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ABSTRACT

The impact of inherited and somatic mutations on messenger RNA (mRNA) structure remains poorly understood. Recent
technological advances that leverage next-generation sequencing to obtain experimental structure data, such as SHAPE-MaP,
can reveal structural effects of mutations, especially when these data are incorporated into structure modeling. Here, we
analyze the ability of SHAPE-MaP to detect the relatively subtle structural changes caused by single-nucleotide mutations. We
find that allele-specific sorting greatly improved our detection ability. Thus, we used SHAPE-MaP with a novel combination of
clone-free robotic mutagenesis and allele-specific sorting to perform a rapid, comprehensive survey of noncoding somatic and
inherited riboSNitches in two cancer-associated mRNAs, TPT1 and LCP1. Using rigorous thermodynamic modeling of the
Boltzmann suboptimal ensemble, we identified a subset of mutations that change TPT1 and LCP1 RNA structure, with
approximately 14% of all variants identified as riboSNitches. To confirm that these in vitro structures were biologically
relevant, we tested how dependent TPT1 and LCP1 mRNA structures were on their environments. We performed SHAPE-MaP
on TPT1 and LCP1 mRNAs in the presence or absence of cellular proteins and found that both mRNAs have similar overall
folds in all conditions. RiboSNitches identified within these mRNAs in vitro likely exist under biological conditions. Overall,
these data reveal a robust mRNA structural landscape where differences in environmental conditions and most sequence
variants do not significantly alter RNA structural ensembles. Finally, predicting riboSNitches in mRNAs from sequence alone
remains particularly challenging; these data will provide the community with benchmarks for further algorithmic development.
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INTRODUCTION

RiboSnitches are single-nucleotide variants (SNVs) that
cause changes in RNA secondary structure (Halvorsen et al.
2010; Wan et al. 2014; Gotea et al. 2015; Kutchko et al.
2015; Lu et al. 2015; Solem et al. 2015). These riboSNitches
result in RNAs with different structures, leading to potential-
ly different regulatory and functional abilities. Approximately
15% of inherited SNVs change RNA structure in family
trio transcriptome-wide structural experiments (Wan et al.
2014). However, in general the function of structure in mes-
senger RNAs (mRNAs) is unclear (Bartel 2009; Scharff et al.
2011; Dethoff et al. 2012; Li et al. 2014). Certain specific
structures, such as the Iron Responsive Element and the
Histone Stem–Loop, play central roles in post-transcriptional
regulation of the mRNAs in which they occur (Gallie et al.
1996; Marzluff et al. 2008; Ma et al. 2012). For instance,
the Iron Response Element within FTL mRNA normally
forms a hairpin structure and is regulated by an iron response
element binding protein (Burdon et al. 2007). Several inher-

ited SNVs within FTL alter the structure of this element and
are associated with hyperferritinemia cataract syndrome
(Halvorsen et al. 2010; Martin et al. 2012).
The coupling of next-generation sequencing with chemical

and enzymatic probing, such as in SHAPE (Selective 2′

Hydroxyl Acylation by Primer Extension) methodology
(Siegfried et al. 2014; Lu and Chang 2016; Zubradt et al.
2017) enables structure analysis at unprecedented scale, in-
cluding transcriptome-wide RNA secondary structure deter-
mination (Kertesz et al. 2010; Underwood et al. 2010; Zheng
et al. 2010; Lucks et al. 2011; Ding et al. 2014; Incarnato et al.
2014; Rouskin et al. 2014; Wan et al. 2014; Del Campo et al.
2015). However, the final structures and even existence of
RNA secondary structure under biological conditions re-
mains controversial as secondary structure probing within
cells yields significant variability depending on the approach
(Ding et al. 2014; Rouskin et al. 2014; Spitale et al. 2015;
Watters et al. 2016a; Lee et al. 2017). Although some well-
studied small RNAs, such as the hairpin ribozyme and

Corresponding author: alain@unc.edu
Article is online at http://www.rnajournal.org/cgi/doi/10.1261/rna.

064469.117. Freely available online through the RNA Open Access option.

© 2018 Lackey et al. This article, published in RNA, is available under a
Creative Commons License (Attribution 4.0 International), as described at
http://creativecommons.org/licenses/by/4.0/.

RNA 24:513–528; Published by Cold Spring Harbor Laboratory Press for the RNA Society 513

mailto:alain@unc.edu
mailto:alain@unc.edu
http://www.rnajournal.org/cgi/doi/10.1261/rna.064469.117
http://www.rnajournal.org/cgi/doi/10.1261/rna.064469.117
http://www.rnajournal.org/cgi/doi/10.1261/rna.064469.117
http://www.rnajournal.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.rnajournal.org/site/misc/terms.xhtml


bacterial RNase-P, fold to near native conformations in the
absence of cellular components (Donahue et al. 2000;
Lindell et al. 2005), the specific effects of the cellular environ-
ment on RNA structure remain poorly understood
(Schroeder et al. 2004; Mahen et al. 2010; Zemora and
Waldsich 2010; Kubota et al. 2015; Smola et al. 2015a,
2016). We know that during translation ribosomes assisted
by helicases must unfold both the mRNA coding region
and, likely, structured elements in the untranslated regions
(UTRs). However, it is a thermodynamic reality that, when
not actively unfolded, single-stranded RNA will rapidly
form intramolecular base pairs (Das et al. 2003). Thus, we ex-
pect that different subpopulations of mRNAs exist in the cel-
lular environment, and, if we probe their structures in bulk,
we will observe signals averaged over the ensemble of sub-
populations, including structures specific to cellular and in
vitro conditions.

We chose to look in-depth at two specific mRNAs, TPT1
and LCP1. The first mRNA, TPT1 (tumor protein, translation-
ally controlled 1), was originally characterized as a sequestered
mRNA that is translationally induced during growth
conditions (Gross et al. 1989). We are particularly interested
in TPT1 because it is thought to have extensive secondary
structure, even to the extent of activating the double-strand
RNA recognition protein PKR (Bommer et al. 2002;
Nussbaum et al. 2002). Although not known to be as struc-
tured as TPT1, LCP1 (lymphocyte cytosolic protein 1) is also
over-expressed in many different cancers and may be in-
volved in cell mobility (Shinomiya 2012; Van Audenhove
et al. 2016).

We develop here a combined experimental and computa-
tional method to confidently detect riboSNitches arising
from inherited SNVs as well as from somatic mutations iden-
tified in cancers. We take advantage of recent chemical prob-

ing techniques that allow us to rapidly obtain high-resolution
structural information on full-length transcripts (Siegfried
et al. 2014; Smola et al. 2015b), while also facilitating a rap-
id, allele-specific sorting of reads for rapid and accurate
riboSNitch detection. We compare the ability of traditional
SHAPE-MaP to detect riboSNitches and find that using
allele-specific sorting decreases the background noise and
improves riboSNitch detection. Combined with a thermody-
namically rigorous framework that enables us to use experi-
mental SHAPE data as pseudo-free energies in nearest
neighbor RNA folding free energy models, we are able to
directly visualize the Boltzmann suboptimal ensemble and
how these variants affect the ensemble (Deigan et al. 2009;
Hajdin et al. 2013; Woods et al. 2017). Finally, to verify
that in vitro determined riboSNitches are biologically rele-
vant, we test how stable the structures are within TPT1 and
LCP1 mRNAs by performing SHAPE-MaP in the presence
and absence of cellular proteins. With these techniques, we
determined that TPT1 and LCP1 mRNAs are structurally
robust with high correlations between protein-bound and
-unbound experiments. We also identified five riboSNitches,
including two arising from somatic mutations within the cod-
ing sequencing of LCP1 and three within the UTRs of TPT1.

