
Deep Reinforcement Learning for Dynamic Treatment Regimes 
on Medical Registry Data

Ying Liu,
Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, 53226

Brent Logan,
Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, 53226

Ning Liu,
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, 
13210

Zhiyuan Xu,
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, 
13210

Jian Tang, and
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, 
13210

Yanzhi Wang
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, 
13210

Abstract

In this paper, we propose the first deep reinforcement learning framework to estimate the optimal 

Dynamic Treatment Regimes from observational medical data. This framework is more flexible 

and adaptive for high dimensional action and state spaces than existing reinforcement learning 

methods to model real life complexity in heterogeneous disease progression and treatment choices, 

with the goal to provide doctor and patients the data-driven personalized decision 

recommendations. The proposed deep reinforcement learning framework contains a supervised 

learning step to predict the most possible expert actions; and a deep reinforcement learning step to 

estimate the long term value function of Dynamic Treatment Regimes. We motivated and 

implemented the proposed framework on a data set from the Center for International Bone Marrow 

Transplant Research (CIBMTR) registry database, focusing on the sequence of prevention and 

treatments for acute and chronic graft versus host disease. We showed results of the initial 

implementation that demonstrates promising accuracy in predicting human expert decisions and 

initial implementation for the reinforcement learning step.

I. Introduction

Data-driven decision support systems for health care to facilitate medical doctors in 

delivering personalized medical decisions has been a future that artificial intelligence is 
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aiming to create. Deep learning and deep reinforcement learning have demonstrated human 

level or even superior performance in the tasks of medical image processing [1], playing 

games such as Go and Atari [2], [3], etc. However, to the best of our knowledge, deep 

learning and deep reinforcement learning techniques have not been used for the task of 

making sequential treatment decisions. In this work, we aim at developing the first deep 

reinforcement learning framework to provide data-driven sequential decision making 

support based on the medical registry data.

The natural process of doctors making a sequence of intervention decisions adapted to the 

time-varying clinical status and features of a patient is coined as Dynamic treatment regimes 
(DTRs, [4]). The most common data source for these multiple decision making problems is 

through sequential multiple assignment randomized trial (SMART) [5], [6], which have been 

proposed to optimally construct DTRs that offer causal interpretation through randomization 

at each critical decision point. Methods to identify the optimal DTRs have recently received 

attentions in the statistical community [7], [8], [9], [10], [11], [12], [13], [14], and most of 

exsiting methods focused on data from randomized clinical trials. For multiple stage 

decision making, the existing methods implement dynamic programming, i.e., they estimate 

the optimal decision rules through backward induction across decision stages. In each step, a 

parametric prediction model is fitted for the value function (Q-learning [15]); or a 

classification model is constructed for modeling the decision policies directly (Outcome 

Weighted Learning (OWL) [16]). Our previous work [17] proposed augmenting the OWL 

with Q-learning to achieve better statistical efficiency. In both Q-learning and OWL, the 

action space is small, and in most cases only two actions are considered, where Q-learning 

fits a linear regression in each step and OWL is solving a classification problem weighted by 

outcome using classical methods such as SVM, logistic regression, random forest, etc.

These existing methods are proposed for applications in randomized controlled trials and are 

limited to clearly defined homogeneous decision stages and low-dimensional action spaces. 

They are difficult to implement using observational data (such as electronic medical records, 

registry data), which exhibits much more heterogeneity in decision stages among patients, 

and the treatment options (i.e., the action space) are often high-dimensional. The existing 

methods can only analyze certain simplification of stage and action spaces among the 

enormous ways. Simplification by human experts might not lead to the optimal DTRs and in 

many cases there is no clear way of simplification. In addition, the simplification process 

needs substantial domain knowledge and labor-intensive data mining and feature 

engineering. To make reinforcement learning accessible to more DTR problems in 

observational data, we want to develop a framework to automatically and adaptively deal 

with the heterogeneous high dimensional states and actions in real life.

