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Abstract

Historically, immune-based therapies have played a leading role in the treatment of hematologic 

malignancies, with the efficacy of stem cell transplantation largely attributable to donor immunity 

against malignant cells. As new and more targeted immunotherapies have developed, their role in 

the treatment of hematologic malignancies is evolving and expanding. Herein, we discuss 

approaches for antigen discovery and review known and novel tumor antigens in hematological 

malignancies. We further explore the role of established and investigational immunotherapies in 

hematologic malignancies, with a focus on personalization of treatment modalities such as cancer 

vaccines and adoptive cell therapy. Finally, we identify areas of active investigation and 

development. Immunotherapy is at an exciting crossroads for the treatment of hematologic 

malignancies, with further investigation aimed at producing effective, targeted immune therapies 

that maximize anti-tumor effects while minimizing toxicity.
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Introduction

The recent successes of targeting immune checkpoint blockade for the treatment of solid 

tumors have led to the current broad adoption of immune-based therapy across diverse 

malignancies, with immunotherapy now anticipated to remain a steady part of the 

therapeutic armamentarium against cancer. Long before this current age, the effectiveness of 

immune-based therapy for the treatment of hematologic malignancies was widely 
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demonstrated through decades of research and clinical experience. In particular, the curative 

experience of using allogeneic hematopoietic stem cell transplantation (HSCT) to treat 

leukemia demonstrated both the potent impact of the immune system to target malignant 

cells, but also indicated the possibility of developing significant immune-based toxicities. 

Indeed, over 25 years ago, Horowitz and colleagues elegantly showed that the presence of 

donor T cells during bone marrow transplantation for leukemia decreased the probability of 

relapse, providing early support for the use of competent immune elements to combat 

hematologic malignancies1. An immune basis for the anti-leukemic activity of donor 

allografts was further supported by the successful use of post-allograft infusions of 

lymphocytes from the original donor (DLI), which continues to provide an established 

means for effectively treating leukemic relapse after HSCT, often in the absence of further 

cytotoxic agents2,3.

Identifying and characterizing the targets of the anti-leukemia responses induced by 

HSCT/DLI were amongst the earliest efforts to gain understanding of the mechanisms 

underlying these therapeutic responses, and continues to provide a rational path towards 

developing newer therapies. For DLI, although the precise mechanism by which anti-

leukemia control is mediated has remained elusive, collective evidence has supported the 

idea that effective graft-versus-leukemia (GvL) responses relate to coordinated leukemia 

antigen-specific cellular and humoral immunity and to local reversal of CD8+ T cell 

exhaustion within the bone marrow4–11. Thus, the process of antigen discovery has provided 

the means to dissect out the paths to therapeutic benefit. The demonstration of immune 

activity against leukemia from the HSCT/DLI experience has paved the way for the new area 

of cellular adoptive therapy with chimeric antigen receptor (CAR) T cells. At the same time, 

the concepts encompassed by HSCT of combinatorially incorporating immunologic help and 

focusing immune responses on cancer-specific antigens have foreshadowed the current 

active efforts in immune checkpoint blockade (CPB) and cancer vaccines in oncology. 

Characterization of antigen specificities has also provided insight into the mechanistic basis 

of the major immunologic complication of GvL, namely the donor immune responses 

against normal recipient cells, termed graft-versus-host disease (GvHD)12,13. The 

presentation and spectrum of targets of GvHD and its clinical management have likewise 

foreshadowed the severest complications of the new immune checkpoint inhibitors, namely 

autoimmune toxicities. In the current age, maximizing anti-tumor benefit (GvL) effect while 

minimizing toxicity (GvHD) remains an important goal, with these efforts extending to new 

CPB-based efforts14,15.

Herein, we discuss prior and current methods for antigen discovery, including known tumor 

antigens in hematologic malignancies, with commentary on current immune-based therapies. 

In particular, we discuss known and proposed mechanisms for generating neo-antigens in 

hematologic malignancies, with a focus on identifying immunogenic neo-antigens for 

therapeutic targeting.