RESULTS

Variation and conservation within TPT1
and LCP1 mRNAs

Like many other human genes, LCP1 and TPT1 harbor
somatic mutations from various cancers and have extensive
inherited variation (Fig. 1A,B; Sherry et al. 2001; Forbes et al.
2015). We are particularly interested in the potential effects
of these mutations on RNA structure. We performed in vitro

FIGURE 1. Variation within LCP1 and TPT1. (A) LCP1mRNA is long (coding sequence of 1884 nt) and is composed of 16 exons. (B) TPT1 has three
isoforms and multiple alternative polyadenylation sites, of which NM_003295 with an early polyadenylation site is the most prevalent (∼1000 nt in
length). All identified inherited SNVs and somatic mutations within these genes are shown (blue, nonsynonymous; gold, synonymous). We tested all
synonymous somatic mutations within the LCP1 and TPT1 CDS regions and selected inherited variants.

Lackey et al.

514 RNA, Vol. 24, No. 4



SHAPE-MaP experiments on a subset of somatic and inher-
ited SNVs. Our goal was to screen a broad range of genetic
and somatic mutations to assess potential consequences on
RNA structure. We obtained somatic mutations from
the Catalogue of Somatic Mutations in Cancer (COSMIC)
database, which contains primarily exome sequencing from
a variety of different cancers, and we obtained inherited poly-
morphisms from the National Center for Biotechnology
Information (dbSNP) database. We focused our experimen-
tal analysis on synonymous somatic mutations in the coding
sequence because these mutations will not affect the protein
product and are therefore more likely to be functional
riboSNitches (Shabalina et al. 2013; Hunt et al. 2014; Supek
et al. 2014; Gotea et al. 2015). LCP1 has only one isoform
and a long coding region with 21 synonymous somatic mu-
tations (Fig. 1A). In the most commonly expressed isoform
of TPT1 (NM_003295), there are only two synonymous
mutations in the coding sequence (Fig. 1B). We therefore
expanded our experimental investigation into a subset of
inherited SNVs from the 5′ and 3′ UTRs, concentrating
on putative functional regions such as predicted AU-rich
elements (AREs) (Fig. 1B). Our selected subsets of somatic
and inherited variants did not have different conservation

scores from randomly selected nucleotides (nt) as a group
in either LCP1 or TPT1.

Allele-specific sorting greatly improves
riboSNitch detection

We were able to obtain SHAPE data on 37 selected variants
within LCP1 and TPT1 using a novel, high-throughput
SHAPE-MaP protocol (Siegfried et al. 2014; Smola et al.
2015b). Briefly, we used a clone-free, site-directed mutagen-
esis technique to create selected variants, transcribed the
RNA variants, probed the RNA with 1M7 or the negative
control, DMSO, and proceeded with error-prone reverse
transcription to fix the adduct locations as mutations in the
cDNA (Fig. 2A,C). Since the mutagenesis step (Fig. 2A) is
not 100% efficient, a percentage of wild-type (WT) sequence
remains in the amplification, and WT RNA is spiked into the
reaction, resulting in both alleles being simultaneously
probed. This is in contrast to a strategy in which both alleles
are probed in separate tubes, effectively introducing replicate
variability into their SHAPE signals (Fig. 2B). The novel ex-
perimental protocol used here takes advantage of SHAPE-
MaP’s read-through reverse transcriptase step and allows

FIGURE 2. High-throughput strategy to identify riboSNitches is improved by clone-free allele-specific sorting. (A) We performed site-directed mu-
tagenesis followed by SHAPE-MaP. (B) In a traditional experiment, reference and mutant RNAs are modified and prepared for sequencing in separate
tubes. (C) In our novel protocol, reference andmutant simultaneously undergo modification. The sequencing reads are sorted based on the reference/
mutant allele and SHAPE reactivities are calculated from the sorted reads. (D) By simulating the traditional experimental approach, we have poor
differentiation (AUC 0.63, dotted line), while simulating our novel within sample approach results in a dramatic improvement (AUC 0.92, red line).
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allele-specific sorting of reads (Fig. 2C). Therefore, our strat-
egy for obtaining matched SHAPE data for both alleles uses
an in vitro mutagenesis approach, enabling us to solve the
structures of each allele by sorting reads prior to generating
SHAPE data. This approach has the advantage of being inter-
nally consistent, i.e., each allele is probed under identical
conditions, increasing the sensitivity of the assay.

To evaluate the improvement resulting from modification
of both alleles in the same tube we estimated the false discov-
ery rate of riboSNitches in replicate WT SHAPE data. We
compared each WT SHAPE data set to the total average
WT SHAPE. We expect that replicates of the same RNA
sequence should have no riboSNitches and that any differ-
ences in the data are due to replicate noise and are therefore
false positives (only manually confirmed nonchanger sam-
ples were used to create the average total WT SHAPE in these
comparisons). We used the classSNitch algorithm, which
establishes if two SHAPE traces are different using a random
forest classification algorithm (Woods and Laederach 2017).
ClassSNitch classified 52% of these WT to WT comparisons
as riboSNitches, suggesting a false discovery rate of a tradi-
tional nonallele-sorted experiment at 0.52.

We also generated within-sample data sets that were ratio-
metrically normalized to match our allele specific sorting
to control for variations in sequencing depth, which are
known to impact signal to noise in SHAPE-MaP data
(Siegfried et al. 2014). In this case, we expect that within-
sample data sets should have no riboSNitches and that any
differences in the data are therefore false positives. We used
the classSNitch algorithm (Woods and Laederach 2017)
and found that within sample comparison dramatically low-
ered the false positive rate, with only 9% of samples falsely
identified as a riboSNitch. We performed receiver operator
curve (ROC) analysis to control for classSNitch sensitivity
on the ratiometrically sorted (red line, Fig. 2D), and replicate
WT (black dotted line, Fig. 2D) data sets. The result is a
remarkable improvement in riboSNitch detection accuracy
(area under the curve, AUC) increase from 0.63 to 0.92.

