. While one of the general factors had much 

larger loadings than all other factors, simulation results suggested that this might be an artifact of 

the statistical procedure rather than a reflection of the nature of individual differences in cognitive 

abilities.

Conclusions—These results argue against the contention that clinical interpretation of cognitive 

test batteries should primarily be at the level of general intelligence. It is a fallacy to assume that 

factor analysis can reveal the structure of human abilities. Test validity should not be based solely 

on the results of modeling the covariance of test batteries.
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One of the principal arguments for the construct of general intelligence, or g, is the fact that 

a matrix of correlations between diverse cognitive tests can be described as a positive 

manifold (Carroll, 1993; Spearman, 1904). Alternative viewpoints hold that intelligence is 

best described as multiple independent abilities (e.g., Gardner, 1983; Guilford, 1956). 

However, in a survey of opinions, Reeve and Charles (2008) found that there seems to be a 

general consensus among experts that g is a valid construct. There are differing opinions as 

to the nature of the general factor (e.g., Kranzer and Jensen, 1991; Carroll, 1991). For 

example, Kranzer and Jensen (1991) concluded that individual differences in psychometric g 
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are due to several independent sources of variance. In contrast, Carroll (1991) asserted that g 
is unitary.

Scores on a given test can be due to several sources of variance. These include general 

factors that affect all tests in a battery, group factors that affect a subset of tests, and specific 

factors that are unique to a given test (Rodriguez, Reise & Haviland, 2016). In many 

structural models of cognitive abilities, g is considered a general factor, abilities such as 

verbal comprehension are viewed as group-level factors affecting some but not all tests, and 

test-specific measurement error is viewed as one of many possible test-specific effects. 

Higher-order models of cognitive ability factors have been common in the past (e.g. Carroll, 

1993). Higher-order models treat the effect of g on test performance as being mediated by 

group-level factors (Gignac, 2008). More recently, bi-factor models that treat g and group 

factors as independent have gained popularity (Reise, 2012). Bi-factor models provide better 

fit of the covariance in cognitive test performance than higher-order models (Beaujean, 

Parkin & Parker, 2014; Gignac & Watkins, 2013; McFarland, 2012; Valerius & Sparfeldt, 

2014). In addition, due to the independence of general and group factors, the relative 

contribution of each to test performance can more readily be evaluated.

The concept of g may be antithetical to the modular view of mind held by many 

Neuropsychologists (Anderson, 2005). This view holds that performance on any given 

cognitive test is potentially the result of multiple factors (e.g., Kaplan, 1988; Franzen, 1989). 

Milberg, Hennen & Kaplan (2009) describe a number of distinct processes that might limit 

performance on single subtests of the Wechsler Adult Intelligence Scales- revised (WAIS-

R). Likewise Warrington, James & Maciejewski (1986) reported that WAIS subtests were 

useful in the diagnosis of lesion localization. This view promotes the examination of 

different patterns of subtest performance. In contrast, some researchers hold that a single 

factor (g) accounts for most of the variance in cognitive test performance (Canivez & 

Watkins, 2010). This view holds that clinical interpretation should be primarily at the level 

of general intelligence and is based on factor analytic studies showing that most of the 

covariance between subtests can be accounted for by a single factor. Reynolds, Floyd & 

Nikkleksela (2013) also estimated the proportion of variance accounted for by a general 

factor and group-level factors. Although they also found a similar large portion of subtest 

covariation accounted for by the general factor they concluded that group factors explained a 

meaningful amount of variance. It is important to note that such estimates of variance 

accounted for are dependent on the particular statistical model considered. One of the goals 

of the present study is to evaluate such estimates by means of simulated test batteries.