Identifying Tumor Antigens in Hematologic Malignancies

A major priority in cancer research has been the identification of tumor antigens, with the 

aim of targeting them through immune-based therapies. The methods used to identify such 
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antigens have evolved over decades (Figure 1). Overall, resource intensive cell-based and 

biochemical-based approaches have now led to higher throughput approaches based on 

systematic evaluation of DNA, RNA and protein to search for suitable antigens. Examples of 

some of the tumor antigens identified in acute myeloid leukemia (AML)16–30, chronic 

myeloid leukemia (CML)19,24,31–41, acute lymphoblastic leukemia (ALL)19,30,42,43, chronic 

lymphocytic leukemia (CLL)19,29,30,44–47, and multiple myeloma21,22,27,30,48–52 are shown 

in Figure 2.

Experimental Approaches to Tumor Antigen Identification

The discovery of lineage-defining cell surface markers on human immune cells following 

the development of hybridoma technology54, has been the starting point of much studies of 

human immunity. Although these findings were not specifically geared at discovering tumor 

antigens per se, these defining markers have become highly suitable antigen targets of 

current B and T cell-based immunotherapeutic approaches (described in the next section, 

and noted in Figure 2). For example, malignant B cells were found to express a unique 

variable region on cell surface immunoglobulin (“idiotype”)53, and monoclonal antibodies 

could be subsequently generated to therapeutically target these tumor idiotypes55,56. This 

type of technology was similarly used to identify lineage-defining cell surface markers on 

human immune cells, including CD19 and CD20, expressed on normal and malignant B 

cells57. Now, monoclonal antibodies directed against cell surface markers29,58,59 expressed 

by lymphoma cells have become a standard approach in the treatment of a wide variety of 

lymphomas60,6129,62 (i.e. rituximab, the monoclonal antibody targeting CD2063). More 

recently CD19 surface expression on certain ALL cells has been targeted effectively with 

CAR T cell therapy64,65. Ongoing investigative work to identify novel surface markers will 

likely continue to prove fruitful, as exemplified by the recent identification of restricted 

ROR1 surface expression on B-lineage ALL cells66, and subsequent efforts to 

therapeutically target this surface antigen with CAR T cells67,68.

Many investigative efforts have been focused on the identification of tumor antigens that 

could generate a classical T cell response. The earliest approach to bona fide tumor antigen 

discovery was through T cell-based screening of tumor cDNA expression libraries, 

pioneered by Boon and colleagues in the early 1980s, which led to the identification of the 

MAGE family of melanoma-associated antigens69,70. This time- and labor-intensive 

technique involves the generation of cDNA libraries from tumor cells, transfection into cells 

also expressing the appropriate MHC molecule, and then screening with tumor-reactive T 

cells, with cells transfected with an immunogenic antigen leading to T cell stimulation and 

cytokine release69–76. While this technique was initially successful in identifying melanoma 

antigens, subsequent application of this method has led to the identification of a number of 

leukemia-associated antigens, including minor histocompatibility antigens (mHAs) with 

leukemia-restricted expression77–80. Another early approach involved separating cell 

fractions (using reversed-phase liquid chromatography and gel electrophoresis), 

identification of fractions containing an immunogenic antigen and finally protein sequencing 

of the identified analyte81. Biochemical approaches like this were used to identify the first 

minor histocompatibility antigen HA-1 in hematopoietic cells82. Similarly, testing of HLA-

bound peptides on tumor cells (isolated on the basis of immunoaffinity purification and 
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subsequent elution of HLA molecules83–85), pulsed on antigen-presenting cells against 

autologous lymphocytes, has led to the identification of antigens such as ADIR in multiple 

myeloma86.

