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Abstract

Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river 

basins of India, are assessed to characterize their spatial and temporal variability. Groundwater 

storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual 

maxima observed during the monsoon season and minima during pre-monsoon season. Spatial 

variability of GWS anomalies increases with the extent of measurements, following the power law 

relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent). In addition, 

the impact of well spacing on spatial variability and the power law relationship is investigated. We 

found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted 

average over all wells. The absolute error corresponding to each basin grows with increasing scale, 

i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very 

large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has 

been found to vary with climatic conditions. To our knowledge, this is the first study of the effects 

of well spacing on groundwater spatial variability. The results may be useful for interpreting large 

scale groundwater variations from unevenly spaced or sparse groundwater well observations or for 

siting and prioritizing wells in a network for groundwater management. The output of this study 

could be used to maintain a cost effective groundwater monitoring network in the study region and 

the approach can also be used in other parts of the globe.
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Groundwater is a vital fresh water resource that is vulnerable to climate change and 

unsustainable rates of extraction (e.g., Wada et al., 2010; Famiglietti and Rodell, 2013; 

Taylor et al., 2013). Globally, about 38% of the irrigated land area are fed using groundwater 

resources (Siebert et al., 2010). Recent studies have detected rapid depletion of groundwater 

resources in many parts of the world using satellite observations (Rodell et al., 2009; Voss et 

al., 2013; Richie et al., 2015).

Spatial variability of soil moisture has been extensively studied (Famiglietti et al., 2008; 

Brocca et al., 2012; Li and Rodell, 2013) and has been found to increase with increasing 

extent (the length scale of the major river basins within the study region) (Western and 

Blösch, 1999), following the power law relationship. Few studies have been conducted on 

groundwater spatial variability owing to the scarcity of available, high quality measurement 

time-series at regional scales. Inadequate information on sub-surface properties such as 

specific yield, which is required to convert water table measurements to water storage, also 

complicates such analyses. Li et al. (2015) studied groundwater storage variability using 

data from 181 monitoring wells in the central and northeastern U.S and found that the spatial 

variability of groundwater storage anomalies follow the power law relationship. However, 

observation wells in that study were sparse in some areas and sampled only at a small range 

of climate conditions.

Studying groundwater variability across scales may benefit efforts to evaluate and interpret 

remote sensing based estimates and to improve numerical models, and also to better predict 

groundwater responses to climate change and anthropogenic impacts (Taylor et al., 2013). 

Further, groundwater variability scaling information could be used to improve comparisons 

between point-scale and remote sensing estimates. The Gravity Recovery and Climate 

Experiment (GRACE) satellite observations have proven useful for evaluating groundwater 

variations and trends at regional scales (e.g., Rodell et al., 2007). GRACE data assimilation 

enables spatial, temporal, and vertical partitioning of GRACE TWS observations using an 

ensemble Kalman smoother approach (Zaitchik et al., 2008), but it is limited by the fidelity 

of the land surface model and the accuracy of the meteorological forcing inputs. In 

particular, models currently used for GRACE data assimilation, are representing 

hydrogeological processes in a rudimentary fashion and do not account for human 

interactions. Improved understanding of groundwater dynamics and how they vary with 

scale may be useful for interpreting large scale groundwater variations from unevenly spaced 

or sparse groundwater well observations, for siting and prioritizing wells in a network for 

groundwater management, and for identifying environmental controls on groundwater (Li et 

al., 2015).

In this study, we examined temporal and spatial groundwater storage anomaly variability 

within 22 major river basins in India. A dense monitoring network of over 3900 observation 

wells was used to study the dependency of groundwater storage variability on both extent 

and spacing, the two components of the scale triplet (Western and Blösch, 1999). Extent 
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describes the spatial scale of a study area and spacing refers to the distance between the two 

observations (Western and Blösch, 1999). To our knowledge, this is the first study of the 

effects of well spacing on groundwater spatial variability.