Recently Kovacs and Conway (2016) proposed process overlap theory, a variant of the 

position that g is composed of multiple factors. Kovacs and Conway (2016) distinguish 

between compensatory models and noncompensatory models of multidimensional accounts 

of g. In compensatory models, the different dimensions combine in an additive manner. In 

contrast, noncompensatory models combine the separate dimensions in a nonlinear manner 

so that the final outcome is limited by the single lowest component. Noncompensatory 

models basically hold that a single weak link in a chain of cognitive processes is sufficient to 

preclude good performance. Detterman, Petersen & Frey (2016) provided a simulation of a 

noncompensatory model that they contend can account for the positive manifold. Given the 
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non-additive nature of multiple abilities with noncompensatory models it would be difficult 

to identify the individual components of intelligence unless relatively pure tests of basic 

elements are used (Detterman et al., 2016). In contrast, given the additive compensatory 

model, it might be possible to identify individual elements provided that these have varying 

patterns of involvement on specific tests of mental abilities.

Kovacs and Conway (2016) also suggest that psychometric g is a formative construct. Latent 

variables of the formative kind are not conceptualized as causal determinates of 

measurements but rather as a composite summary of these measurements (Borsboom, 

Mellenbergh and van Heerden, 2003). Thus, Kovacs and Conway conceptualize g as a 

composite that emerges from rather than causes multiple sub-processes.

Murray and Johnson (2013) have questioned the wisdom of comparing bi-factor and higher-

order models. Higher-order models can be conceptualized as models in which the ratio of 

the weights between any given group-level factor and g is constant (Reise, 2012). In 

contrast, bi-factor models do not have this constraint and hence have more degrees of 

freedom with which to fit the data. As a consequence, bi-factor models are more complex 

than higher-order models and are thus more prone to over-fitting (Cudeck & Henly, 1991). 

Overfitting occurs when model parameters account for chance characteristics of a sample 

rather than the underlying relationships they are intended to model. The problem of 

overfitting has frequently been dealt with by the use of cross-validation in statistics and 

machine learning (Arlot & Celisse, 2010; Brown, 2000; Mosier, 1951) and has also been 

recommended for covariance modeling, although it is rarely used (Browne and Cudeck, 

1993; MacCallium, Roznowski & Necowitz, 1992). With cross-validation, model parameters 

are estimated with one sample (i.e., the training sample) and then these fixed parameter 

estimates are generalized to an independent sample. Overfitting is thus not an issue in 

assessing model fit in the second (i.e., the test) sample to which the model parameters were 

generalized. Anderson & Gerbing (1988) describe this procedure as “the quintessential 

confirmatory analysis” (page 412). The present study compares models differing in 

complexity with independent samples.

The present study was concerned with evaluating the possibility that multiple general factors 

can be identified with models of the covariance structure of the WAIS-IV. This provides a 

test of the suggestion of Kovacs and Conway (2016) that psychometric g is a formative 

construct. The statistical dissociability of general factors also depends on their being 

compensatory (i.e., they provide relatively independent contributions to test performance). In 

contrast to Kovacs and Conway (2016), the present study models WAIS-IV subscales using 

bi-factor and “multi-factor” models. In addition, due to their increased complexity, the 

resulting models are validated with independent samples. Furthermore, simulations of test 

battery performance are run to better understand the results of these analyses.

This study evaluates two hypotheses: 1) WAIS-IV sub-test covariance is better accounted for 

by several general factors than by a single general factor and 2) structural modeling tends to 

inflate the variance accounted for by a general factor. Empirical data from the WAIS-IV 

standardization sample is used to compare structural models with one or several general 

factors in terms of model fit and generalizability to new data. Simulated data with known 
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characteristics is used to evaluate the accuracy of common estimates of variance accounted 

for by latent factors. Superior model fit by multiple general factors would support the 

concept that g is a formative construct representing several distinct abilities. A discrepancy 

between parameters actually generating the simulated data and estimates from structural 

models would question the logic of placing the most emphasis on a single general factor.

Method

Participants

This study used the data reported for the standardization sample of the WAIS-IV (Wechsler, 

2008). Three samples were constructed consisting of data for individuals between 20 and 54 

years of age (Tables A.3 through A.7, n= 1000), individuals between 16 and 19 years of age 

(Tables A.1 and A.2, n= 400), and individuals between 55 and 69 years of age (Tables A.8 

and A.9, n= 400).