Adding allele-specific sorting to the SHAPE-MaP proce-
dure greatly improves the detection of single-nucleotide
mutations that change RNA structure. This technique is
not without cost, however, as only reads that span the muta-
tion site or are paired with a read spanning the mutation site
can be accurately sorted. This restricts SHAPE data to within
a few hundred nucleotides of the mutation. The vast majority
of base pairs even in highly structured RNAs like the
Ribosome tend to be short-range; thus it is reasonable to
expect riboSNitches to be local and allele-specific sorting
adequate for detection of the majority of structure changes
(Doshi et al. 2004; Kladwang et al. 2011a,b; Cordero et al.
2012; Woods and Laederach 2017). In addition, improve-
ments in sequencing technology readily increase read
lengths, and as data are collected with longer reads, allele-
specific sorting will allow the detection of larger structural
changes.

Identification of five riboSNitches within TPT1
and LCP1 mRNAs

We analyzed 37 allele-sorted data sets using the novel exper-
imental protocol illustrated in Figure 2. We identified five
riboSNitches using classSNitch in this data set (Woods
and Laederach 2017). Our data are consistent with previous
transcriptome-wide secondary structure analysis on a family
trio that estimated that 15% of SNPs are likely riboSNitches
(Wan et al. 2014). We find that 2/19 somatic mutations
and 3/18 SNPs are riboSNitches with an overall ratio of
14% (Supplemental Table S1). A recent analysis of mutations
within structured RNAs revealed significant differences in
their susceptibility to mutation with an upper bound of
over 60% of mutations disrupting the Lariat Capping
Ribozyme structure (Woods and Laederach 2017).
Nonetheless, on average 19% of mutations disrupted struc-
ture within these structured RNAs, suggesting that TPT1
and LCP1 structure are, on average, similarly robust to mu-
tation as other RNAs. Furthermore, our data suggests that
somatic mutations and inherited variation do not differ in
their propensity for structural change. However, we do not
find the UTRs or coding sequences to have a significant dif-
ference in riboSNitch frequency, implying that the likelihood
of a point mutation changing a structure is dependent on the
individual RNA’s susceptibility to change (Woods and
Laederach 2017).
We used the functional variant detection algorithm

FATHMM-MKL to predict the consequences of the five
riboSNitches we identified. Identifying which SNPs and
mutations are biologically relevant is exceptionally difficult,
and FATHMM-MKL is one of the few predictive algorithms
to include noncoding mutations. FATHMM-MKL uses con-
servation, histone markers, and other features of the genome
to assess whether a variant is likely to have a pathogenic effect.
Scores are reported as P-values on a scale of 0–1, with higher
numbers meaning more likely to be detrimental and lower
numbers equating to neutral (Shihab et al. 2013, 2015).
Although these predictive scores require experimental valida-
tion, FATHMM-MKL predictions perform well when com-
pared with several databases of pathogenic mutations such
as ClinVar and HGMD (Shihab et al. 2015). Four of the
riboSNitches were predicted to be detrimental (Table 1).
Within LCP1, the somatic riboSNitches COSM4526592 and
COSM384608 had scores of 0.84 and 0.66, respectively,
and, within TPT1, the inherited riboSNitches rs538915021
and rs11552475 had scores of 0.94 and 0.96 (Table 1).
Although rs553866883 within TPT1 had a neutral score
(0.35), it is possible that its ability to change the structure
of TPT1will make it more likely to be pathogenic in amanner
not currently measured by FATHMM-MKL. FATHMM-
MKL also predicted that many of nonchangers are harmful,
as expected based on our growing knowledge of how
synonymous and noncoding variations can influence patho-
genesis even without altering RNA secondary structure
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(Supplemental Table S1; Hunt et al. 2014; Supek et al. 2014;
Khurana et al. 2016).
We analyzed the structure change in all five riboSNitches

by visualizing the ensemble of RNA structures. RNA is
much more flexible than protein or DNA, usually existing
as an ensemble of different structures instead of one stable
conformation. We used the software ensemblerna to mod-
el and visualize these ensembles (Woods et al. 2017).
Ensemblerna uses SHAPE data to guide a secondary structure
folding algorithm. Then ensemblerna takes the set of struc-
tures, groups them, and counts the number of structures in
each cluster before mapping the clusters onto a stable confor-
mational space. To aid in understanding, we also show the
medoid structure for the main clusters. Most riboSNitches
cause a shift in the population of clusters and they sometimes
cause formation of a new cluster. Due to sequencing restric-
tions we only obtained high depth information 100 nt around
each mutation and may have missed larger structural effects
from the five riboSNitches we detected. However, we expect
the majority of structure changes to be local (Doshi et al.
2004; Kladwang et al. 2011a,b; Cordero et al. 2012; Woods
and Laederach 2017).

Somatic riboSNitches in the coding region
of LCP1 mRNA

In the LCP1 coding region (around position 1400), the
mRNA folds as one group of related structures, shown with
a representative secondary structure (Fig. 3A, large yellow
bubble I). This group predominates within reference se-
quences and in another nonchanger mutation in the same
region, COSM947725, which is highly likely to be neutral
(FATHMM-MKL score: 0.06). However, the riboSNitch
G1404A (COSM4526592), which is predicted to be patho-
genic (FATHMM-MKL score: 0.84), causes a decrease in
the population of the normal cluster and drives an increase
in population of two additional clusters of structures (Fig.
3A, purple and light yellow bubbles II and III). The loss
of a large dsRNA region is shown as the ensemble moves
from the main WT cluster to alternative clusters (Fig. 3A).
The normalized SHAPE data around the mutation site
show a relatively local change with an increase in reactivity
before the mutation site and a decrease in reactivity after the
mutation site (Fig. 3B). We also analyzed the riboSNitch
COSM384608 within the coding region of LCP1, which is

predicted to be detrimental (FATHMM-MKL score: 0.66).
Normally, this region exists as many different structure
clusters (Supplemental Fig. S1A–C), but the riboSNitch
COSM384608 causes a collapse of the ensemble into one
main group (Supplemental Fig. S1D).

Inherited rare variant riboSNitches in the 5′′′′′ and 3′′′′′ UTRs
of TPT1 mRNA

Within the 5′ UTR of TPT1, there is one main group of
similar structures (Fig. 4A, green bubble I). This region
includes both the start codon and the location where PKR
is predicted to bind TPT1 and cause translational repression.
We observed this grouping of similar structures in mRNAs
with the nonchanger SNV rs11552489 and with the major
allele sequence for both the nonchanger and the riboSNitch
rs553866883. However, the riboSNitch C192U (rs553866883)
induces an increase in two additional clusters that are poorly
populated in the major allele (Fig. 4A, bubbles II and III).
Exemplary secondary structures from these clusters (Fig.
4A, I,II) indicate that the large dsRNA region preceding the
variant has decreased in the alternative conformations and
the variant itself moves from a relatively unstructured region
into a more structured area.
The SHAPE data around the riboSNitch C192U indicate

that this mutation causes a local change with a decrease in
reactivity (increase in structure) before and after the SNP
(Fig. 4B). The nonchanging SNV U208C (rs11552489) is
predicted to be pathogenic (FATHMM-MKL score: 0.88),
whereas the riboSNitch C192U (rs553866883) has a neutral
FATHMM-MKL score (score: 0.35). In addition, two other
nonchanger SNVs close by are also predicted to be pathogen-
ic (rs776089085 and rs770667436, scores: 0.94 and 0.86)
(Supplemental Table S1). We propose that the riboSNitch
C192U (rs553866883) belongs to a group of SNVs that
have functional importance within the 5′ UTR of TPT1,
and they may not have been identified previously as patho-
genic because of its cryptic effect on mRNA structure.
Two additional riboSNitches occur within the 3′ UTR of