Humoral immunity may cooperative with T cell responses as part of a complex immune 

response, as demonstrated by the known protective effects of antibody responses in 

infectious immunity, and also through coordinated B cell and T cell responses identified in 

blood malignancies in settings of effective clinical response. For example, in patients with 

CML who received DLI, generation of high titer antibodies against CML antigens correlated 

with disease remission, suggesting that effective humoral immunity may serve as a positive 

biomarker for response to therapy87. To take advantage of higher serologic responses to 

tumors, Pfreundschuh and colleagues pioneered an alternative system for antigen 

identification, termed serological analysis of recombinant cDNA expression libraries or 

SEREX88–90 in the 1990’s. In this technique, a cDNA library is constructed from tumor 

cells, and transfected into prokaryotic cells. The recombinant proteins are then screened 

using the patient’s serum, allowing for the detection of tumor antigens which generate a 

high-titer IgG antibody response in the patient. The clones that are identified can then have 

their DNA sequenced for identification of the tumor antigen. This technique has detected the 

antigens PRAME in AML91, cTAGE-1 in cutaneous T cell lymphoma92, and the cancer 

testis antigen NY-ESO-193 found in multiple myeloma94, among others. More recently, this 

approach has been extended further with the use of high-density protein microarrays to 

identify antigens in CLL, CML, and multiple myeloma95–97. These serologic-based 

approaches have the advantage of providing a rapid method for identifying a broad array of 

potential tumor antigens, but also have the limitations that these antigens may be byproducts 

of tumor cytolysis but not tumor rejection antigens per se. In addition, this approach may fail 

to detect important tumor antigens that depend on post-translational modifications or 

conformational changes that do not occur in a prokaryote system93,98,99.

More recently, antigens have been identified on the basis of differential gene expression 

profiling. Gene expression analysis seeks to identify differentially or aberrantly expressed 

genes in tumor cells compared to normal tissue99,100. These early studies began with cDNA 

microarray and SAGE (serial analysis of gene expression) platforms. These techniques have 

been used to successfully identify candidate tumor antigens in CLL (including ROR1)101 

and multiple myeloma (such as TEX14, PTPN20A/B, among others)102. While DNA 

microarray analysis typically requires a priori knowledge of transcript sequence, RNA-seq 

(and genome sequencing with computational prediction tools) allows for the identification of 

novel transcripts103–106. However, as gene expression may not correlate with protein 

expression, and does not take into account post-translational modifications that may 

contribute to immunogenicity.

Some of these limitations can be overcome with modern proteomic approaches. These 

approaches typically use mass spectrometry to identify and quantify peptide 

fragments100,107. Modifications to this technique include an initial immunoaffinity 

purification step to isolate HLA molecules and bound peptides, prior to mass spectrometry 

analysis. This technique allows for the identification of HLA-bound peptides, including 

mutated or tumor-specific HLA-bound peptides (such as a BCR-ABL peptide in CML108), 
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which constitute the “immunopeptidome” or “HLA ligandome” for a tumor20,109,110. A 

related approach can enrich for phosphorylated peptides, and analysis of the 

phosphoproteome of a tumor may similarly reveal novel antigens111, and has led to the 

identification of MLL, LPP, and MEF2D, among others112, in leukemias and lymphomas.

Overall, these and other approaches have identified unique tumor antigens, overexpressed or 

tumor-associated antigens, and cancer-testis antigens (which are, under normal 

circumstances, only expressed in an immune privileged environment)113–115 across 

cancers19. Still another approach to tumor antigen discovery has been through “reverse 

immunology” techniques, where peptides are selected and synthesized based on a 

computationally predicted or experimentally determined ability to bind HLA molecules, and 

then are tested for their ability to elicit a T-cell response. In the hematologic 

malignancies113, this strategy has led to the identification of leukemia-specific antigens 

linked to the GVL response, including proteinase 3 (PRTN3)116,117, Wilms’ tumor protein 1 

(WT1)118, and the BCR-ABL fusion peptides35. As a further extension of this approach, 

exome-wide DNA sequencing data has been combined with computational prediction tools 

(such as NetMHC) to effectively predict a class of antigens called neo-antigens arising from 

tumor-specific genomic alterations. These somatic alterations include missense mutations 

(single nucleotide variants, or SNVs), or insertions or deletions leading to frameshift 

mutations (indels) and potential new open reading frames (neo-ORFs)105,106,119,120.

