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Abstract

The reported narrow genetic base of cultivated potato (Solanum tuberosum) can be

expanded by the introgression of many related species with large genetic diversity. The

analysis of the genetic structure of a potato population is important to broaden the genetic

base of breeding programs by the identification of different genetic pools. A panel composed

by 231 diverse genotypes was characterized using single nucleotide polymorphism (SNP)

markers of the Illumina Infinium Potato SNP Array V2 to identify population structure and

assess genetic diversity using discriminant analysis of principal components (DAPC) and

pedigree analysis. Results revealed the presence of five clusters within the populations dif-

ferentiated principally by ploidy, taxonomy, origin and breeding program. The information

obtained in this work could be readily used as a guide for parental introduction in new breed-

ing programs that want to maximize variability by combination of contrasting variability

sources such as those presented here.

Introduction

Modern potato cultivars were developed from a few clones brought from the American conti-

nent to Europe in the XVI century. After the Irish potato famine in XIX, its genetic base was

drastically narrowed [1]. To recover genetic diversity, cross-breeding of potato and systematic

utilization of related wild species has been made after the late blight epidemics [2]. These spe-

cies have great variability for many desirable agronomic characters [1, 3–7]. However, many

studies suggest that potato genetic base is still narrow [8; 9]

The genetic characterization of available potato populations allows us to assess their diver-

sity and structure and to identify the genotypes that could work as a source of new alleles in

potato breeding programs. The aim of these programs has been to incorporate resistance to

biotic and abiotic stresses, as well as to develop better processing qualities and combine these

characters with high yield and commercial quality [10], using conventional or molecular
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techniques. More specifically, molecular markers have been used to evaluate the genetic diver-

sity of potatoes in many populations [11–15].

The genetic structure of a population can be assessed by several methods using molecular

markers information, such as STRUCTURE [16], EIGENSTRAT [17], kinship [18], discrimi-

nant analysis of principal components (DAPC) [19], methods based on genetic distances [20–

21], among others. Particularly, DAPC analysis is a multivariate method used to identify and

describe clusters of genetically related individuals. Genetic variation is partitioned into two

components: variation between groups and within groups, and it maximizes the former. Lin-

ear discriminants are linear combinations of alleles which best separate the clusters. Alleles

that most contribute to this discrimination are therefore those that are the most markedly dif-

ferent across groups. The contributions of alleles to the groupings identified by DAPC can

allow identifying regions of the genome driving the genetic divergence among groups [19].

Information generated from genealogy in breeding programs is generally not used for the

assessment of genetic diversity and characterization of populations. However, it is very valu-

able as it complements the data provided by the molecular markers and helps to understand

the genetic base and history of a population.

The objective of this work was to provide a methodology based on a molecular characteriza-

tion using DAPC and a pedigree characterization to assess the genetic structure and diversity

of a potato population made of genotypes of diverse origins.

Materials and methods

Plant material

The population consisted of 231 genotypes from the germplasm collection of EEA INTA Bal-

carce potato breeding program, selected to represent different genetic sources of diversity. It

contains potato varieties from China, Uruguay, Chile, Peru, United States, Netherlands, Brazil,

Bolivia, United Kingdom, Argentina and advanced clones from the breeding programs of the

International Potato Center (CIP Perú) and of the National Institute of Agricultural Technol-

ogy (INTA Balcarce). It also included some varieties from Group Andigena (Solanum tubero-
sum Gp. Andigena), wild species (Solanum chacoense Bitt. and Solanum tarijense Hawkes (syn

Solanum berthaultii)), and a Solanum tuberosum var. Calén x Solanum gourlayii hybrid and

their reciprocal (S1 Table).

DNA extraction

DNA was extracted from 100 mg of fresh young leaf tissue of each genotype grown under

greenhouse conditions or under field conditions. The QIAGEN Plant mini kit 1 (Qiagen,

Valencia, CA, USA) was used for the extraction. DNA quality and quantity of each sample was

determined with electrophoresis in 1% (w/v) agarose gels and spectrophotometry. Final DNA

concentration was determined using PicoGreen quantitation (Eugene, Oregon).

Molecular markers

The population was genotyped with the Illumina Infinium Potato SNP Array V2 (12,808

SNPs, including the markers from SolCAP Infinium 8303 Potato SNP Array) [22–23]. Illu-

mina GenomeStudio software (Illumina, San Diego, CA) was used for initial sample quality

assessment. Tetraploid (5-cluster AAAA, AAAB, AABB, ABBB, BBBB) genotyping was based

on theta values, using a custom script from the SolCAP project reported in [14]. Following

5-cluster genotype calling and filtering, minor allele frequencies (MAF) was calculated using

adegenet package (1.4–2 version) [24] for R software (3.4.0 version) [25], and only genotypes
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with MAF greater than 0.05 were retained. Finally, 4,859 high quality markers were used for

analysis.