TPT1, which forms three main structure clusters that exist
in relatively equal proportions (Fig. 5A, purple—I, blue—II
and yellow bubbles) and one existing but less populated
cluster (Fig. 5A, teal—III). The example medoid structures
for the labeled structures illustrate the flexibility of this
relatively open region (Fig. 5A). The riboSNitches U850G

TABLE 1. The majority of riboSNitches are predicted to be detrimental by FATHMM

Gene Name FATHMMscore FATHMMpred Original Mutant Position (mRNA)

LCP1 COSM4526592 0.84 Pathogenic G A 1642
LCP1 COSM384608 0.66 Damaging A T 2041
TPT1 rs553866883 0.35 Neutral C T 192
TPT1 rs538915021 0.94 Pathogenic T G 850
TPT1 rs11552475 0.96 Pathogenic T A 867
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(rs538915021) and U867A (rs11552475) are both highly
predicted to cause functional change to TPT1 mRNA
(FATHMM-MKL scores >0.94). RiboSNitch U850G
(rs538915021) induces an increase in a secondary cluster
that is not well populated in the reference (Fig. 5A bubble
III), whereas riboSNitch U867A (rs11552475) induces a
reduction in the main clusters (Fig. 5A bubble I and III).
The SHAPE data for both riboSNitches indicate local change
with a decrease in reactivity before or after the SNV, respec-
tively (Fig. 5B,C). Three other SNVs within the same region
do not alter the structural ensemble (Fig. 5A), but they are all
predicted to be pathogenic (FATHMM-MKL scores >0.91)
(Supplemental Table S1). The two riboSNitches occur within
proposed AREs, and the other nonchangers are in close
proximity. We measured the stability of GFP-TPT1 3′ UTR
mRNAs with these variants and ARE-disrupting mutations,

but we did not detect any differences (Supplemental Fig.
S2). These AREs may be tissue specific and not functional
in HEK-293 cells.

The robust nature of highly structured TPT1 mRNA

We performed probing experiments on TPT1 to determine
how the presence of proteins affects the TPT1 structural en-
semble. We reacted cellular mRNAs with the 1M7 SHAPE
chemical probe that reacts with accessible 2′ hydroxyl groups
and compared reactivity rates to a background (solvent-only)
control (Wilkinson et al. 2006; Siegfried et al. 2014). Tomim-
ic the cellular environment, but maximize the reactivity of the
probe, we treated cellular lysates with 1M7 and compared the
results with mRNAs treated after extraction and in the ab-
sence of normal RNA-binding proteins. We also in vitro

FIGURE 3. The riboSNitch COSM4526592 shifts the LCP1 mRNA ensemble from one predominant structure group into three groups. (A) The
SHAPE-guided structural ensembles for WT (G1389), Mutant (G1389A, nonchanger) and WT (G1404) have one main structure cluster (green bub-
ble, I). The riboSNitch G1404A (COSM4526592), labeled in red, shifts the ensemble into two new structure clusters (purple, II; yellow, III). Each
cluster is labeled in the ensemble plots (A) and illustrated with the medoid structures from the cluster (I–III). These medoid structures are example
secondary structures for each cluster. The major allele structure is colored by WT SHAPE reactivity (I), whereas the nucleotides in the alternative
conformations are colored by mutant reactivities (II and III). (B) Normalized SHAPE data around the riboSNitch show an increase in reactivity before
the mutation and a decrease afterward in the mutant profile (bottom).
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transcribed TPT1mRNA and compared the structural results
of our protein-bound mRNA to artificially generated mRNA
in the absence of any RNA-binding proteins. We used the
SHAPE-MaP protocol in which SHAPE adducts are convert-
ed to mutations during library preparation, and the locations
of adducts are identified as mutations through next-genera-
tion sequencing (Siegfried et al. 2014; Smola et al. 2015b).
The SHAPE-MaP data sets used to create our secondary
structure models for TPT1 are available in the supplement
(Supplemental Figs. S1–S3; Supplemental Files S1–S4, http
://bit.ly/2sXWL3K; Sansone et al. 2012).
TPT1 was originally characterized as a sequestered mRNA

that is translationally induced during growth conditions
(Gross et al. 1989). TPT1 mRNA activates the double-strand
RNA recognition protein PKR leading to repression of TPT1
protein translation, presumably through extensive double-

stranded RNA structures within the 5′ UTR (Bommer et al.
2002; Nussbaum et al. 2002). TPT1 is over-expressed in
cancers and, although the mechanism is not fully elucidated,
its protein product is believed to function as an antiapoptotic
factor controlled by mTORC1 (Amson et al. 2013; Chen et al.
2013; Acunzo et al. 2014; Bommer et al. 2015; Thébault et al.
2016).Wemapped themedian SHAPE reactivity across TPT1
to determine regions of high and low reactivity for the
protein bound RNP (Fig. 6A) and naked RNA (Fig. 6B) con-
ditions. This approach to visualizing the data enables us to
identify regions of relatively high median SHAPE (less struc-
ture, more complex conformational ensemble) and relatively
low median SHAPE (more structure, more likely a single
conformation) (Smola et al. 2016). We treated the protein:
mRNA complex with 1M7 (bound), extracted RNA from
cells, removing all proteins (unbound), or we transcribed

FIGURE 4. The riboSNitch rs553866883 shifts the TPT1mRNA ensemble from one predominant structure cluster into three. (A) The SHAPE-guid-
ed structural ensembles for major allele (U208), minor allele (U208C, rs11552489, nonchanger), major allele C192 all show onemain structure cluster
(green, I). The riboSNitch C192U (rs553866883), labeled in red, shifts the ensemble to form two new structure clusters that were previously not pop-
ulated (purple, II; yellow, III). Each cluster is labeled in the ensemble plots and illustrated with the medoid structures from the group (I–III). The
medoid secondary structure for the main cluster is colored by WT SHAPE reactivity while nucleotides in the alternative conformations (II and
III) are colored by mutant reactivities. Points of references from the full-length structure are highlighted. (B) Comparison of normalized SHAPE
data for the minor allele profile (bottom) compared to the major allele (top) around the riboSNitch.
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RNA with T7 RNA polymerase and then treated with 1M7
(in vitro) (Supplemental Figs. S3, S4). The unbound and in
vitro samples had high agreement, as did all replicates
(Supplemental Fig. S3D,O), allowing us to develop a robust
structural model by merging and averaging the data to
form a comprehensive in vitro SHAPE over nearly the entire
transcript (Fig. 6D). We summarize further specifics of
our correlation analysis in Supplemental Figures S3 and S5
and Supplemental Table S1. In general, the median reactivi-