Analysis of Empirical Data

The 20-54 year-old sample from the WAIS-IV standardization data was used for parameter 

estimation and two additional samples were used for model validation with parameter values 

fixed to the estimates obtained from the 20-54 year-old sample. The 20-54 year-old sample 

was selected as the training data set since it is closer on average to the other two data sets 

than any other selection would be. Correlation matrices included all 15 subtests of the 

WAIS-IV. For each sample, tabled values were combined by first applying Fisher’s z 

transform, then averaging all of these values for each pair of subtests in a sample, and then 

taking the inverse transform to produce average r values. All correlations were positive and 

all tabled values were based on the same number of participants (i.e., 200) so that these 

factors were not considered in averaging r values. The assumption here is that the best model 

in the series can be identified by generalization to new data with estimated parameters fixed 

to the values determined from the training data. Since the correlations reported in Wechsler 

(2008) were computed within age groups, differences between these groups in terms of the 

mean and variance were eliminated. The resulting correlations thus reflect the relationships 

between test scores rather than simple trends occurring between age groups. One 

shortcoming of this approach is that more complex models that would be identified with 

generalization to an identical population might not be selected if there are large age related 

effects on these correlations. On the other hand, generalization to these samples represent 

what Mosier (1951) referred to as validity generalization since the new samples represent 

different populations rather than simply an additional sample from the same population and 

thus provide particularly strong evidence for the superior fit of the models in question.

All analyses were done with the SAS CALIS procedure (SAS, 2010) using default settings. 

All latent factors were set equal to 1 as recommended by Anderson & Gerbing (1988). Two 

sets of models for WAIS-IV group structure were constructed with varying numbers of 

general factors. Group factors were derived from the model presented in Figure 5.2 of the 

WAIS manual (four group factor model, Wechsler, 2008) and the model presented in Figure 

3 of Benson and associates (5 group factor model, Benson, Hulac & Kranzler, 2010). These 

are the models with the best fit statistics reported by each author for the 15 subtests of the 
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WAIS-IV. The Wechsler (2008) model has four first-order factors (i.e., verbal 

comprehension, perceptual reasoning, working memory and processing speed) and a second-

order g factor. Benson et al. (2010) describe their model as a version of the Cattell-Horn-

Carroll (CHC) model with five first-order factors (i.e., crystalized ability, visual processing, 

fluid reasoning, short-term or working memory and processing speed) and a second order g 

factor. The structure of the four group and one general factor model is illustrated in Figure 1 

along with the corresponding two general factor model.

Simulations

Simulations were conducted to evaluate the extent to which estimates of variance accounted 

for accurately reflect actual contributions to test performance. Although there is no way of 

knowing the actual contribution of factors with empirical data, simulations can provide 

examples with known answers. However simulations only represent possibilities based on 

the parameters used. In the present series of simulations test scores were constructed based 

on linear models and Gaussian errors, which are generally assumed in covariance modeling. 

Weights for the general factors were drawn randomly from identical rectilinear distributions 

so that they should be approximately equal. For each condition, 50 models with different 

random draws of the factor weights were averaged so that results would not be peculiar to 

one specific sample. In addition, two levels of test error (1x and 2x) and two levels of 

number of tests (15 and 25) in the battery were included. Use of different amounts of error 

and number of tests were included to further insure the generality of the results. In this way 

the actual contributions to test score variance and the estimated contributions to test score 

variance could be compared for these hypothetical models.

All simulations were done in SAS. The basic model for the kth score on the ith test was:

1)

where ajk is the magnitude of the jth ability for the kth observation, and ei is a random test-

specific term. The value of wij is the weight given ajk on the ith test. The value of aij was 

unique to each individual within a test battery simulation and was drawn from the SAS 

normal distribution function. The value of ajk represents the ability of an individual on some 

hypothetical trait (e.g., an individual’s general intelligence or auditory processing ability) 

while the value of wij describes the role of these abilities in determining test performance 

(e.g., to what extent a test measures a general factor of intelligence or a group factor such as 

auditory processing).