Deep learning, or more specifically, deep reinforcement learning, is a promising new 

technique to model the real-life complexity, high dimensionality, and adaptivity. Reference 

[18] presented the pioneering work of the first deep reinforcement learning model, which 

successfully learns control policies directly from high-dimensional sensory inputs. 

Reference [2] developed an end-to-end deep reinforcement learning model to learn policies 

directly from high-dimensional sensory inputs and actions to excel in Atari game. Reference 

[19] presented an actor-critic, model-free algorithm based on the deterministic policy 
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gradient that can operate over continuous action spaces. Reference [3] proposed a new 

approach for the Go game, in which ’value networks’ are used to evaluate board position 

and ’policy networks’ are used to select moves. A novel combination of supervised learning 

from human experts games and reinforcement learning from games of a self-play is adopted 

for training these deep neural networks. This new advancement in deep learning has led to 

human-level or superhuman performances in various tasks.

Existing literature on application of deep learning on medical diagnosis and treatment 

prediction and recommendations are limited. Some pioneering works [20], [21] are using 

recurrent neural networks (RNNs) to model the sequence of hospital admission, diagnosis 

and treatments for broad disease categories with large electronic health record (EHR) 

datasets. However, these works do not step forward to make decision recommendation based 

on the clinical outcomes, possibly due to the limitation of EHR data where the sample size 

with the same disease is limited, and long time follow-up might be largely missing since 

health providers typically do not share or merge their EHR data. Another type of 

observational medical data, the registry data, has shown the potential to overcome this 

limitation and enables DTR inferences with reinforcement learning. Reference [22] adopted 

Q-learning [15], [23] to study a two-stage decision making problem in GVHD prevention 

and treatment, it simplified the problem of our motivating example to consider only two 

treatment options and two stages. This simplification is needed due to the limited scalability 

of traditional Q-learning technique, and is based on clinician’s knowledge and dataset 

explorations. In this work we are studying a similar (and more complete) clinical problem, 

but we aim to utilize deep learning to model the actual state and action spaces directly with 

more decision points, as the emerging deep reinforcement learning technique could 

accommodate higher dimensionality in state and action spaces in a data-driven, model-free 

framework.

To sum up, the significance of the paper includes:

• This is the first paper to propose a systemetic deep reinforcement learning 

framework to provide data-driven sequential decision making support based on 

medical registry data.

• We generalize the emerging reinforcement learning framework in statistical 

literature to model a larger action and state space and build a discrete-time model 

based on the collection scheme of registry data.

II. Clinical Problem and Data Cohort Description

The motivating data example is from the Center for International Blood and Marrow 

Transplant Research (CIBMTR) registry database, which has focused on collecting outcome 

data for patients receiving hematopoietic cell transplantation (HCT) since 1972. The registry 

dataset enables multiple-stage decision comparisons by combining datasets across 

institutions both nation-wide and internationally, and it also tracks the long term follow-up 

of the patients. The multiple-stage decision problem we are targeting on the prevention and 

treatment of the Graft Versus Host Disease (GVHD), a common complication after HCT. 

GVHD is a manifestation of immunologic injury driven by donor immune cells. Especially 
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the donor’s immune cells mistakenly attacking the patient’s normal cells leads to 

complications ranging from mild to severe or life threatening. There are two forms: acute 

GVHD typically occurs within the first 6 months after the transplant and lasts for a short 

term if successfully treated; chronic GVHD may occur from shortly after the transplant to a 

few years later, and often requires long-term treatment that can lead to long-term 

complications/morbidity.