ties for protein-bound, unbound and in vitro transcribed
mRNA followed the same profile across TPT1, as corroborat-
ed by high levels of correlation between the samples, with an
average correlation around 0.85 (Fig. 6C). For TPT1 mRNA,
we conclude that the overall fold of the mRNA is similar in
all conditions examined, but specific smaller regions adopt
different conformations based on conditions.
Using a model secondary structure informed with exten-

sive in vitro SHAPE data, we found that TPT1 is highly

FIGURE 5. The riboSNitches rs538915021 and rs11552475 alter the proportions of the 3′ UTR TPT1 mRNA structure clusters. (A) The SHAPE-
guided structural ensemble for the reference sequence (control) is shown next to two riboSNitches (U850G and U867A). The riboSNitch U850G
(rs538915021) causes an increase in population of the III cluster. The riboSNitch U867A (rs11552475) causes a decrease in the population of the
I cluster. Three nonchangers are shown below (rs11540938, rs571864782, and rs751359423) that all occur within the same region. (I–III) Three rep-
resentative medoid secondary structures are shown. Each cluster is labeled in the ensemble plots. The nucleotides in all structures are colored by WT
SHAPE reactivity. (B,C) Comparison of normalized SHAPE data for themajor andminor allele of the riboSNitches U850G (rs538915021) and U867A
(rs11552475).
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structured in the 5′ UTR, with more than 60% of the bases
involved in pairing, and it is relatively open in the 3′ UTR,
with less than 40% of the bases involved in base-pairing
interactions. This observation correlates with the 5′ to 3′

increase in median SHAPE values plotted in Figure 6B.
TPT1 mRNA activates the double-stranded RNA (dsRNA)
recognition protein PKR (Bommer et al. 2002; Nussbaum
et al. 2002). PKR primarily recognizes viral dsRNA and
inhibits viral translation, but PKR also interacts with a variety
of cellular dsRNA-containing mRNAs, including the TNF-α

and IFN-γ (Osman et al. 1999; Cohen-Chalamish et al. 2009;
Hull and Bevilacqua 2016). Activation of PKR depends on a
dsRNA region of at least 30 bases to allow binding of two
or more PKR molecules (Manche et al. 1992; Zheng and
Bevilacqua 2004; Lemaire et al. 2008). The highly structured
5′ UTR and first exon region of TPT1 contain 95 base pairs
(bp), primarily as two imperfect helices in close proximity,
composed of 23 and 25 bp (Fig. 6D). This dsRNA region is
likely to bind and activate PKR, resulting in translational
inhibition of TPT1 mRNA.

FIGURE 6. TPT1 mRNA secondary structures are similar in the presence and absence of protein. (A) Median reactivity data from RNA in cellular
lysate over a moving window of 40 nt indicating structured (lowmedian SHAPE) and unstructured regions (high median SHAPE) within corresponds
closely with the pattern of (B) median reactivity data from naked RNA. A 5′ to 3′ decrease in median SHAPE is observed, consistent with a highly
structured 5′ UTR and less structured 3′ UTR. (C) Supportive of the overall similar median reactivities, pattern correlation of SHAPE reactivity is
high (>0.85 overall). We performed correlations over multiple windows, from 10 to 50, bottom to top, with lighter blue indicating higher correlation.
Regions of difference are noticeable as darker bands in the CDS and 3′ UTR. (D) TPT1 secondary structure model informed with SHAPE reactivies
from unbound RNA modification. Regions of interest are labeled, including the start codon, stop codon, proposed PKR activating helices in the 5′
UTR, and putative AREs in the 3′ UTR.
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Structured coding region of LCP1 mRNA

LCP1 is over-expressed in many different cancers and may be
involved in cell mobility (Shinomiya 2012; Van Audenhove
et al. 2016). Although little is known about the molecular
mechanisms that regulate LCP1 transcription and transla-
tion, a variant in the promoter region of LCP1 causes a
decreased risk for prostrate cancer (Chen et al. 2016) while
other variants in LCP1 are proposed as biomarkers for colo-
rectal cancer recurrence and eQTLs (Garge et al. 2010; Ning
et al. 2014). We performed probing experiments on LCP1
mRNA to determine how the presence of proteins affects
structural ensemble and how dependent LCP1 structure is
upon cellular conditions. We treated the LCP1 mRNA in
complex with its native RNA-binding proteins with the
1M7 SHAPE reagent and compared the results with 1M7
treatment of in vitro transcribed LCP1 mRNA (Fig. 7A,B).

We used the SHAPE-MaP protocol where 1M7 adducts are
converted to mutations during library preparation, and iden-
tified with next-generation sequencing (Siegfried et al. 2014;
Smola et al. 2015b). An overview of the different conditions
used and raw data histograms are summarized in
Supplemental Figure S5, and raw data are available in
Supplemental Files S3 and S4 (also available on http://bit.
ly/2sXWL3K) (Sansone et al. 2012).
LCP1 has similar overall structures under cellular-like

conditions with protein complexes and under in vitro tran-
scribed conditions (Fig. 7A–C). The median reactivity pro-
files for LCP1 mRNA in these environments were highly
correlated with an average correlation coefficient of 0.82
(Fig. 7C). We derived a SHAPE-informed secondary struc-
ture model with the comprehensive in vitro SHAPE data
set for LCP1mRNA (Supplemental Fig. S7D). LCP1 is struc-
tured, but it does not have as many contiguous helices as

FIGURE 7. LCP1mRNA secondary structures are similar in the presence and absence of protein. (A) LCP1 RNPs were probed and analyzed to gen-
erate median reactivity data. Low SHAPE regions indicate likely structured regions, while high SHAPE regions are likely unstructured. The median
reactivity within the CDS of LCP1 corresponds closely with the pattern of (B) naked RNA reactivity data. (C) The pattern of SHAPE reactivity is highly
correlated (>0.82 overall). Correlations are performed over multiple windows, from 10 to 100, and lighter blue indicates higher correlation. Various
regions of difference can be seen throughout the CDS as darker bands. (D) LCP1 secondary structure model for the entire 1884 nt CDS using SHAPE
data from unbound RNA to direct RNA structure prediction. Regions of interest are labeled, including splice junctions and potential RNA-binding
protein sites.
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TPT1. In PAR-Clip analyses, only the RNA-binding protein
RCTB was found to interact with the LCP1mRNA coding se-
quence, although AGO2, LIN28B, IGF2BP1, and MOV10
can interact with the UTRs (Yang et al. 2015). Due to its
extensive structure, we expect that post-transcriptional regu-
lation is important for LCP1 function.