Population structure and genetic diversity

The population structure was analyzed by a DAPC [20] using the adegenet package [24] for R

software [25]. The find.clusters function was used to detect the number of clusters in the popu-

lation. It uses K-means clustering which decomposes the total variance of a variable into

between-group and within-group components. The best number of subpopulations has the

lowest associated Bayesian Information Criterion (BIC). A cross validation function (Xval.
dapc) was used to confirm the correct number of PC to be retained. In this analysis, the data is

divided into two sets: a training set (90% of the data) and a validation set (10% of the data) The

member of each group are selected by stratified random sampling, which ensures that at least

one member of each group or population in the original data is represented in both training

and validation sets. DAPC is carried out on the training set with variable numbers of PCs

retained, and the degree to which the analysis is able to accurately predict the group member-

ship of excluded individuals (those in the validation set) is used to identify the optimal number

of PCs to retain. At each level of PC retention, the sampling and DAPC procedures are

repeated many times [26]. The best number of PCs that should be retained is associated with

the lowest root mean square error. The resultant clusters were plotted in a scatterplot of the

first and second linear discriminants of DAPC. The analysis was repeated into the largest

groups to detect if they were also structured. SNPZIP analysis (adegenet) uses DAPC analysis

to identify alleles with the largest contributions to form the linear discriminants and assign the

genotypes to the clusters, in order to know the population structure. To confirm the allocation

of individuals to clusters by DAPC analysis, a Nei genetic distance matrix [27] was calculated

with the StAMMP package of R software using the SNPs information. Then the resulting

matrix was plotted as a dendrogram using the ward method with the InfoStat software [28].

The analysis of molecular variance (AMOVA), the coefficient of genetic differentiation

among populations (Fst) and a subpopulation inbreeding coefficient (Fis) were calculated using

GenAlEx software (6.5 version) [29] with 999 permutations. Expected and observed heterozygos-

ity (He, Ho) and Percentage of polymorphic loci were also calculated using GenAlEx software.

Pedigree information

A database of pedigree information of the potato lines and varieties was compiled and presented

in a tree using Peditree 1 software [30]. Information was taken from INTA Balcarce potato breed-

ing program, CIP breeding program and from the Potato pedigree database (Wageningen) public

database [31]. The number of generations considered was the maximum available for each clone.

Inbreeding and co-ancestry coefficients were calculated using Peditree 1 software and were used

to calculate the Coefficient of Relationship (CR) [32] among the individuals of each group.

Maximum average contribution (MAC) was calculated as the frequency of the contribution

of each parent to each offspring according to the level in the genealogy, in relation to the fre-

quency of occurrence of each parent in the genotypes that make up each subpopulation. A

maximum of five generations of ancestors was used for this analysis.

Results

Population structure and genetic diversity

The number of detected clusters was five, in coincidence with the lowest BIC value using find.

clusters function (Fig A in S1 Fig). DAPC analysis was carried out using the detected number
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of clusters (Fig 1 and S2 Table). Ten first PCs (24,7% of variance conserved) of PCA and four

discriminant eigenvalues were retained. These values were confirmed by a cross validation

analysis (Fig B in S1 Fig). Membership coefficients of the genotypes to each group were

between 0.721 and 1, thus confirming that there was low admixture and that the population

was structured. Exceptions to these values were clone B 99.558.1, clone CIP393595.1 and Ken-

nebec whose values were 0.620, 0.616 and 0.543 respectively.

In Fig 1, Linear Discriminant 1 (LD 1) separated among the Solanum species (Groups 1, 2

and 4 = S. tuberosum Gp. Tuberosum; Group 3 = S. tuberosum Gp. Andigena; Group 5 = S.

chacoense and S. tarijense, diploid species), and Linear Discriminant 2 (LD 2) separated among

S. tuberosum groups (1, 2 and 4). Groups 2, 3 and 5 were roughly at the same level with respect

to LD 2, and groups 1 and 4 were above and below them, respectively. DAPC analysis of sub-

populations 1 and 2, separated each of them into three groups (S3 Table and Fig 2). However,

in subpopulation 1 (Fig 2A), one of the subgroups is more distant from the others with respect

to LD1. The coefficients of clones in Subpopulation 1 were between 0,764 and 1 but the excep-

tions were genotypes Araucana INTA and B 07.537.4 with 0.666 and 0.644, respectively. How-

ever, Subpopulation 2 coefficients of all individuals were between 0.963 and 1. The genotypes

Coloradita and Rosada known as S. tuberosum Gp. Andigena genotypes and Oka 5880.22,

known as S. tarijense (2x) genotype, were placed in subpopulation 2 which is a S. tuberosum
Gp. Tuberosum (S2 Table).