The motivating dataset includes 6021 patients diagnosed with Acute Myeloid Leukemia 

(AML) who underwent HCT between 1995 and 2007. Data have been submitted by partners 

of the registry using standard follow-up forms at 100 days, 6 months, 12 months, 2 years, 4 

years, etc., after the date of transplant. Due to the discrete data collection scheme, we have 

better quality data on the onsets of GVHD conditions and the subsequent treatment decisions 

in a discrete-time frame indicating the occurrence between two follow-up times. The exact 

date and sequence of treatment decisions between two periods of time are missing or not 

recorded to a greater extent. In this work, the state and action are considered to be the state 

and action taken at the time each form was recorded. We consider relapse and death as 

terminal states and occurrences of acute or chronic GVHD as transient states. The specific 

action sequence we are modeling consists of initial conditioning regimen (chemotherapy 

treatment) and GVHD prophylaxis (immune suppression for donor cells to prevent GVHD) 

applied at the time of transplant, along with the drug options to treat acute or chronic GVHD 

if it occurs.

III. Background on Deep Reinforcement Learning

In this section, we present a general deep reinforcement learning framework, which can be 

utilized to solve complicated problems with large state and action spaces. The deep 

reinforcement learning technique consists of two phases: an offline deep neural network 

(DNN) construction phase and an online deep Q-learning phase [18], [2], [3]. In the offline 

phase, a DNN is adopted to derive the correlation between each state-action pair (s, a) of the 

system under control and its value function Q(s, a). Q(s, a) represents the expected 

cumulative reward with discount when the system starts at state s and follows action a and 

certain policy thereafter. Q(s, a) for a discrete-time system is given as:

(1)

where r(t) is the reward rate and γ is the discount rate in a discrete-time system.

In order to construct a DNN with desirable accuracy, the offline phase needs to accumulate 

sufficient samples of Q(s, a) value estimates and the corresponding (s, a). It can be a model-

based procedure or obtained from actual measurement data [3]. This procedure includes 

simulating the control process, and obtaining the state transition profile and the estimations 

for Q(s, a) value, using an arbitrary but gradually refined policy. The state transition profile 

is stored in an experience memory D with capacity ND. The use of experience memory can 

smooth out learning and avoid oscillations or divergence in the parameters [2]. Based on the 
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stored state transition profile and Q(s, a) value estimates, the DNN is constructed with 

weight set θ trained using standard training algorithms (such as backpropagation and 

stochastic gradient descent).

For the online phase, the deep Q-learning technique can be utilized based on the offline-

trained DNN to select actions and update Q-value estimates. To be more specific, at each 

decision epoch tk of an execution sequence, suppose the system under control is in the state 

sk. The deep reinforcement learning agent performs inference using the DNN to obtain the 

Q(sk, a) value estimate for each state-action pair (sk, a). Then according to the ε-greedy 

policy, the action with the maximum Q(sk, a) value estimate is selected with probability 1 - ε 
and a random action is selected with probability ε. After choosing an action, which is 

denoted by ak, before the next decision epoch tk+1, the observed total reward rk(sk, ak) 

during [tk, tk+1) leads to Q-value updates. The reference work [19] proposed to utilize a 

duplicate DNN  for Q-value estimate updating, in order to mitigate the potential oscillation 

of the inference results of the DNN. At the end of the execution sequence, the DNN is 

updated by the deep reinforcement learning agent using the lately observed Q-value 

estimates in a mini-batch manner, and will be employed in the next execution sequence.

It can be observed from above procedure that the deep reinforcement learning framework is 

highly scalable for large state space, which is distinctive from traditional reinforcement 

learning techniques. On the other hand, the deep reinforcement learning framework requires 

a relatively low-dimensional action space due to the fact that at each decision epoch the deep 

reinforcement learning agent needs to enumerate all possible actions under current state and 

perform inference using DNN to derive the optimal Q(s, a) value estimate, which implies 

that the action space in the general deep reinforcement learning framework needs to be 

reduced.