Environmentally dependent mRNA structures

Differences between structures from the same RNA as mea-
sured on the bench versus within the cell have been attributed
to RNA-binding proteins, N-6-methyl adenosine modifica-
tion, and active cellular unwinding, such as that associated
with translation (Rouskin et al. 2014; Smola et al. 2015b;
Spitale et al. 2015). Thus, we expect differences between
TPT1 and LCP1 mRNAs in a cellular-like environment
versus mRNAs transcribed in vitro with only T7 polymerase.
This expectation is demonstrated best in our TPT1 data
sets with the lowest average correlation occurring between
protein-bound TPT1 and in vitro transcribed TPT1
(Supplemental Table S2). We observed that the structure of
TPT1 transcribed in the cell, but removed from the cellular
environment before probing, was in between RNA structures
derived from experiments with more cellular protein-bound
TPT1 and in vitro transcribed TPT1 (Supplemental Table
S2). Because LCP1 is not highly expressed, we do not have
extensive coverage of this mRNA from transcriptome-wide
experiments, however, within regions of adequate depth,
LCP1 transcribed within the cell did correlate better with
protein-bound LCP1mRNA (Supplemental Fig. S5K, orange
line), whereas the T7-transcribed in vitro LCP1 data were
much less correlated (Supplemental Fig. S5K, maroon and
red lines). The similarities between the natively transcribed
mRNAs, with or without protein binding, imply that tran-
sient protein-induced structural changes are not the only
factors involved in differences between cellular and in vitro
RNA structure, and additional properties such as cotran-
scriptional folding or splicing-influenced structures may
also be important (Jin et al. 2011; McManus and Graveley
2011; Lai et al. 2013; Watters et al. 2016b).
To better understand the importance of environmentally

dependent structures, we looked at whether these regions
fell into particular categories. We found no connection
between environmentally dependent structures and regions
of high or low structure, RNA-binding protein regions, or
splice sites (Supplemental Table S3; Supplemental Fig. S6).
We analyzed the conservation of LCP1 and TPT1 mRNA se-
quences using scored alignments of 100 vertebrate sequences
from the UCSC Table Browser (Karolchik et al. 2004; Siepel
et al. 2005). PhyloP scores detect both conserved (positive
values) and accelerated evolution (negative values) at the level
of individual bases (Pollard et al. 2010). Both LCP1 and TPT1
are conserved, as the majority of PhyloP scores are above
zero (Supplemental Fig. S7A,B), although LCP1 hasmore nu-
cleotides undergoing accelerated evolution compared with

TPT1 (negative values, Supplemental Fig. S6B). When we
compared regions with environmentally dependent struc-
tures with conservation phyloP scores we noticed that
environmentally sensitive regions (pink) tended to be more
conserved than insensitive regions (blue) in both TPT1 and
LCP1 (Supplemental Fig. S7). This trend is also present
when analyzed in reverse, i.e., nucleotides with high PhyloP
and high conservation are, on average, more environmentally
similar (Supplemental Table S3). Although not statistically
significant, this correlation suggests that the most highly
conserved regions appear to undergo the most significant
conformational rearrangements. How cellular conditions
impact RNA secondary structure is an active area of research
(Ding et al. 2014; Rouskin et al. 2014; Spitale et al. 2015;
Smola et al. 2016; Watters et al. 2016a), and conservation
may be key to understanding just how the environment
affects RNA structures.

DISCUSSION

Natural and somatic noncoding variations have the potential
to yield significant insight into structure–function relation-
ships in eukaryotic transcripts (Wan et al. 2014; Solem et al.
2015). In some cases, variants affecting UTR structure form a
riboSNitch and cause human disease phenotypes (Halvorsen
et al. 2010; Martin et al. 2012; Jafarifar et al. 2014; Rogler et al.
2014; Kutchko et al. 2015). However, it is likely that the vast
majority of natural and somatic genetic variation is pheno-
typically benign. We still have a poor understanding of how
natural noncoding genetic variation affects specific mRNA
structures, and we are limited in our ability to predict these
changes computationally (Ritz et al. 2012; Corley et al.
2015). Chemical probing experiments, especially high-
accuracy approaches like SHAPE-MaP, detect structured
regions in RNAs directly and enable us to identify the small
subset of somatic and inherited variants that cause structural
changes. Identification of these riboSNitches will further
our understanding of the changes in RNA structure and
lead to understanding which mutations and riboSNitches are
pathogenic.
The median SHAPE values for TPT1 and LCP1 (Fig. 6,7)

reveal that significant regions of mRNA have low median
values with and without protein binding, consistent with a
high degree of structure. These SHAPE data fit with our
understanding of RNA folding thermodynamics that suggest
that bases will pair if they are complementary (Mathews et al.
1999). Classic folding experiments with scrambled sequences
demonstrate that even random RNAs will adopt stable
secondary structures in complementary regions (Woodside
et al. 2006). Thus, it is not surprising to find structured
regions even within the coding sequence of mRNAs. Still,
we do not understand how somatic or inherited variation
will affect the fold of an mRNA in either highly structured
or disordered regions. Our data suggest that the overall
structural effects of somatic and inherited mutations do not
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depend on the local degree of structuredness (as measured by
local median SHAPE, Supplemental Fig. S6) or functional
context (UTR versus coding sequence, or even ARE). In
fact, the majority of variants have no measurable effect on
mRNA structure; consistently only around 15% of variants,
either naturally occurring or man-made, resulted in even lo-
cal structure change (Woods and Laederach 2017). Thus, the
global folds of the TPT1 and LCP1 mRNAs appear relatively
robust to variation. This insensitivity to variation contrasts
with more highly structured RNAs such as elements of the
ribosome and two ribozymes, for which recent analogous
mutational analyses revealed significantly higher rates of
structural disruption (over 60% for the Lariat Capping
Ribozyme [Cheng et al. 2015; Woods and Laederach 2017]).

The LCP1 and TPT1 folds are also remarkably consistent
between environmental conditions. Our data suggest that
the fundamental structural features observed in vitro are pre-
served in the cell. The SHAPE-MaP approach improves the
signal-to-noise by sequencing deeper and rigorously defines
differences between protein-bound mRNA structures and
in vitro mRNA folding. The extent of RNA structure change
between cellular and in vitro conditions has been controver-
sial and varies widely between studies and RNAs (Ding et al.
2014; Rouskin et al. 2014; Spitale et al. 2015; Watters et al.
2016a). We do identify multiple regions that are highly sen-
sitive to environmental conditions (Figs. 6, 7; Supplemental
Fig. S7) in both TPT1 and LCP1 mRNAs, and these regions
tend to occur in regions with higher sequence conservation.
The cellular environment causes differences between in vivo
and in vitro SHAPE reactivity by rearranging the RNA struc-
ture, often through binding of RNA-binding proteins but
also through many other mechanisms (Jin et al. 2011;
McManus and Graveley 2011; Lai et al. 2013; Rouskin et al.
2014; Smola et al. 2015b; Spitale et al. 2015; Watters et al.
2016b). Our observation that these regions have higher se-
quence conservation suggests that interactions with the cellu-
lar environment may exert selective pressure on the RNA
sequence. However, these differences do not occur with high-
er frequency in regions with low or high SHAPE reactivity
(Supplemental Table S3), suggesting that interactions with
the cellular environment are not limited to regions folding
to single, well-defined conformations that have low median
SHAPE (Smola et al. 2016).