For carcinogen-driven solid malignancies, such as melanoma126–128, bladder cancer129,130, 

and non-small cell lung cancer131,132, where the somatic mutation loads (primarily from 

SNVs and indels) are high, more neoantigens have been predicted, and both spontaneous 

immunity and response to checkpoint blockade inhibition have been associated with 

increased neoantigen load, effective immune response (Figure 3A)133.

In contrast, the somatic mutation burden for most hematologic malignancies is relatively 

low134 and corresponding by lower numbers of neo-antigens have been predicted. Do 

alternative mechanisms for generating neo-antigens exist in hematologic malignancies 

(Figure 3B)? One possible source could be through the generation of neo-antigens through 

novel gene fusions. A canonical example is BCR-ABL, occurring in CML and some cases of 

ALL, which is known to be presented on certain HLA molecules and generate a T cell 

response135–137, previously tested as a target of therapeutic peptide vaccines138–140. Another 

possibility involves abnormal splicing, with retention of introns leading to the generation of 

neo-antigens141,142. Spliceosome mutations are relatively common in AML (and 

myelodysplastic syndrome). Dvinge and colleagues demonstrated that AML cells have a 

higher number of retained introns (and, presumably, neo-antigens) than adjacent normal 

tissue (Figure 3B, adapted from ref. 142). Therefore, even with a relatively low somatic 

mutation load, hematologic malignancies may employ alternate mechanisms for neo-antigen 

generation, and offer immunogenic tumor-specific targets for immune-based therapies.

Immunotherapies for Hematologic Malignancies

For hematologic malignancies, a number of therapeutic approaches are currently under 

investigation, that vary in the degree to which they specifically target an antigen (or 
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antigens), and to which they are “personalized” for each patient’s individual tumor (Figure 

4).

Immune checkpoint blockade (CPB) represents a therapeutic strategy that potently enhance 

immunity in a non-antigen directed fashion nor personalized inhibits naturally occurring 

negative regulators of T cell activation and function, effectively “cutting the brakes” on T 

cells, leading to an antitumor response143–147. There have been several notable examples of 

success with this approach. In Hodgkin’s lymphoma, the PDL1 and PDL2 genes, located on 

chromosome 9p24.1, are frequently amplified, suggesting a possible susceptibility to PD-1 

blockade. Impressively, in a cohort of patients with relapsed or refractory Hodgkin’s 

lymphoma (following autologous stem cell transplant and treatment with the antibody-drug 

conjugated brentuximab vedotin), treatment with the anti-PD-1 antibody nivolumab led to at 

least a partial response in the majority of patients148,149, leading to FDA approval for this 

indication in 2016. For other relapsed or refractory hematologic malignancies (non-

Hodgkin’s lymphoma, acute leukemias, and myelodysplastic syndrome), early trial data for 

nivolumab and for the anti-CTLA4 antibody ipilimumab have shown responses in at least 

some patients150,151. On the other hand, there are notable failures of this approach, including 

in multiple myeloma152. Further studies are needed to understand why certain malignancies 

fail to respond to these therapies. Although CPB is not an antigen-directed approach per se, 

response to checkpoint blockade has been shown to amplify the T cell response to personal 

neoantigens153,154.