The dendrogram using Nei genetic distance among individuals of the whole population

also revealed the presence of five clusters in the population. The assignment of the genotypes

to the groups performed by the dendrogram, corresponded in 86% with the allocation made

by the DAPC analysis (Fig 3). The same analysis performed within the most numerous sub-

populations (1 and 2) divided the first one into 3 groups as did the DAPC analysis, with more

than 70% coincidence in the assignment of genotypes to groups (Figure A in S2 Fig). Subpopu-

lation 2 was divided into 4 groups, three of them matched more than 75% with DAPC analysis

in the assignment of genotypes to groups. (Figure B in S2 Fig).

SNPZIP analysis detected 26 SNPs with the largest contribution to cluster identification.

Two of them corresponded to LD 1, and the remaining 24 to the LD 2. Most of them are

Fig 1. Discriminant analysis of principal components (DAPC) for 231 genotypes of the germplasm collection of

INTA Balcarce potato breeding program. The axes represent the first two Linear Discriminants (LD). Each circle

represents a cluster and each dot represents an individual. Numbers represent the different subpopulations identified

by DAPC analysis.

https://doi.org/10.1371/journal.pone.0194398.g001
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related to regions of the genome with known functions (S4 Table). The analysis was repeated

for the largest S. tuberosum Gp. Tuberosum subpopulations (1 and 2) and identified 23 and 18

SNPs, respectively (S5 Table).

Results in Table 1 show that the genetic variability within populations (88%) was greater

than the variability between populations (12%), which means that the population is genetically

diverse. Allelic frequencies of subpopulations detected by DAPC were well differentiated (Fst =

0.118), and homozygotes and heterozygotes were balanced, (Fis = -0.022). The percentage of

polymorphic loci was high across all populations. The genetic diversity of the whole population

was high (Ho = 0.468, He = 0.390), but was higher in tetraploid subpopulations (1,2,3 and 4)

than in the diploid subpopulation (5) (Table 2). Observed heterozygosity values (Ho) were

higher than expected (He) for all the tetraploid subpopulations (1,2,3 and 4). They were similar

in S. tuberosum Gp. Tuberosum subpopulations (Ho = 0.633, 0.614 and 0.594) but was a

slightly lower in S. tuberosum Gp. Andigena subpopulation (Ho = 0.439). On the other hand,

Subpopulation 5 (diploid) values were the lowest (Ho = 0.063). The groups detected within

subpopulations 1 and 2 (three groups in both cases) were not well differentiated, which is sup-

ported by the low Fst values (0.01 and 0.008, respectively). Both subpopulations had Fis values

close to zero, which means that there was no excess of homozygotes or heterozygotes (-0.093 y

-0.033, respectively).

Fig 2. Discriminant analysis of principal components (DAPC) for 231 genotypes of the germplasm collection of INTA Balcarce potato breeding

program. (a) subpopulation 1 (b) subpopulation 2. The axes represent the first two linear discriminants (LD). Circles represent groups and dots represent

individuals. Numbers represent the different subpopulations identified by DAPC analysis.

https://doi.org/10.1371/journal.pone.0194398.g002

Fig 3. Dendrogram from Nei genetic distance matrix for 231 genotypes of the germplasm collection of INTA Balcarce potato breeding program. Dendrogram of

the whole population divided in clusters. In the X axe are represented the genetic distances between groups and individuals. In the Y axe are represented the

subpopulations in which the population was divided.

https://doi.org/10.1371/journal.pone.0194398.g003

DAPC and pedigree assessment of genetic diversity and population structure of a potato panel

PLOS ONE | https://doi.org/10.1371/journal.pone.0194398 March 16, 2018 6 / 14

https://doi.org/10.1371/journal.pone.0194398.g002
https://doi.org/10.1371/journal.pone.0194398.g003
https://doi.org/10.1371/journal.pone.0194398


The coefficient of genetic differentiation among populations (Fst) (S6 Table) was high in

tetraploid subpopulations (1,2,3 and 4) compared to the diploid subpopulation (5). In compar-

isons between tetraploid subpopulations formed by three groups of S. tuberosum Gp. Tubero-

sum (1, 2 and 4) and one group of S. tuberosum Gp. Andigena (3), the lowest value was found

between subpopulations 2 and 3. Fst values between S. tuberosum Gp. Tuberosum subpopula-

tions were low, suggesting low genetic differentiation among them.