We have shown that dissection of the molecular details
of any mRNA requires high-resolution analysis using tech-
niques such as allele-specific SHAPE-MaP that offer suffi-
cient signal-to-noise (Fig. 2D) to infer specific structural
ensemble models (Figs. 3–5). Furthermore, at present,
SHAPE is the only structure probing technique for which
there exists a validated, nucleotide resolution, thermodynam-
ic correction for the nearest-neighbor rules (Deigan et al.
2009; Hajdin et al. 2013). We are beginning to unravel the
intricacies of mRNA structural ensembles by performing
allele-specific sorting and obtaining SHAPE ensemble
models for a riboSNitch in single, clone-free experiments.

The ensembles we visualize (Figs. 3–5) reveal the significant
complexity of mRNA structures and the challenges faced
when attempting to understand structure/function relation-
ships in these regions. Furthermore, it is evident that specific
variants and somatic mutations will alter the ensemble. The
experimental and computational tools we propose and which
we have used in this study provide a rigorous approach to
dissect the complex interplay of ensemble thermodynamics,
sequence selection, and RNA structure in driving noncoding
function in the transcriptome.

MATERIALS AND METHODS

High-throughput multiplexed SHAPE treatment

Our modified high-throughput SHAPE-MaP protocol was per-
formed on a Tecan Freedom Evo. We purchased mRNA clones of
TPT1 and LCP1 (Origene—SC323772 and SC118739) and designed
primers to introduce variants into select regions (Supplemental
Table S6). Site-directed mutagenesis was performed with an NEB
Q5 Site-Directed Mutagenesis Kit, but without customary transfor-
mation or cloning. Instead, we PCR-amplified the site-directed
target after ligation using primers spanning the entire mRNA;
the forward primer included a T7 promoter (NEB Q5 Hotstart).
Ampure bead purification was performed to purify the DNA
(Beckman Coulter—Ampure XP). Then we performed in vitro
transcription with the T7 polymerase to synthesize RNA (NEB
T7 Polymerase). To remove DNA, the sample was treated with
TurboDNAse for 15 min at 37°C (ThermoFisher Scientific
TurboDNAse Kit). Ampure bead purification was performed to pu-
rify the RNA (Beckman Coulter—RNAClean XP). To fold the RNA,
samples were incubated at 37°C for 10 min in buffer containing 100
mM Na-HEPES, pH 8.0, 100 mM NaCl, and 10 mM MgCl2. The
RNA was incubated for 5 min at 37°C with 10% dimethyl sulfoxide
(DMSO) or with 10 mM 1-methyl-7-nitroisatoic anhydride (1M7)
in DMSO. Ampure bead purification was performed to purify the
modified RNA (Beckman Coulter—RNAclean XP).

Selection of variants and their functional significance

We obtained somatic mutations from the COSMIC database (v72)
(Forbes et al. 2015) and designed primers to recreate all synonymous
variants within TPT1 and LCP1 (Supplemental Table S6). Inherited
SNVs within TPT1 were obtained from dbSNP (Sherry et al. 2001),
and primers were designed in the samemanner (Supplemental Table
S6). We used the FATHMM-MKL webserver to extract predicted
functional significance from all tested variants in TPT1 and LCP1
(Shihab et al. 2013, 2015). FATHMM-MKL estimates significance
based on a variety of factors including conservation, histone modifi-
cations, transcription factor binding sites, and open chromatin.High
FATHMM-MKL P-values equate tomore likely deleterious substitu-
tions, while lower P-values are more likely to be neutral.

Protein-bound mRNA SHAPE treatment

Protein-bound mRNA SHAPE MaP experiments were performed
with lymphoblastoid cell lines (1000 Genomes cell lines—
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NA07037, NA12003, NA19098, NA19099) (1000 Genomes Project
Consortium 2015) or Tet-Off HEK-293 cells (Clontech, Tet-off
cell line). For mutant analysis of the 3′ UTR of TPT1, HEK-293
cells were transfected with WT or mutant GFP-TPT1 3′ UTR
constructs (GenScript, Clontech pTRE-TIGHT, NEB Q5 Site-
DirectedMutagenesis Kit). HEK-293 cells were washed in PBS, tryp-
sinized, and resuspended in complete media. Lymphoblastoid cell
lines were pelleted by centrifugation. For all cell types, approximate-
ly 50 million cells were resuspended in 1 mL of folding buffer (same
buffer as in vitro SHAPE protocol) and supplemented with 400 U
murine RNAse inhibitor (NEB). Cells briefly sonicated at 10% pow-
er for three 10-sec intervals (Fisher Scientific Sonic Dismembrator
Model 500). The lysates were incubated at 37°C for 5 min and
then immediately modified. SHAPE treatment was performed for
a period of 5 min with an addition of DMSO or three separate
additions of 1M7 with a final concentration of 30 mM 1M7,
10% DMSO. RNA was extracted from the lysates, DNAse digest-
ed and depleted of ribosomal RNA (ThermoFisher TRIzol,
5PRIME PhaseLock Heavy, Invitrogen Purelink RNA columns,
ThermoFisher Purelink DNase Set, and ThermoFisher Scientific
RiboMinus Eukaryote System v2 from Life Technologies).

Extracted mRNA SHAPE treatment

SHAPE-MaP experiments were performed with the same cell lines
(above) on natively transcribed mRNAs. RNAwas extracted by stan-
dard TRIzol purification and DNase digestion (ThermoFisher
TRIzol, 5PRIME PhaseLock Heavy, Invitrogen Purelink RNA
columns, ThermoFisher Purelink DNase Set) and incubated at
37°C for 10min in folding buffer (above, in vitro SHAPE treatment).
SHAPE treatment was performed for 5 min with an addition of
DMSO or three separate additions of 1M7 with a final concentration
of 30 mM 1M7, 10% DMSO. We performed buffer exchange (GE
illustra MicroSpin G-50 Columns) before depletino of ribosomal
RNA (RiboMinus Eukaryote System v2 from Life Technologies).

Reverse transcription and library preparation

We performed SHAPE-Map reverse transcription with SuperScript
II, random nonamers and error-prone conditions for all
samples (Siegfried et al. 2014; Smola et al. 2015b) (ThermoFisher
Scientific SuperScript II, NEB random nonamers). The samples
were purified with Ampure XP beads or G-50 columns to isolate the
cDNA (Beckman-Coulter, GE illustra MicroSpin G-50 Columns).
For transcriptome-wide structure probing, we performed second
strand synthesis (NEBNext Second Strand Synthesis Module) and
either Nextera or Nextera XT library preparation samples
(Nextera DNA Sample Preparation Kit, Nextera XT DNA Sample
Preparation Kit and Index Kits from Illumina). For gene specific
structure probing, we designed primers specific to the 3′ region,
coding sequence, and 5′ region of the mRNA and PCR-amplified
these regions after reverse transcription (NEB Q5 HotStart). We
performed secondary PCR to add TruSeq barcodes. Sequencing
for the T7 transcribed samples was performed on HiSeq2500 as
paired end, 2 × 50 read multiplex run. Sequencing for the natively
transcribed samples was performed on HiSeq2500 as paired end,
2 × 100 read multiplex runs. TruSeq libraries were sequenced as
necessary for their designed length, primarily as paired end 2 ×
300 read multiplex runs on a MiSeq instrument.