In a very different approach, exquisite antigen-specific targeting therapies directed at B and 

T cell responses have been devised for hematologic malignancies. Indeed, frequently used 

“off-the-shelf” antibody-based therapies targeting a specific tumor antigen were pioneered in 

the hematologic malignancies, with Levy and colleagues reporting in 1982 the case of a 

patient with a B cell lymphoma who had complete remission following administration of an 

anti-idiotype antibody56. Later, the anti-CD20 antibody rituximab became the first 

monoclonal antibody approved for cancer therapy, and remains a mainstay of treatment for 

many B cell lymphomas60,63,155,156. Rituximab functions primarily through activation of the 

complement cascade (i.e. complement-dependent cytotoxicity, or CDC) and by antibody-

dependant cell-mediated cytotoxicity (ADCC). More recently approved anti-CD20 

monoclonal antibodies, obinutuzumab and ofatumumab, have modified structures that 

increase programmed cell death (PCD) and ADCC, or increase CDC, respectively157. Other 

monoclonal antibodies targeting different surface antigens have been used a variety of 

hematologic malignancies, such as daratumumab (targeting CD38) in multiple 

myeloma158,159, among others.

The modification of traditional monoclonal antibodies has led to further therapeutic 

opportunities. One such alteration involves the conjugation of a cytotoxic agent, with the 

goal of targeted delivery of the cytotoxic molecule to the target cells. The first antibody-drug 

conjugate (ADC), gemtuzumab ozogamicin, which combined an anti-CD33 (targeting a 

surface antigen on AML cells) with the cytotoxic agent calicheamicin, appeared effective in 

inducing complete remission in AML160, but was later withdrawn from market over 

concerns about toxicity (specifically veno-occlusive disease)161. Currently, the anti-CD30 

ADC brentuximab vedotin is available for relapsed CD30-positive lymphomas162, and more 
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recently the anti-CD22 ADC inotuzumab ozogamicin has shown promising early results in 

relapsed ALL163. An alternative modification uses antibody engineering to combine the 

short peptide binding domains of two antibodies with different specificities, with the goal of 

bringing tumor cells into close proximity with T cells (termed bispecific T cell engagers, or 

BiTEs)164. Blinatumomab, which has specificity for both CD3 (found on T cells) and CD19 

(found on ALL cells and some lymphomas), is the first FDA-approved BiTE, and has 

demonstrated efficacy in relapsed ALL165,166.

On the T cell side, the field of adoptive antigen-specific T cell therapies has evolved greatly. 

Whereas initial adoptive cell therapies involved the ex vivo expansion of tumor-infiltrating 

lymphocytes using interleukin-2 (and thus, did not necessarily have a known target antigen), 

more recent efforts have focused on genetically modifying autologous T cells to express a 

chimeric antigen receptor (CAR) with specificity for a tumor antigen (such as CD19 for 

ALL)167. Current generation CAR constructs link an antigen-specific, extracellular single-

chain variable fragment (ectodomain), with the intracellular signaling component of the T 

cell receptor CD3ζ (endodomain) and at least one stimulation domain (such as CD28 or 

4-1BB) 58,59. These constructs have shown great promise in the treatment of relapsed and 

refractory CLL168, ALL64,65, and multiple myeloma169. While this new therapy has 

generated considerable excitement, it has also had notable associated toxicity, and future 

generations of CAR constructs are being devised that attempt to balance efficacy and 

adverse effects170–172.

Cancer vaccines provide an opportunity to focus the immune response in an antigen-specific 

fashion. Whole tumor cell vaccines represent a therapy that is personalized (by using the 

patient’s individual tumor as a source of antigen), though the precise target antigen is 

typically not known. The aim of these therapies is to stimulate active immunity against 

tumor cells through presentation of tumor antigens by antigen presenting cells (APCs) and 

activation of the native immunity. In one therapeutic approach, autologous tumor cells are 

lethally irradiated and then either genetically engineered to secrete granulocyte-macrophage 

colony-stimulating factor (GM-CSF) or mixed with other GM-CSF secreting cells, and then 

re-administered to the patient, with the goal of recruiting APCs. This approach has been 

tested in AML and CLL, with some evidence of immunologic (and potentially clinical) 

responses173,174. An alternative whole tumor vaccine approaches involves the fusion of 

tumor cells with autologous dendritic cells (DCs). This DC/tumor cell fusion approach is 

under investigation for multiple myeloma175,176, and has already shown some promising 

results in AML177–179.