Pedigree information

Subpopulation 1 had 83% of INTA Balcarce breeding program clones and varieties. Serrana

INTA had the highest value of MAC with 26.7% and appeared in the 17% of the individuals of

the maternal path (S7 Table). MPI 59.703/21, B 2.63, Katahdin, Huinkul MAG and Saranac

were the other clones with MAC values lower that Serrana INTA. Katahdin was the most fre-

quent maternal ancestor of the subpopulation, it appeared in the 41% of the individuals, but its

MAC was lower than that of Serrana INTA (11.66%). The most prominent paternal ancestor

of the group was Huinkul MAG, with a MAC value of 31.75% and present in 39% of the indi-

viduals. Huinkul MAG is followed by Saranac, Earlaine and Katahdin. The latter is the most

frequent paternal ancestor, but the MAC value is lower than that of Huinkul MAG.

Subpopulation 2 has 45% of individuals with wild species (S. demissum, S. stoloniferum, S.

verneii, S. phureja) and S. tuberosum Gp. Andigena in their genetic background, which are

INTA and CIP breeding clones and varieties from Argentina, United States, Netherlands and

Chile. Also, subpopulation 2 has 34% of the CIP germplasm, originated from different breeding

populations of recurrent selection which achieved resistance or tolerance to different stresses

(B = Horizontal resistance to late blight, LTVR = Virus and heat tolerance, LBHT = Horizontal

Table 1. Results of analysis of molecular variance (AMOVA) and F-statistics for the whole population and the most numerous Gp. Tuberosum subpopulations.

Population SV Df SS MS Est.Var % F-statistics p value

Total Among Pops 4 53045.866 13261.467 167.582 12% Fst: 0.118 0.001

Within Pops 473 590469.447 1248.350 1248.350 88% Fis: -0.022 0.954

Total 477 643515.314 1415.932 100%

Subpopulation 1 Among Pops 2 3180.36795 1590.183 12.236 1% Fst: 0.010 0.214

Within Pops 127 159792.017 1258.204 1258.204 99% Fis: -0.093 0.997

Total 129 162972.385 1270.441 100%

Subpopulation 2 Among Pops 2 4213.340 2106.670 10.003 1% Fst: 0.008 0.017

Within Pops 257 332369.245 1293.265 1293.266 99% Fis: -0.033 0.960

Total 259 336582.585 1303.269 100%

SV = Source of variation; Df = degrees of freedom; SS = Sum of squares; MS = Mean square; Est.Var. = Estimated variance; % = Percentage of variation.

https://doi.org/10.1371/journal.pone.0194398.t001

Table 2. Statistics of genetic variation for the whole potato population.

Subpop. N Ho He %P

Mean SE Mean SE

1 65 0.633 0.004 0.458 0.003 97.76%

2 134 0.614 0.003 0.469 0.002 99.81%

3 16 0.439 0.005 0.339 0.003 82.14%

4 17 0.594 0.005 0.411 0.003 90.62%

5 7 0.063 0.003 0.273 0.002 91.71%

Subpop. = Subpopulation, N = Number of individuals, Ho = Observed heterozygosity, He = Expected heterozygosity, %P = Percentage of polymorphic loci

https://doi.org/10.1371/journal.pone.0194398.t002
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resistance to late blight and heat tolerance): 11% belongs to LTVR population, 42% belongs to B

population and 0.06% belongs to LBHT population. The maternal and paternal ancestors that

made the greatest contribution to the genotypes of the subpopulation are not so prominent.

Conversely, there is a greater number of genotypes with small contributions. Katahdin is again

the most frequent ancestor both in the maternal and paternal paths, but with very low values of

MAC in both cases.

Subpopulation 3 is formed by S. tuberosum Gp. Andigena individuals and S. tuberosum Gp.

Tuberosum CIP clones that belong to a CIP recurrent selection population called B1C5 with

Gp. Andigena introgression and high level of horizontal resistance to late blight.