Simulated test batteries consisted of either 15 or 25 tests, simulated with four general factors 

and four or five group factors. In addition, the amount of test-specific variance was varied 

(i.e., the value of ei being either 1x or 2x the value of the SAS normal distribution function, 

often referred to as error). All factors were uncorrelated and the sample size was 2000. Each 

of these conditions was simulated 50 times with different random values of wij for each of 

the multiple test battery simulations in order to extend the generality of findings. Each value 

of wij was unique to a single test battery simulation, and was drawn from the SAS uniform 
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distribution function. Use of a uniform distribution insures that all abilities function in a 

similar manner within a given test battery simulation (i.e., if a given ability has positive 

effects on one test it would be expected to be more likely to have positive effects on other 

tests). This is a boundary condition for all of the simulations conducted in the present study 

and was more extensively investigated by McFarland (2012). These simulations were done 

with SAS 9.4 (64 bit version, SAS, 2010).

Results

A summary of model fit indices for the four group level models is presented in Table 1. The 

table shows χ2 and the GFI (goodness of fit index) for both the training and validation 

samples. RMSEA values (root mean square error) are shown only for the training data since 

indices such as RMSEA are adjusted by df which is identical for all validation models since 

all factor weights were fixed. The null model represents the case where only test-specific 

variance is modeled.

As can be seen in Table 1, both a model with a single general factor and a model with only 

four group factors result in a large reduction in χ2 and other fit indices. Each successive 

addition of a general factor up to addition of the fourth factor results in a significant 

reduction in χ2 for the training data (p < 0.0001 in all cases). GFI and RMSEA decrease in 

the training sample up to addition of the fourth general factor. For validation samples there is 

a reduction in χ2 up to addition of the fourth general factor. However the significance of this 

effect cannot be evaluated as all generalized models have the same degrees of freedom. 

Thus, overall the results show that the use of four general factors produces the best fit for the 

four group factor models, although the reduction in model fit is progressively less with each 

addition.

A summary of model fit indices for the five group level models is presented in Table 2. Each 

successive addition of a general factor up to addition of the fourth factor results in a 

significant reduction in χ2 for the training data (p < 0.0001 in all cases). Addition of the fifth 

general factor was significant at p < 0.05. For validation samples there is a reduction in χ2 

up to addition of the fifth general factor in the younger validation group and up to addition 

of the fourth general factor in the older validation group. Thus, overall the results show that 

the use of four or five general factors produces the best fit for the five group factor models, 

although the reduction in model fit is progressively less with each addition.

Figure 2 shows the explained common variance (ECV, according to formula 2 of Reise, 

Moore and Haviland, 2010) for the four group, four general factor model and the five group, 

four general factor model. Both of these models were based on WAIS-IV correlations (fit 

indices summarized in Tables 1 and 2). The ECV values are presented separately for each of 

the four general factors (g1 through g4) and combined for the group factors. Figure 2 shows 

that the largest general factor accounts for a large portion of the variance in both models. 

This is the sort of result that leads some authors to conclude that the WAIS-IV should be 

interpreted primarily in terms of a single general factor (Canivez & Watkins, 2010). To the 

extent that ECV accurately reflects the magnitude of the actual processes generating the 
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data, Figure 2 suggests that although the additional general factors account for a significant 

amount of variance, their contribution is minor.

Figure 3 shows the average explained common variance (ECV) values for the simulated 

models. Each panel shows average ECV values of 50 simulated cases for both the actual 

weights used to compute the simulated data and the estimated weights determined from the 

simulated data. General factors (g1 through g4) for each simulation were sorted according to 

descending size prior to averaging. The estimated results in each panel show a pattern 

similar to that displayed in Figure 2. However values for the actual weights used to simulate 

test scores show a different pattern. ECV values are fairly similar for all factors, as would be 

expected from the fact that all were drawn from the same probability distribution. The small 

variation between the sorted factors is due to sampling variation. Analysis of variance 

including type of weight (used to simulate data or estimated from simulated data), number of 

tests (15 or 25), amount or error (1x or 2x) and factor (each of the ordered general factors 

and the combined group factors) indicated that all of the effects involving factor number and 

its interaction with other effects were significant (p < 0.0001 in all cases). The largest effects 

in this analysis were due to the main effect of factor (df= 4/1960, F= 9368.18, p < 0.0001) 