Neo-antigen directed therapeutic vaccines represent a truly personalized, antigen-specific 

therapeutic strategy. In this approach, targets of vaccination are identified on the basis of 

individual tumor-specific DNA sequence analysis of somatic mutations predicted to generate 

peptides that can bond to personal HLA molecules. As vaccines, this approach is anticipated 

to expand the breadth and repertoire of tumor-specific T cells that can participate in the anti-

tumor immune response. This approach, while promising, is still in the early phases of 

investigation, with multiple clinical trials ongoing (see NCT00683670103,180, 

NCT01970358181, and NCT02035956182 in melanoma). Combination of this approach with 

CPB is expected to synergize together, and active testing of this strategy is in progress. 
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Additional open questions include: How many neo-peptides must be administered to ensure 

an immune response? What immune adjuvant should be used? What is the optimal dosing 

and scheduling of these therapies? What toxicities will we observe, and will they be 

limiting? With multiple clinical trials ongoing, we will hopefully begin to answer some of 

these important questions, and be able to effectively direct a patient’s immune response to 

maximize therapeutic benefit and minimize adverse outcomes.
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Figure 1. Evolution in the Methods of Tumor of Antigen Discovery
Historical and contemporary methods for tumor antigen identification, identifying T-cell 

based (green), serology-based (orange), gene expression based (blue) and biochemical/

proteomic-based (purple) approaches.
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Figure 2. Examples of Tumor Antigens in Hematologic Malignancies
A selection (not exhaustive) of tumor antigens and cell surface markers in a variety of 

hematologic malignancies.
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Figure 3. Potential sources of Neo-antigens in the Hematologic Malignancies
(A) Solid malignancies responsive to immunotherapies tend to have a higher mutational 

load, with more missense mutations and insertions/deletions, leading to a high number of 

neo-antigens. (B) Hematologic malignancies tend to have a lower number of somatic 

mutations, yet are often still able to generate immune responses. Other possible mechanisms 

for generating neo-antigens in the setting of low somatic mutation burden are gene fusions 

and alterations in RNA splicing leading to retain introns. Graph of somatic mutation number 

adapted from ref. 134.
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Figure 4. Immune based therapies in the Hematologic Malignancies vary in degree of antigen-
targeting personalization
Immunotherapeutic strategies for hematologic malignancies can be categorized based on 

whether they are personalized for an individual patient/tumor (bottoms row), and whether 

they target antigen(s) are known/specified (right column). In the top left panel, immune 

checkpoint blockade with an anti-PD-1 antibody is depicted. Typically, tumor cells may 

express a ligand, PD-L1, which binds PD-1 on T cells and ultimately inhibits T cell effector 

function. Anti-PD-1 antibodies inhibit this effect, leading to T cell activation and effective 

tumor cell killing. This strategy is not personalized for an individual patient, and the specific 

target tumor antigen is not known. In the bottom left panel, whole tumor vaccines are 

depicted, including lethally irradiated tumor cells engineered to secrete GM-CSF to attract 

APCs (GVAX, left image), and DC/tumor cell fusions, which also leads to antigen 

presentation and activation of the native immune system. These strategies require 

personalized products, but the target tumor antigen is not known. In the top right panel, a 

variety of monoclonal antibody therapies are depicted, including conventional monoclonal 

antibody therapy against CD20, antibody-drug conjugate targeted against CD33-expressing 

cells, and the bispecific T cell engages blinatumomab which transiently cross-links T cells 

with CD19 expressing ALL cells. These strategies target specific antigens, but are not 

personalized for the individual patient. In the top right panel, CD19-targeting CAR-T cell 

therapy (bottom) and neo-antigen therapeutic peptide vaccine (top) strategies are depicted. 
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The therapeutic approaches require personalization for the individual patient/tumor, and are 

targeted against known tumor antigen(s).
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