2 Data and Methods

2.1 Study area

India is comprised of 22 major river basins (Figure 1 and Table 1), based on India-WRIS 

(2012). The Ganges river basin (basin 2a) is the largest, with an area of 808,334 km2, and 

the basin 16 is the smallest with an area of 10,345 km2 (Table 1). The hydrogeological 

settings of the river-basins are highly heterogeneous. For example, major parts of the Ganges 

basin has comprised of highly conducive, fluvial sediments, while, some parts of southern 

and western Ganges basin, has comprised of less conducive, volcanic and crystalline 

materials (Mukherjee et al., 2015; Bhanja et al., 2016). Annual precipitation rate (averaged 

over 1962 and 2011) in the entire country is 1083 mm/year (WBA, 2015) but varies 

considerably, with extremely low precipitation (<150 mm/year) observed in the western part 

of the country, and high precipitation (>2500 mm/year) in the east (Mukherjee et al., 2015). 

At the basin scale, the maximum and minimum precipitation occur in the basin 2c (2759 

mm/year) and the Indus basin (basin 1; 545 mm/year), respectively.

2.2 Groundwater level measurement

Seasonal (during January, May, August and November, respectively) groundwater level 

measurement data were obtained from a dense network of groundwater observation wells 

(>13,000) maintained by India’s Central Ground Water Board (CGWB) between 2005 and 

2013. More than 85% of these wells are located in unconfined aquifers (CGWB, 2014). The 

quarterly water level measurements are representing groundwater level scenario in different 

season such as, measurements in January and November represent post-monsoon water 

level, that in May represents pre-monsoon and measurement in August represent monsoon-

time water level. 3907 wells were selected for this study based on their temporal continuity 

and seasonality.

The sign of groundwater level depths are reversed in order to represent groundwater level. 

Subsequently; groundwater level anomalies (GWLA) were calculated after removing long-

term mean values from its individual values in each of the selected wells. In order to get time 

series of groundwater storage (GWS) anomaly, GWLA values were multiplied by specific 

yield. Aquifer specific yield (Sy) values were obtained from the CGWB database (CGWB, 

2012a), which was constructed from long term pumping test results, and assigned to wells 

based on aquifer characteristics (Mukherjee et al., 2015) and other available information (i.e. 

map of aquifer systems of India) from CGWB (CGWB, 2012b). The mean Sy values ranged 

from 0.02 and 0.13 within the study area. The average depth to water in all the basins varies 

from 2 to 9 m below ground surface. The deepest groundwater table is in the Indus basin 

(basin 1), where lowest precipitation rate has been observed, and the shallowest is in basin 

2c, where precipitation rate is found to be the highest within all the basins (Table 1).
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Since the observational network is dense, we designed three additional sampling schemes to 

study how well spacing may affect groundwater spatial variability and also to study their 

scale dependency. Figure 2 shows the well locations that are used at the 0.25 degree, 0.5 

degree, and 1 degree resolution, respectively. The well closest to each grid center was 

selected and the rest are discarded. In between three spatial resolutions, well spacing is 

lowest in 0.25 degree and highest in 1 degree scale. For example, considering all the wells 

used in our study at all the three spatial resolutions, and total geographical area, well spacing 

is 1 well per 1671 km2 (0.25 degree), 1 well per 4026 km2, or 1 well per 12253 km2 on 

average (Figure 2).

2.3 Precipitation data

We used precipitation data from the archives of the Tropical Rainfall Measuring Mission 

(TRMM), a joint satellite mission of NASA and JAXA (Kummerow et al., 2000). In 

particular, the monthly gridded (0.250 × 0.250) 3B43 product, version 7, was used here. This 

product combines satellite retrievals with rain gauge data from Global Precipitation 

Climatology Centre (GPCC). To be consistent with groundwater measurements, seasonal 

precipitation was calculated for the four time-periods: December-January, February-May, 

June-August and September–November.