Subpopulation 4 maternal ancestors that made the greatest contribution were Gabriela,

Katahdin, Saranac, USDA 96.56, Earlaine, CPC 1673–20 (adg) x Furore and Saskia. Their fre-

quencies of appearance are very similar but the MAC values varied between 7.3 and 4%, Gab-

riela is the genotype with greater contribution. The paternal path is strongly influenced by

Innovator who appeared in the 41% of the genotypes and its contribution to the group reaches

the value of 50%. Katahdin is the most frequent genotype of the paternal path (60% of the indi-

viduals) but again its contribution to the genetic background of the group is very low (8.75%).

Saskia x (CPC 1673–20 (adg) x Furore) and CPC 1673–11 (adg) x Furore are present also in

the paternal background of this group in 53% of the individuals, with low contribution

(7.03%).

The similarity matrix with the coefficients of relationship (CR) of each subpopulation pre-

sented low values of similarity between individuals of each group analyzed. The subpopulation

A had only the 0.4% of the CR values above 0.5. Nevertheless, in the subpopulations B and D

none of the CR values were greater than 0.5.

Discussion

Genetic variability is essential to breeders for the generation of improved varieties resistant to

diseases and adapted to adverse environmental conditions, without neglecting yield and indus-

trial quality. Thus, it constitutes a source of new alleles for diverse complex traits of breeding

interest contributing to broad potato genetic base. In the present study, population structure

and genetic diversity was assessed in a diverse panel composed by genotypes that belong to

two potato breeding programs with different strategies and final objectives, potato varieties

from different countries around the world, wild species and andigena cultivars.

Population structure and genetic diversity

DAPC analysis divided the population into well-defined clusters related to their genetic struc-

ture, which was associated with provenance, ploidy, taxonomy and breeding program of the

genotypes. The groups generated are according to the different taxonomic backgrounds. This

result was confirmed by a dendrogram of Nei distance of the whole population. The differ-

ences in the assignment of the genotypes to the groups between the two methods are based on

the fact that dendrograms were constructed with Ward method, which is an agglomerative

hierarchical method of clustering, and subpopulations were identified using DAPC which

employs k-means with increasing number of clusters, a relocation non-hierarchical clustering

method. Non-hierarchical methods begin partitioning samples into groups and iterate by

moving them among groups to optimize measurements of within-group homogeneity and

between-group heterogeneity. Those groups do not have hierarchical relationships between

them [33]. The agglomerative hierarchical clustering begins with the assignation of each sam-

ple to its own cluster, then these are merged one at a time, and finally it ends up forming a

large group with all the clusters [34]

DAPC and pedigree assessment of genetic diversity and population structure of a potato panel
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Subpopulations composed by of S. tuberosum Gp. Tuberosum individuals had low differen-

tiation among them. This result is in accordance with Hirsch et al., [14] who also found a

strong structure in a diverse population formed by wild and cultivated potato species, but the

substructure into cultivated potato was minimal, probably due to the similar North American

germplasm background of the cultivated potato panel used in that experiment.

In addition, the subgroups into the most numerous S. tuberosum Gp. Tuberosum subpopu-

lations were quite similar. According to this result, genetic background of subpopulations 1

and 2 could be quite homogeneous because they were generated from selection and crosses

within breeding programs with a specific objective, consequently there could be no differences

in allele frequencies within each subpopulation.

The SNPs that mostly contributed to the division of the population in clusters were those

which mostly differ among the subpopulations. They were related to regions of the genome

driving genetic divergence among groups [19]. Some of them are involved in regulation of

transcription, carbohydrate metabolism and in different disease defense reaction chains [22,

23, 35, 36]. These results partially agree with [15] who found divergent allele frequencies for

SNPs related to carbohydrate metabolism between diploid and tetraploid populations.

Heterozygosity values were higher in Group Tuberosum subpopulations than in the others.

This may be related to the fact that the largest number of individuals in the total population are

S. tuberosum Gp. Tuberosum. Also, the germplasm belonging to each of these subpopulations

has a low coefficient of similarity between individuals. Ho value corresponded to Andigena sub-

population was lower than Tuberosum, probably because the Andigena subpopulation was

formed by a small number of genotypes from the same place, which could represent a small

sample of the total variability available from the Andigena Group. However, the lowest Ho value

was that of diploid group, which could be a consequence of the small number of individuals that

made up the subpopulation. This result is in agreement with Hirsch et al. [14] who suggest that

greater ploidy may be associated with greater heterozygosity. On the other hand, the Illumina

Infinium Potato SNP Array had developed using only elite potato germplasm [22], therefore

polymorphisms belonging to Andigena and wild species could not be detected. Nevertheless,

Berdugo-Cely et al., [37] found greater values of Ho in Andigena and Phureja populations using

the Illumina Infinium Potato SNP Array but composed by a significant number of individuals.