and the type of weight X factor interaction (df= 4/1960, F= 6153.66, p < 0.0001). The 

interaction was due to the fact that the ECV of the largest estimated general factor was much 

larger than the ECV of the weights used to simulate the data. This means that the ECV 

estimates from structural modeling were inflated relative to the known weights used to 

simulate the data. The fact that weights used to simulate the data were much larger than 

those estimated from the same data by modeling (i.e., effect of type of weight) for several 

simulation parameters (i.e., number of tests, amount of error) indicates that this effect has 

some generality. Thus the largest general factor absorbed much of the variance in the 

covariance matrix which was actually generated by multiple independent factors.

Discussion

The present study found that the covariance between WAIS-IV scales was better accounted 

for by several general factors than by only a single general factor. Estimates of the explained 

common variance suggested that the largest general factor explained a disproportionate 

amount of the covariance between scales. However simulations showed that this was also the 

case when the actual weights used to compute test scores were approximately equal. These 

results do not support the contention that interpretation of the WAIS-IV should be primarily 

at the level of full scale scores (Canivez & Watkins, 2010). Rather the present results suggest 

that WAIS-IV subscale performance may be the results of multiple domain general factors, 

as suggested by others (e.g., Kaplan, 1988; Detterman et al., 2016; Kovacs and Conway, 

2016; Kranzer and Jensen, 1991). Thus, this study is basically 1) a proof of principle 

regarding alternative organizations of mental abilities, and 2) a cautionary note about the use 

of factor analysis in understanding the former.

The intent of the present study is to show that the covariance structure of the WAIS-IV is 

complex rather than to advocate for a specific structural model. Indeed, I have previously 

evaluated multivariate models of the WAIS-IV (McFarland, 2013) although these models 

were not intended as tests of process overlap theory. It is likely that many alternative 
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statistical models can perform similarly well. Although the results of factor analysis and 

structural modeling have been used to argue for test validity (Thompson & Daniel, 1996), 

selection of useful models require constraints by information external to the test batteries 

being evaluated. These external constraints include the extent to which models allow for 

accurate prediction of alternative indices of the construct that they are intended to represent 

(i.e., convergent and discriminant validity, (Campbell and Fisk, 1959)) and the extent to 

which they are consistent with what is known of brain functioning (McFarland, in press).

The present results suggest that g is an aggregate of many separate processes, as suggested 

by Kranzer & Jensen (1991). This is not to say that g may not be useful in some applications 

as it can provide a convenient overall summary of ability that may be useful for making 

global predictions of performance. However it is important to recognize that the fact that g 

absorbs much of the variance in test scores does not preclude the use of specific tests and 

scales for differential diagnosis or characterizing client strengths and weaknesses. Indeed, 

interpretation of specific test scores is currently common practice in neuropsychological 

practice. In addition, the practice of adjusting or controlling for g when evaluating group-

level abilities may be misleading, as shown by simulation (McFarland, 2014).

Models with more factors may provide a better fit to sampled data than simpler models due 

to overfitting. Using simulations, McFarland (2016) illustrated the power of evaluating 

models differing in complexity by use of cross-validation. The present results found that 

multiple uncorrelated general factors provided a better fit of cross-validated WAIS-IV scores 

than a single general factor.

A number of authors have advocated limiting interpretation of the WAIS-IV (Canivez & 

Watkins, 2010; Gignac & Watkins, 2013) and other cognitive batteries (Beaujean, Parkin & 

Parker, 2014; Golay & Lecerf, 2011; McGill & Busse, 2015) to full scales scores, based on 

estimates of variance explained and internal reliability of factors. However the present 

results question such a conclusion based on the finding that these measures do not 

necessarily reflect the actual process that generates scores. Any estimate of variance 

accounted for or factor reliability is model dependent. Indeed, there may be no way of 

verifying whether a model is actually true (Chatfield, 1995). This is problematic for the 

common practice of using factor analysis as the primary evidence for construct validity 

(Thompson & Daniel, 1996). The concern should be on accuracy and the ability of our 

models to generalize to a wide variety of different circumstances (Foster, 2000). The 

simplest form of generalization is test-retest reliability. Broader forms of generalization are 

associated with predicting alternative indices of the construct that our models are intended to 

represent.