IV. Deep Reinforcement Learning Framework for Dynamic Treatment 

Regimes

Throughout the paper, we denote time index t = 0 for the time of transplant, t = 1 for 100 

days, t = 2 for 6 months, t = 3 for 1 year, t = 4 for 2 years, and t = 5 for 4 years. We consider 

the DTR within 4 years after the transplant because a large portion of patients’ data will be 

missing after that time (and live patients without relapse can be considered to be cured from 

the disease). In this paper, we adopt the deep reinforcement learning technique for three 

tasks of DTR: initial treatment after the transplant including initial conditioning 

(chemotherapy to prevent relapse) and GVHD prophylaxis (to prevent GVHD), treatment of 

acute GVHD, and treatment of chronic GVHD. The initial preventive treatments takes place 

at the time of transplant t = 0; the treatment of acute GVHD takes place at times t = 1 

(100days) and t = 2 (6 months); the treatment of chronic GVHD takes place at times t = 2 (6 

months) through t = 5 (4 years).

A. Supervised Learning Framework to Determine Human Experts’ Actions

The first step is to build a supervised learning network to predict the distribution of human 

experts’ decisions on treatment actions. The proposed framework is applied for predicting 
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the distribution of initial conditioning regime and GVHD prophylaxis at the time of 

transplant from baseline features, distributions of treatments for acute GVHD at 100 days 

and 6 months, and treatments for chronic GVHD at all time period after transplant up to 2 

years using time varying features. These prediction networks are illustrated in Figure 1.

For the initial treatment (conditioning) immediately after the transplant, the input features 

(state space) include the union of the basic information of patients (e.g., age, gender, and 

cormorbilities, etc.) and the genetic matching information between the patient and donor. 

The output label (action) is the combination of medicines to be utilized for the initial 

treatment which include conditioning to avoid disease relapse and GVHD prophylaxis to 

prevent GVHD.

For the treatment of acute GVHD at time stamps t = 1 and t = 2, the input features (the state 

space) include both the basic information of patients and the pairing conditions, as well as 

whether the patient has acute GVHD at that specific time stamp. The output label (action) is 

the combination of medicines to be utilized for the treatment of acute GVHD. Similar input 

features and actions also apply for the treatment of chronic GVHDs from t = 2 through t = 5.

To reduce the high dimensionality in the action space, we encode the actions using all the 

medicine combinations that have been already utilized by doctors. In this way the number of 

possible actions can be reduced to around 270. We adopt an auto-encoder [24] to 

automatically construct a combination of states and reduce the state space to a large extent, 

thereby accelerating the convergence speed and mitigating potential overfitting issues. For 

enhancing accuracy, separate multilayer deep neural networks are trained off-line for initial 

conditioning, prevention of GVHDs, treatment of acute and chronic GVHDs. The network 

training procedure at each time stamp t will only use patients with available data.

B. Deep Reinforcement Learning for Value Estimations and DTRs

The second step is to estimate the value function for expert actions with highest probabilities 

and make recommendations among treatment options. Our recommender only evaluates 

value function for actions with highest probabilities, since actions with small probability 

have too small number of samples in the observational medical datasets to arrive at a general 

conclusion. This restriction also reduces the computational complexity. The reward/outcome 

of major interests is the relapse-free survival time after transplant, which can be denoted as 

Ti. Let  denote the vector of actions at all stages,  denote the sequence decision rules 

(policies), mapping from the current observed history to action at each stage. The value 

function of a policy  is . The objective is to maximize  and 

the so-called Q-function is the expected reward if a subject is assigned to the optimal 

treatment in all the future stages, and can be estimated through Dynamic Programming 
following the ideas from Q-learning [15].

In this paper, we presented the preliminary implementation of the proposed deep 

reinforcement learning step with a simplified heuristic reward defined in the following. The 

more strict implementation of optimizing the relapse free survival time need incoorperating 

statistical methods to take care of biases introduced by censoring and lack of randomization, 

we differ more details to the discussion section about these future directions. For each 

Liu et al. Page 6

Healthc Inform. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



patient i, let ti denote the time when he/she enters the terminal state (death, relapse, or 

relapse-free survival after 4 years) or when his/hers data get lost. The delayed reward of 

patient i at time ti can be classified into the following categories:

• Relapse-free and GVHD-free survival.