2.4 Scale dependency

Information on scale dependency can be useful for designing effective ground-based 

monitoring networks and for upscaling point measurements. Earlier studies on soil moisture 

(Famiglietti et al., 2008; Li and Rodell, 2013) and groundwater (Li et al., 2015), have shown 

that spatial variability increases as a power function of extent, which can be described as a 

linear function when log transformation is applied (Li et al., 2015):

(1)

where, σy is the spatial variability at extent λ, H and C are the slope and intercept of the 

linear relationship between log-(spatial variability) and log-extent, respectively.

The power law relationship can be used to estimate sampling sizes for desired accuracies in 

a region (river basin here) using this equation (Wang et al., 2008; Li et al., 2015):

(2)

where, N is the number of samples, σ is the spatial variability, d is the desired accuracy 

(absolute error), t21−(α/2),N−1 is the Student's t-distribution at the significance level α (5% 

used here). Since N is unknown initially, we used an iterative method to estimate N (Wang et 

al., 2008).

Combining equations 1 and 2, we obtain the following equation to calculate the samples 

needed for any region:
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(2)

3 Results

3.1 Spatial mean and variability

Time-series of groundwater storage anomalies, spatial variability (represented by spatial 

standard deviation) and precipitation are shown in Figure 3. Major parts of the northern and 

central India were subjected to drought in 2009–10 (NCC, 2013), consequently, GWS 

anomalies have also exhibited lowest values in 2009–10 (e.g., in basins 1, 2a, 2b, 3, 6, 7, 8, 

10, 11, 12, and 20). India, the country as a whole (except the southern region), receives the 

maximum precipitation during the monsoon season (June to September) (NCC, 2013). On 

the other hand, the monsoon season extends to October, sometimes even to November, in the 

southern part of the country (NCC, 2013). The characteristics of temporal pattern of 

precipitation are also reflected in the seasonal GWS anomalies (Figure 3). Maximum GWS 

anomalies are observed during the monsoon period in basins 1, 2a, 2b, 2c, 6, 7, 8, 10, 11, 12, 

13, 14, and 20, and immediately after the monsoon in basins 3, 4, 5, 9, 15, 16, and 17 that 

are located in the southern India. GWS minima are observed during the pre-monsoon period 

in all the basins.

Spatial variability of GWS anomalies, in terms of standard deviation, is shown in Figure 3. 

The relationship between spatial variability and groundwater storage anomaly is further 

investigated through Figure 4. Spatial variability show increasing trend with increasing mean 

GWS anomaly in most of the basins, 1, 2a, 2b, 2c, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15 and 20, 

respectively. We observe an upward concave relationship between spatial variability and 

mean GWS anomaly in the above mentioned basins (Figure 4).

3.2 Scale dependency

Figure 5a shows the relationship between log-(spatial variability) and log-extent for all the 

basins. Here the extent of each basin was estimated as the square root of the basin area 

(Table 1) following Famiglietti et al. (2008) and Li et al. (2015). Here, spatial variability was 

obtained by taking mean of all standard deviations of all seasons. Log-(spatial variability) 

increases linearly (significant at the 0.1 level) with the log-(extent). Some of the data points 

are located far away from the best fitted line. This might be a result of dynamic variability of 

GWS anomaly across the basins, heterogeneous aquifer hydrogeological properties, or 

heterogeneous patterns of groundwater usage in different basins. Influence of dynamic range 

differences are eliminated by computing normalized standard deviation as described by Li et 

al. (2015) (Figure 5a). Spatial variability was standardized using temporal standard 

deviations over all wells. However, we found insignificant increase with near-zero slope 

(0.02) in the log-log graph (Figure 5a).

The linear relationship between log-(spatial variability of specific yield) and log-extent 

(Figure 5b) is insignificant. However, log (spatial variability of precipitation) increases 

linearly (significant with p value < 0.05) with log-extent (Figure 5c). These combine results 
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suggest that GWS spatial variability is influenced more by climate than by aquifer 

properties.