Pedigree information

The pedigree analysis into the S. tuberosum Gp. Tuberosum subpopulations detected the most

frequent parental genotypes and those which did the most contribution to the subpopulations.

In subpopulation 1, the maternal parent with the largest contribution was Serrana INTA which

is an Argentinian variety known for its virus resistance and storage quality. It was widely used

as progenitor in breeding programs for virus resistance at INTA Balcarce [38; 39] and CIP [40,

41]. On the paternal side, Huinkul MAG was the genotype with the largest contribution and

high frequency of appearance. This is the first Argentinian cultivar (1948) and is known for its

good storage and excellent culinary qualities. Until 1948, imported seed-tubers of varieties from

Europe and North America were grown in Argentina. As of that year, Huinkul MAG displaced

Katahdin, which occupied more than 80% of the area planted in the Southeast of the Province

of Buenos Aires, the area with the highest potato production in the country [42]. According to

the above, subpopulation 1 would be characterized by the history of the potato breeding pro-

gram in Argentina. The pedigree analysis of subpopulation 2 detected many progenitors with

low contributions and frequencies, in accordance to CIP´s breeding program’s strategy. The

objective of CIP’s program is to develop advanced potato clones and varieties for the tropical,

subtropical and temperate agro-ecologies of the developing world by means of the utilization of
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wide genetic resources [41]. Therefore, an attempt is made to look for genes of resistance and

tolerance within the related Solanum species to introduce them into new potato varieties. In

group 4, the main contributor and frequent paternal ancestor was Innovator. The genotype

CPC 1673–20 (adg) was present in both paternal and maternal paths. This could be the reason

why this subpopulation is the one that differs the most from the other two subpopulations of S.

tuberosum, since there are not repeated progenitors with high frequency or contribution in the

other two groups. Consequently, these might be the ones that were yielding the difference in the

allelic frequencies with respect to the other groups of S. tuberosum Gp. Tuberosum. The geno-

type CPC 1673–20 was found among the first sources of resistance to Globodera rostochiensis,
used in breeding programs [43, 44]. In addition, Innovator could be the ancestor who is confer-

ring French fry processing characteristics to this subpopulation.

Nevertheless, Katahdin was present as the most frequent parental in both parental paths of

all the S. tuberosum Gp. Tuberosum subpopulations analyzed with very low contributions to

the genetic differentiation but contributing to the genetic background of all the groups. This

variety was released in 1935 by the Beltsville USDA breeding program. It has been widely used

in breeding programs in the United States and is found as a parent of most American cultivars

of the 20th century. Also, it is a recent ancestor and appears numerous times in the American

cultivars pedigree [8, 45]. According to Love (1999) [45], this cultivar could be part of one

fourth of the germplasm by which prominent North American cultivars are composed. The

presence of Katahdin in the genetic background of all subpopulations analyzed, could be due

to the fact that INTA Balcarce and CIP breeding programs began to develop after Katahdin

introduction (1948 and 1974, respectively) and both of them used varieties from Europe and

United States as part of the initial germplasm. [42,46].

DAPC and other statistical methods were used to assess plant population structure by dif-

ferent authors [37,47–48]. According to Rosyara et al., [48], STRUCTURE, EIGENSTRAT and

DAPC are able to control population structure in association mapping studies, EIGENSTRAT

and DAPC were slightly better than STRUCTURE but DAPC achieved better separation

among groups. Pedigree analysis was used to complement the population assessment made

from the SNPs. It provided data that allow a more complete characterization of the groups and

helped to understand the structure of the population under study. The methodologies used in

the present work and the SNPs molecular characterization, confirm that the population under

study was structured into five clusters and this structure was clearly corresponded with the

similarity in genetic background and breeding programs from where the varieties and breed-

ing lines come. Alleles that were divergent among clusters are a guide to detect the principal

differences due to breeding strategies and different origins among subpopulations. Informa-

tion obtained in this work confirms that potato genetic base is broadening thanks to the partic-

ular efforts of many breeding programs and will allow breeders to design crossing strategies

between parental groups aiming to maximize genetic diversity of a breeding program. Thus,

this information aims to update knowledge about part of the existing potato germplasm and

could be readily used as a guide for parental introduction in new breeding programs that want

to combine contrasting variability sources such as the ones presented here.
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