• Survival with acute or chronic GVHD.

• Relapse of the leukemia disease.

• Death.

• Data loss.

We assign different delayed rewards for the five cases. For relapse-free and GVHD-free 

survival in 4 years, the highest reward (1) is achieved. Survival with acute or chronic GVHD 

receives a slightly degraded reward (0.8). Relapsed patients receive a significantly degraded 

reward (0.2). Death receives zero. This reward can be viewed as a heuristic 4-year-survival 

probability adjusted for quality of life. There are also missing data problem caused by lost of 

follow-up, for which we impute their reward with average value of patients with the close 

starting state and the latest state at time ti − 1.

Three separate deep neural networks are developed for DTRs of initial conditioning 

(chemotherapy and prevention of GVHDs), treatment of acute and chronic GVHDs. For the 

inputs of deep neural networks at time stamp t, the corresponding input states described in 

the previous section serve as states, and the predicted human experts’ decisions serve as 

actions. Auto-encoder is utilized to reduce the input state space. The output prediction will 

be the expected value/return starting at this state and taking the corresponding action. Multi-

layer deep neural networks are constructed to achieve this goal, and only those patients 

whose data are available at each time t are utilized to train the deep neural networks.

V. Experimental Results

In this section, we provide experimental results on the accuracy in predicting human expert 

actions and effectiveness of deep reinforcement learning based DTR framework in terms of 

maximizing value functions. The training data is from the Center of International Blood and 

Marrow Transplant Research registry database and the preliminary results for accuracy is 

provided on the training sample, in the future we will retrieve and clean more data to 

estimate out-training-sample accuracy. We perform data preprocessing, supervised learning 

network construction, and deep reinforcement learning based DTR written in R and C++.

A. Accuracy in Predicting Human Expert Actions

First, we provide preliminary experimental results on predicting human expert actions for 

the chronic GVHD. Figure 2 illustrates the overall top-5 prediction accuracy as well as 

individual prediction accuracies at times t = 2 through t = 5. It can be observed that the 

prediction accuracies are in general high enough and increase with time elapses. This shows 

a first step towards the ultimate goal of DTR using machine learning techniques.
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Also, it is worth noting that the state and action spaces can be significantly reduced using 

auto-encoders and action clustering technique. For example, the dimensionality of the state 

space is reduced from tens to six, whereas the action space is reduced from 17 dimensional 

binary vector to 270 distinct medicine combinations. The effective techniques for reducing 

state and action spaces are the key factor of success in predicting human expert actions.

B. Deep Reinforcement Learning Based DTR Framework

Second, we provide preliminary experimental results on the effectiveness of deep 

reinforcement learning based DTR framework for chronic GVHD treatments. In our 

preliminary study, we compare between the proposed deep reinforcement learning based 

approach with random action selection in terms of the value function. Figure 3 demonstrates 

the comparison results. It can be observed that the proposed deep reinforcement learning 

framework consistently outperforms the baseline at different time steps, with a maximum 

value enhancement of 21.4%.

These preliminary results demonstrate the potential of the proposed deep reinforcement 

learning based DTR framework. In the future we will implement more comprehensive 

evaluation and comparison of the value function, which will borrow ideas from existing 

statistical literature on estimating value function of DTRs [15], [16], [17], we include more 

details about future work in the discussion section.

VI. Discussion

We propose a systematic framework for deep reinforcement learning on medical 

observational data with long time follow-up for enough patients from a focused disease 

group. The framework have the potential to achieve high accuracy in predicting human 

expert treatment decisions, and conceptually through reinforcement learning, it also has the 

potential to improve from observed human expert actions through optimizing the long term 

outcome of patients. This framework extended the existing DTR learning methods in its 

flexibility and adaptivity for high dimensional action and heterogeneous decision stages to 

model real life complexity.