Noncompensatory models of cognitive abilities (Detterman et al., 2016) predict a g 
dissociable only with elementary cognitive tests (i.e., tests that predominately measure a 

single process). The present results show that general factors of the WAIS-IV can be 

dissociated statistically. This provides support for the general concept of compensatory 

process overlap theory (Kovacs & Conway, 2016). Process overlap theory holds that 

multiple factors determine performance on a given test. Noncompensatory models 

(Detterman et al., 2016) conceptualize test performance as involving a linear chain of 
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processes with the weakest link in this chain being the limiting factor in test performance. It 

is possible that the statistical dissociation of general factors reflects the fact that there are 

multiple strategies that can provide solutions to any given test. Even so, the use of 

elementary cognitive tests, if such exist, may be useful for clarifying the nature of client 

deficits.

Abilities theorists such as Kranzer and Jensen (1992), Detterman et. al. (2016), and Kovacs 

and Conway (2016) have advocated conceptualization of g as a composite of multiple 

abilities. This view of g as a formative construct (i.e., a composite of several factors) differs 

from the view that g is a unitary construct (Carroll. 1991). This distinction is relevant 

clinically, as noted by Markus and Borsboom (2013), since the issue of item sampling 

becomes more important with formative constructs. With reflective constructs (i.e., causal 

latent variables) it is only necessary to sample from a few representative indices of the trait 

in question. In contrast, formative constructs require a broader representation of the domain 

in question. As a unitary construct, g might be associated with some global aspect of brain 

function, such as myelination (Miller, 1994) or plasticity (Garlick, 2002). Alternatively, 

cognitive test performance might be determined by multiple partially overlapping abilities 

(Kovacs and Conway, 2016) associated perhaps with dynamically interacting networks. Thus 

different conceptualizations of g view it as a statistical artifact, a composite of many distinct 

abilities, or a monolithic determinant of a large portion of the covariance in tests of mental 

abilities.

That the different subscales of the WAIS-IV involve multiple distinct abilities was shown 

explicitly for visual puzzles by Fallows & Hilsabeck (2012) who found that WAIS-IV visual 

puzzles correlated with several neuropsychological measures. They concluded that 

performance on visual puzzles was influenced by memory, mental flexibility, processing 

speed, and language abilities. These same abilities are likely to influence performance on 

other WAIS-IV subscales. For example, the similarities subscale is modeled as reflecting 

verbal comprehension (Wechsler, 2008) or crystalized intelligence (Benson et al., 2010). 

However it also requires flexibility in that examinees must select alternative concepts for 

different items. Likewise figure weights and matrix reasoning require flexibility in shifting 

between different concepts. Indeed, all of the WAIS-IV subscales require some degree of 

sustained attention, understanding and retaining instructions, and speeded processing. One 

way to better characterize possible subcomponents of these general factors would be to 

systematically vary distinct characteristics of the tests. For example, using this approach 

with fMRI, Hampshire, Thompson, Duncan & Owen (2011) found that distinct networks 

were differentially responsive to rule complexity and analogical demands.

Concerns about the interpretation of the results of factor analysis are by no means new. For 

example, Eysenck (1952) cautioned against viewing the results of factor analysis as 

absolute. Rather he suggested that factor analysis might provide hypotheses that require 

further testing. Likewise, Overall (1964) provided several examples demonstrating problems 

with applying simple structure given that scores were generated by more complex models. 