Equation 2 assumes data are normally distributed, which can be tested using the statistical 

properties of the data. Figure 6 shows distribution of GWS anomaly within 4 largest basins, 

GWS anomaly follows similar distribution in other basins. The thickness of the box 

indicates the inter-quartile range (25 to 75th percentile) of the data; horizontal line within the 

box specify median values; black filled circles inside the box shows mean values; upper and 

lower limits of whisker indicate ±1 σ deviation from the mean; top and down black filled 

stars showing 99% and 1% data, respectively. In general, we observe characteristics of 

normal distribution in GWS anomaly in all the basins: mean and median GWS anomaly 

values closely follow each other (Figure 6); the inter-quartile range (50% of the data lies 

between 25% and 75%) is well within 1-σ values (Figure 6). The solutions of Equation (3), 

for different levels of accuracy, are plotted in Figure 7. The number of wells increase with 

increasing extent for an absolute error level. The number of wells used within each studied 

basin vs. their extent are also plotted. It is found that the absolute error level is smallest (less 

than 0.5 cm) in basins 2a and 4, which contains comparatively higher number of wells, and 

largest (more than 2.0 cm) in basin 2c, which contains only six wells. 9 basins (basin 2a, 2b, 

3, 4, 5, 8, 14, 18, and 20) exhibit absolute error levels less than 1 cm. Absolute error levels 

of the basins studied here were lower than those of the regions studied by Li et al. (2015) 

due to the greater density of CGWB’s Indian groundwater level network.

4 Discussions

4.1 Spatial variability in groundwater storage anomaly

Spatial variability of GWS anomalies can be attributed to several factors including non-

uniformities of precipitation, groundwater withdrawals, hydrogeological properties, and 

groundwater discharge. Temporal variability of GWS anomalies is linked with seasonal 

precipitation and subsequent hydrological processes (Li et al., 2015). We observed an 

upward concave relationship between spatial variability and mean GWS anomaly (also 

observed by Li et al., 2015), unlike the upward convex relationship observed in soil-moisture 

studies (Owe et al., 1982; Famiglietti et al., 2008; Rosenbaum et al., 2012). Although soil 

physical processes control the convexity of the standard deviation vs. mean soil moisture 

curve, the lower and upper bounds of the curve are entirely dependent upon the saturation 

capacity of the soil, which will show less variation once it reaches its limit (Li and Rodell, 

2013). On the other hand, unconfined groundwater storage rarely has any hard limits and 

hence, GWS variability is not restricted to any boundary conditions (Li et al., 2015). As the 

magnitude of GWS is highly variable in space, spatial variability is more likely to be higher 

during GWS extremes (Li et al., 2015).

The upward concave relationship is less obvious or non-existent in certain basins (e.g., 5, 17, 

19). In those basins the mean GWS anomaly rarely exceeded a magnitude of 5 cm, which is 

when the increase in standard deviation became evident in other basins. These smaller 

anomalies may be explained by the fact that, in southern India, moderate rainfall occurs 

during the post-monsoon period unlike the other parts of the country. As a result, GWS is 

less variable throughout the year in southern India.
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Observation of very small insignificant slope in the log-log graph of normalized standard 

deviation vs. extent, suggesting climate-related temporal variability of groundwater is the 

dominant factor controlling differences in spatial variability in India. Normalized standard 

deviation reflects the difference in the seasonal variation of groundwater storage anomalies 

at different wells. As the data were sampled at only four times a year, the temporal variation 

of the seasonality was not well captured. On the other hand, groundwater storage may 

indeed vary in strong synchronization due to the impact of monsoons in most regions. 

Groundwater spatial variability in India may be strongly influenced by climate (such as 

annual precipitation) than by other factors such as natural groundwater discharge etc.