We presented results from a preliminary implementation of the proposed deep reinforcement 

learning framework on the motivating Bone Marrow Transplant data example. In this initial 

implementation we considered the reward as a heuristic 4-year survival probability adjusted 

for quality of life. For future works, we will consider the disease free survival time as the 

main outcome. The reinforcement learning algorithm will be tailored for the specific 

censoring scheme of the data, denote Mi as the indicator of whether patient i is censored (Mi 

= 1 if death or relapse is observed), and Ci as the last observation time of patient i. Denote 

Dt,i as the indicator that death or relapse is observed within time period t − 1 to t. For time t 
and patient i, denote the indicator for observed terminal events at time t as 

, where  is the indicator function. The general Q-

learning uses a backward induction procedure across time stamps (corresponding to stages). 

At stage t, each valid training sample (patient) i needs to satisfy Ci > t, and requires that 

action at to be observed. For patients with Mt+1,i = 1, we use their observed Ti as the 

outcome. For patients with Ci > t+1, or Ci = t + 1, Mi = 0, we use the estimated Q-function 
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for future stage as the outcome. In other words, we are imputing patients who have survived 

beyond time stamp t + 1 using their optimal future value estimation, regardless of censoring.

For survival outcome in observational studies, reference [25] provided a linear regression 

method weighted by censoring probability and adjusted for propensity scores. This method 

can be generalized to multiple stages and deal with the discretized time model, where the 

decision rule is estimated by weighted linear regression, adjusted for censoring and non-

randomization of treatment assignment. Furthermore, the recent DRL literature [2] 

implemented Q-learning with deep neural networks to approximate the Q-function, which is 

named as Deep Q-network. It is an open question for future researches that how to adjust for 

censoring and non-randomization within the Deep Q-network. With more resources we can 

improve the quality of data by checking the data integrity with the CIBMTR, retrieving more 

patients and minimizing the number of missing entries. There are eligible 43319 patients 

from the CIBMTR database that can be separated into training and testing dataset for 

validating our proposed framework in prediction of expert action and improving long term 

outcome through reinforcement learning.

There are other sequential decision making questions in the leukemia field. One other 

example is to decide whether transplant is a beneficial strategy compared to no-transplant, 

when is the personalized best time for transplant to take place. These questions can also be 

addressed by similar method. Although clinical trials have been the golden standard in 

addressing causal effect of interventions to establish sound scientific evidence of any 

proposed DTRs, SMART has not been conducted for treatments of leukemia partly due to 

the practical difficulties to get patients make commitment to participate in multiple-stage 

randomization with the such a high death rate, and the other reason might include the high 

cost of treatments and difficulty to recruiting enough samples for the power of the study. So 

we think reinforcement learning with observational data will be the most promising method 

to gain insights about multiple stage decision making in this field.

Our initial work are off-line learning with observational dataset. From the machine learning 

standpoint, reinforcement learning often update the policy based on on-line collecting new 

data. These reinforcement learning exploration policy can be borrowed into our 

recommendation system to add some randomness for exploring more treatment strategies, in 

other word, we can change from randomize the treatment to randomize the ’computer-based-

recommendation’ from a set of treatment options with value function close to the optimal, 

taking account the clinical ethnics. The system only provide informations and predictions 

while leaving the actual decision to patients and their doctors.
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Fig. 1. 
Illustration of the proposed supervised learning framework for (a) initial treatments, (b) 

acute GVHD treatment, and (c) chronic GVHD treatment.
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Fig. 2. 
Top-5 prediction accuracies of human expert actions at different time stamps.
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Fig. 3. 
Comparison on the values in chronic GVHD treatments between the proposed deep 

reinforcement learning approach and baseline.
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