SHAPE data analysis

For T7 transcribed samples and gene-specific TruSeq samples,
we used bowtie2 (v2.2.9) to align SHAPE reads to either LCP1 or
TPT1 mRNA (Langmead and Salzberg 2012). For transcriptome-
wide experiments, we aligned reads to the entire genome (hg38).
For riboSNitch analysis, we sorted the reads into WT or mutant
based on the nucleotide at the mutation site, resulting in loss of
SHAPE reactivity at the site of the mutation, but allowing us to
separate the WT and mutant reads and determine overall reactivity
for the entire region. The ShapeMapper pipeline to calculate muta-
tion frequency has been previously described (Siegfried et al. 2014;
Smola et al. 2015b). Briefly, we used the ShapeMapper algorithm to
calculate the mutation frequency in the 1M7-treated sample, cor-
recting for mutation frequency in the background (DMSO only)
sample.We normalized the corrected reactivity by amultiplier based
on the reactivity distribution of the full-length SERPINA1 tran-
script. To examine the broad, overall SHAPE reactivity, we averaged
select data sets (defined in each section, available as Supplemental
Files S1–S4 and on http://bit.ly/2sXWL3K) and calculated the
median reactivity for 40–50 nt sliding windows (Pollom et al.
2013).We used this SHAPE reactivity to inform aminimum free en-
ergy structure using RNAstructure with a maximum pairing dis-
tance of 200/300 nt (Fig. 1; Supplemental Fig. S4). Incorporating
SHAPE reactivities as a pseudo-free energy term in the nearest
neighbor thermodynamic model of RNA folding improves the pre-
dictive capability of themodel (Deigan et al. 2009; Hajdin et al. 2013;
Sukosd et al. 2013).

Identification of riboSNitches

To identify riboSNitches, we analyzed SHAPE traces for differences
between WT controls and mutants manually and with classSNitch.
Sequencing data were collected as 2 × 50 reads, thus, we restricted
our analysis to 50–150 nt around the mutation. ClassSNitch uses a
random forest algorithm based on expert classification to identify
riboSNitches based on a comparison control and variant using nor-
malized reactivities for each (Woods and Laederach 2017). To mimic
a traditional between replicate analysis we compared the full-length
data set for all nonchangers with allele-specific nonchangers (false
positives) or allele-specific changers (true positives). To obtain the
improvement offered by allele-specific sorting, we ratiometrically
split each sample into 75% and 25% reads before calculating
SHAPE reactivity. This splitting simulates the ratio of mutant to
WT RNA modified and sequenced in the experiment, where there
are more reads assigned to the mutant than to theWT.We compared
these split reads to each other (no differences expected, false positives)
and to split reads from manually identified riboSNitches (true posi-
tives). We used a ROC curve to quantify the improvement conferred
by allele-specific sorting. To obtain the final set of riboSNitches we
used allele-specific sorting with ClassSNitch. For riboSNitches within
the 3′ UTR of TPT1 we also performed a replicate-based experiment
that agreed with the results of high quality allele-specific experiments.
We identified five mutants as riboSNitches, all of which were verified
by eye and the classSNitch algorithm (Table 1).

Ensemble-based analysis of riboSNitches

We analyzed how the ensemble of RNA structures changed between
the WT and mutant based on SHAPE-directed secondary structure
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predictions. Ensemblerna creates a conformational map of struc-
tures based on RNA sequence and visualizes them with multidi-
mensional scaling that incorporates normalized SHAPE data,
comparing the WT and mutant within the same space (Woods
et al. 2017). Conformational maps were restricted to 50–200 nt
of allele-specific data within the mutation, based on the sequenc-
ing data. The medoid structures for each cluster were used as rep-
resentative secondary structure in all instances. All the
classSNitch-identified riboSNitches showed differences in their
secondary structure ensembles in mutant samples when compared
with WT.

RNA stability assay

We measured RNA stability with a doxycycline-inducible construct
including GFP upstream of the 3′ UTR of TPT1 in a Tet-Off HEK-
293 cell system (Genscript Gene Synthesis, Clontech pTRE-TIGHT)
(Ysla et al. 2008). Tet-Off HEK293 cells were plated at a concentra-
tion of 150,000 cells/mL in Tet-free media supplemented with 100
μg/mL G418 followed by overnight incubation. Cells were transfect-
ed with WT of mutant 3′ UTR-GFP constructs using serum-free
DMEM, 50 ng of construct, 350 ng of carrier DNA, and Transit
(Mirus Transit). The cells were incubated for 24 h before the
addition of 2 μg/mL of doxycycline. We sampled at 2, 4, and 6 h af-
ter addition of doxycycline and performed a standard TRIzol
extraction to isolate RNA (Clontech Doxycycline, ThermoFisher
TRIzol, 5PRIME PhaseLock Heavy, Invitrogen Purelink RNA
columns). DNAse digestion and qRT-PCR were performed with the
TaqMan Gene Expression Kit (Turbo DNAse, TaqMan Gene
Expression kit) and TaqMan Gene Expression Probes from
Applied BioSciences. We used probes that detected GAPDH and
GFP (ThermoFisher Scientific, eGFP probe Mr04097229_mr and
GAPDH probe Hs02758991_g1) on an ABI 7000 sequence detector
system (Applied Biosystems). Data were analyzed by normalizing an
average of triplicate samples with GAPDH, removing outliers, calcu-
lating expression, and comparing doxycycline-treated cells with
untreated cells. Where ΔCT = GFP−GAPDH, the relative expres-
sion is (−ΔCTdox)

2 ÷ (−ΔCTuntreated)
2 .

Differences in RNA structure between environmental
conditions

We downloaded both PhastCon and PhyloP-scored alignments of
100 vertebrates from the UCSC Table Browser (Karolchik et al.
2004; Siepel et al. 2005). We also downloaded PAR-Clip data for
TPT1 and LCP1 from CLIP-db (Yang et al. 2015). Splice sites
were defined as in the UCSC gtf files for each transcript
(Karolchik et al. 2004). We defined highly similar ex vivo/in vitro re-
gions as those with a correlation higher than 0.75 standard devia-
tions from the mean and dissimilar regions as those with
correlation lower than 0.75 standard deviations from the mean
(40 nt window). We used bootstrapping to determine whether actu-
al versus expected numbers of splice sites, RNA-binding protein
sites, and conserved nucleotides occurred within similar or dissim-
ilar regions of ex vivo/in vitro correlation. Other standard deviation
groupings for highly similar or dissimilar nucleotides did not sub-
stantially change our correlations.
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Supplemental material is available for this article.
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