4.2 Effect of well spacing across different spatial scales

To investigate the effect of different sampling spacing on the scale dependency, we plotted 

the logarithm of spatial variability against logarithm of extent for the three sampling 

schemes mentioned earlier (Figure 8). Statistically significant (p values < 0.05) increasing 

linear relationship has been observed between logarithm of spatial variability against 

logarithm of extent similar to that derived based on all data (all the wells present within each 

basin are used, no spatial scaling are done). The slope of linear relationship increases with 

decreasing well spacing (Table 2), similar to observation of Li and Rodell (2013) for soil 

moisture observations. Thus, spatial variability increases rapidly with increasing extent for 

increasing well spacing. Hence, the effect of change in extent on spatial variability has been 

reduced with increasing spatial scales, as we observed very large change in spatial variability 

for smaller change in extent at larger well spacing i.e. data at 1 degree-scale (Figure 8c).

Slope and intercept values (Table 2) at 0.25, 0.5 and 1 degree-scale, were further used in 

Equation (3), subsequently, the solutions are plotted in Figure 9. The number of 

representative wells required to maintain a good groundwater monitoring network has been 

increasing with increasing spatial extent in a particular absolute error level for all the spatial 

scales. The number of wells (Table 1) used in different spatial scale for each basin against 

their extent are also plotted in Figure 9. The number of wells are decreasing with increasing 

spatial scale i.e. between 0.25 and 1 degree; highest number of wells were used in 0.25 

degree-scale comparing all the scales. Slope and intercept obtained through Figure 9, are 

mainly used for calculation of absolute error levels using Equation (3). The absolute errors 

at 0.25 degree-scale closely matches with that for all data (Figure 7 and 9a). Similar to 

absolute errors for all data, only one basin (basin 2c) exhibit more than 2 cm absolute error, 

and 8 basins (out of 9 basins for all data) show errors less than 1 cm. Absolute error level 

increases at 0.5 degree-scale (absolute error level higher than 2 cm in 6 basins) and showing 

highest values at 1 degree-scale (absolute error level higher than 2 cm in 12 basins) (Figure 

9b and 9c). Only one basin (basin 4) exhibit absolute error level less than 1.5 cm and 9 other 

basins exhibit less than 2 cm absolute error levels at 1 degree-scale (Figure 9c). We found an 

increase in absolute error level with increasing spatial scales, i.e., from 0.25 degree to 1 

degree.

Among the three different spatial scales (e.g., 0.25 degree, 0.5 degree and 1 degree-scale), 

mean GWS anomaly at 0.25 degree spatial scale matches closely with mean values in all 

wells and the distant matches has been observed at 1 degree-scale. The absolute error in 
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GWS anomaly also increases with increasing spatial scales (Figure 7 and 9). Although the 

desired accuracy level depends on end-user's application, we recommend using finest 

available spatial-scale for validating satellite retrievals, model validation etc.

4.3 Designing cost-effective groundwater monitoring network

The output of this study can be used to design a cost-effective groundwater monitoring 

network within the study area. The end-user could pre-select the optimum error level and use 

our data to compute the minimum number of wells required to reach the accuracy level in 

the study area. For example, assuming the end-user want to keep the absolute error level 

within 2 cm, they could only select the wells used for 1 degree well spacing (Figure 2c) in 

basins, 2a, 2b, 3, 4, 8, 12, 13, 14, 18, and 20 (Figure 9c). This will largely reduce the 

maintenance cost for establishing a well-defined groundwater monitoring network. This 

approach could also be applied in different parts of the globe.

5 Conclusions

We used seasonal groundwater level measurements at 3907 wells located in 22 major river 

basins in India to study spatio-temporal variability of groundwater storage (GWS) 

anomalies. Three distinct spatial scales were used to examine the effects of well spacing on 

the mean and variability of GWS anomalies. Our key findings include:

1. Spatial variability of groundwater storage anomalies are influenced by well 

spacing.