Both Eysenck (1952) and Overall (1964) viewed factor analysis as a useful tool provided 

that researchers understood the limitations of this method. As the present results show, these 

concerns should also include the results of structural modeling.
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It is a misconception to assume that factor analysis or structural equation modeling can 

reveal the structure of human abilities. The factors these methods produce associate tests that 

are correlated. The correlation between any pair of tests could be due to a single common 

process or many distinct shared processes. As a result, factor analysis reflects the structure 

of test batteries rather than the structure of human abilities and is highly dependent on the 

selection of tests that are included in the analysis (McFarland, 2014). Accordingly inferences 

from the results of factor analysis and structural modeling should be primarily about the 

structure of test batteries rather than the structure of human mental abilities. Researchers and 

clinicians should consider multiple sources of evidence to evaluate hypothesis about the 

processes generating test results.
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Figure 1. 
A. Basic structure of a bi-factor model of the WAIS-IV based on four group level factors. B. 

corresponding model with two general factors.
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Figure 2. 
Explained common variance (ECV, according to Reise et al., 2010) for both four general 

factor models of the WAIS-IV standardization data. The ECV values are presented 

separately for each of the four general factors (labeled g1, g2, g3, and g4 in order of 

magnitude) and combined for the group factors (labeled Group). Black bars represent the 

four group factor model and gray bars represent the 5 group factor model.
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Figure 3. 
ECV for the simulated models. Each panel shows average ECV values of 50 simulated cases 

for both the actual weights used to compute the simulated data (gray bars) and the estimated 

weights determined from the simulated data (black bars). General factors for each simulation 

were sorted according to size prior to averaging (labeled g1, g2, g3, and g4 in order of 

magnitude). ECV for group level factors were combined (labeled Group).

McFarland Page 15

Clin Neuropsychol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

McFarland Page 16

Ta
b

le
 1

M
od

el
 F

its
 f

or
 W

A
IS

 S
ta

nd
ar

di
za

tio
n 

da
ta

 m
od

el
ed

 w
ith

 f
ou

r 
gr

ou
p-

le
ve

l f
ac

to
rs

. M
od

el
 p

ar
am

et
er

s 
w

er
e 

es
tim

at
ed

 u
si

ng
 th

e 
da

ta
 f

ro
m

 a
ge

s 
20

 to
 5

4 

ye
ar

s 
(t

ra
in

in
g 

da
ta

, n
=

 1
00

0)
 a

nd
 v

al
id

at
ed

 u
si

ng
 d

at
a 

fr
om

 a
ge

s 
16

-1
9 

(v
al

id
at

io
n 

1,
 n

=
 1

00
0)

 a
nd

 5
5-

69
 y

ea
rs

 (
va

lid
at

io
n 

2,
 n

=
 1

00
0)

.

T
ra

in
in

g 
D

at
a

V
al

id
at

io
n 

1
V

al
id

at
io

n 
2

M
od

el
df

χ
2

G
F

I
R

M
SE

A
χ

2
G

F
I

χ
2

G
F

I

N
U

L
L

 M
od

el
10

5
87

03
.0

7
0.

25
19

0.
28

63
75

50
.9

8
0.

28
16

93
26

.9
2

0.
22

48

O
nl

y 
G

en
er

al
 F

ac
to

r
90

19
10

.5
3

0.
75

07
0.

14
23

17
36

.6
4

0.
78

60
17

12
.9

3
0.

77
57

O
nl

y 
G

ro
up

 F
ac

to
rs

88
18

09
.3

0
0.

78
54

0.
13

99
17

69
.5

7
0.

77
21

24
25

.1
4

0.
74

73

G
ro

up
 &

 1
 G

en
er

al
 f

ac
to

r
73

27
0.

28
0.

96
49

0.
05

20
47

4.
74

0.
94

04
54

8.
40

0.
93

34

G
ro

up
 &

 2
 G

en
er

al
 f

ac
to

rs
58

15
9.

05
0.

97
91

0.
04

18
44

7.
26

0.
94

31
53

1.
49

0.
93

40

G
ro

up
 &

 3
 G

en
er

al
 f

ac
to

rs
43

97
.6

6
0.

98
71

0.
03

57
42

7.
90

0.
94

66
50

9.
09

0.
93

76

G
ro

up
 &

 4
 G

en
er

al
 f

ac
to

rs
28

45
.4

6
0.

99
41

0.
02

50
38

3.
99

0.
95

25
48

3.
67

0.
94

06

G
ro

up
 &

 5
 G

en
er

al
 f

ac
to

rs
13

26
.1

8
0.