2. Spatial variability of GWS anomalies increases with increasing spatial extent at 

all spatial scales i.e. 0.25, 0.5 and 1 degree.

3. The output of this study could be used to design cost-effective groundwater 

monitoring network in the study region.

4. A positive linear relationship does exist between the logarithm of GWS anomaly 

and the logarithm of spatial extent.

5. Spatial variability of GWS anomaly increases during the wettest (monsoon) and 

driest (pre-monsoon) periods of the year in most of the regions.

Our study indicates that the uncertainty in regional GWS anomaly estimates based on data 

from the CGWB’s well network is relatively low, owing to the high density of observations 

in that network. Results of this study confirm previously inferred scaling behaviors of 

groundwater storage in the central and eastern U.S. (Li et al., 2015), demonstrating that 

those behaviors hold true in a region with a different climate and hydrogeology and with a 

vastly increased sampling density. These data could also be useful for validating satellite-

based and model-based estimates of groundwater variability in India and other regions with 

similar climatic and hydrogeologic features.
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Highlights

• 3907 in-situ groundwater observation wells are used to compute spatial 

variability

• First study of spatial variability of groundwater storage affected by well 

spacing

• Spatial variability of groundwater storage increases with increasing spatial 

extent

• The output could be used to design cost-effective groundwater monitoring 

network

• Log-linear relationship exists between groundwater spatial variability and 

extent
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Figure 1. 
Boundaries of 22 river basins (names are given in Table 1) within India and locations of 

groundwater wells used in this study (indicated by small filled circles)
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Figure 2. 
Well locations used at (a) 0.25 degree, (b) 0.5 degree and (c) 1 degree resolution
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Figure 3. 
Time series of seasonal mean GWS anomaly (cm, blue filled circles), spatial variability (cm, 

standard deviation, black filled squares) and seasonal precipitation (mm, columns) for all the 

basins. The X-axis represents the seasons from 2005 to 2013 (four for each year)
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Figure 4. 
Scatter plots of spatial variability (standard deviation) vs. mean GWS anomaly for all the 

basins
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Figure 5. 
Logarithm of spatial mean spatial variability (standard deviation) of (a) GWS anomaly, (b) 

specific yield and (c) precipitation, plotted against logarithm of spatial mean extent for all 

the basins

Bhanja et al. Page 18

J Hydrol (Amst). Author manuscript; available in PMC 2018 March 16.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 6. 
Box-Whisker plot of GWS anomaly for all the seasons at 4 largest basins. The extent of the 

box indicates the inter-quartile range (25 to 75th percentile) of the data; horizontal line 

within the box specify median values; black filled circles inside the box show mean values; 

upper and lower limits of whisker indicate ±1 σ deviation from the mean; top and down 

black filled stars showing 99% and 1% data, respectively
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Figure 7. 
Number of wells required to represent the spatial mean at four different absolute error level 

as a function of their extent. The number within the squares indicating basin numbers (Table 

1) corresponding to their extent and number of wells
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Figure 8. 
Logarithm of spatial mean spatial variability (standard deviation) of GWS anomaly plotted 

against logarithm of spatial mean extent for all the basins at (a) 0.25 degree, (b) 0.5 degree 

and (c) 1 degree-scale
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Figure 9. 
Number of wells required to represent the spatial mean at four different absolute error level 

as a function of their extent at (a) 0.25 degree, (b) 0.5 degree and (c) 1 degree-scale. The 

number within the squares indicating basin numbers (Table 1) corresponding to their extent 

and number of wells
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Table 2

Slope and intercept values obtained from fitting the log-extent and log-(spatial variability) following equation 

1. All the data are statistically significant at 10% level

Slope (H) Intercept (C)

All data 0.16 0.86

0.25 d 0.22 0.48

0.5 d 0.52 −1.33

1 d 0.72 −2.67
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