99
65

0.
03

19
39

7.
33

0.
95

06
48

9.
16

0.
94

04

N
ot

e:
 d

f=
 d

eg
re

es
 o

f 
fr

ee
do

m
, χ

2 =
 C

hi
 S

qu
ar

e 
st

at
is

tic
, G

FI
=

 g
oo

dn
es

s 
of

 f
it 

in
de

x,
 R

M
SE

A
=

 r
oo

t m
ea

n 
sq

ua
re

d 
er

ro
r 

of
 a

pp
ro

xi
m

at
io

n.

Clin Neuropsychol. Author manuscript; available in PMC 2018 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

McFarland Page 17

Ta
b

le
 2

M
od

el
 F

its
 f

or
 W

A
IS

 S
ta

nd
ar

di
za

tio
n 

da
ta

 m
od

el
ed

 w
ith

 f
iv

e 
gr

ou
p-

le
ve

l f
ac

to
rs

. M
od

el
 p

ar
am

et
er

s 
w

er
e 

es
tim

at
ed

 u
si

ng
 th

e 
da

ta
 f

ro
m

 a
ge

s 
20

 to
 5

4 

ye
ar

s 
(t

ra
in

in
g 

da
ta

, n
=

 1
00

0)
 a

nd
 v

al
id

at
ed

 u
si

ng
 d

at
a 

fr
om

 a
ge

s 
16

-1
9 

(v
al

id
at

io
n 

1,
 n

=
 1

00
0)

 a
nd

 5
5-

69
 y

ea
rs

 (
va

lid
at

io
n 

2,
 n

=
 1

00
0)

.

T
ra

in
in

g 
D

at
a

V
al

id
at

io
n 

1
V

al
id

at
io

n 
2

M
od

el
df

χ
2

G
F

I
R

M
SE

A
χ

2
G

F
I

χ
2

G
F

I

N
U

L
L

 M
od

el
10

5
87

03
.0

7
0.

25
19

0.
28

63
75

50
.9

8
0.

28
16

93
26

.9
2

0.
22

48

O
nl

y 
G

en
er

al
 F

ac
to

r
90

19
10

.5
3

0.
75

07
0.

14
23

17
36

.6
4

0.
78

60
17

12
.9

3
0.

77
57

O
nl

y 
G

ro
up

 F
ac

to
rs

89
25

19
.8

8
0.

69
60

0.
16

53
46

3.
70

0.
93

45
60

0.
93

0.
92

77

G
ro

up
 &

 1
 G

en
er

al
 f

ac
to

r
74

30
2.

53
0.

93
62

0.
05

56
45

0.
58

0.
94

35
56

4.
92

0.
92

30

G
ro

up
 &

 2
 G

en
er

al
 f

ac
to

rs
59

21
3.

54
0.

97
22

0.
05

12
43

1.
62

0.
94

55
53

3.
18

0.
93

43

G
ro

up
 &

 3
 G

en
er

al
 f

ac
to

rs
44

10
9.

62
0.

98
54

0.
03

86
39

0.
33

0.
95

13
49

7.
78

0.
93

96

G
ro

up
 &

 4
 G

en
er

al
 f

ac
to

rs
30

52
.0

3
0.

99
30

0.
02

71
37

9.
83

0.
95

24
47

2.
78

0.
94

26

G
ro

up
 &

 5
 G

en
er

al
 f

ac
to

rs
15

25
.6

8
0.

99
65

0.
02

67
36

7.
12

0.
95

46
50

0.
47

0.
93

91

N
ot

e:
 d

f=
 d

eg
re

es
 o

f 
fr

ee
do

m
, χ

2 =
 C

hi
 S

qu
ar

e 
st

at
is

tic
, G

FI
=

 g
oo

dn
es

s 
of

 f
it 

in
de

x,
 R

M
SE

A
=

 r
oo

t m
ea

n 
sq

ua
re

d 
er

ro
r 

of
 a

pp
ro

xi
m

at
io

n.

Clin Neuropsychol. Author manuscript; available in PMC 2018 August 01.


	Abstract
	Method
	Participants
	Analysis of Empirical Data
	Simulations

	Results
	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

