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Abstract

Research into therapeutic transcranial magnetic stimulation (TMS) for major depression has
dramatically increased in the last decade. Understanding the mechanism of action of TMS is
crucial to improve efficacy and develop the next generation of therapeutic stimulation. Early
imaging research provided initial data supportive of widely held assumptions about hypothesized
inhibitory or excitatory consequences of stimulation. Early work also indicated that while TMS
modulated brain activity under the stimulation site, effects at deeper regions, and in particular the
subgenual anterior cingulate cortex, were associated with clinical improvement. Concordant with
earlier findings, functional connectivity studies also demonstrated that clinical improvements were
related to changes distal, rather than proximal, to the site of stimulation. Moreover, recent work
suggests that TMS modulates and potentially normalizes functional relationships between neural
networks. An important observation that emerged from this review is that similar patterns of
connectivity changes are observed across studies regardless of TMS parameters. Though
promising, we stress that these imaging findings must be evaluated cautiously given the
widespread reliance on modest sample sizes and little implementation of statistical validation.
Additional limitations include use of imaging before and after a course of TMS, which provides
little insight into changes that might occur during the weeks of stimulation. Furthermore, as
studies to date have focused on depression, it is unclear whether observations are related to
mechanisms of action of TMS for depression, or represent broader patterns of functional brain
changes associated with clinical improvement.
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Introduction

Research into non-invasive brain stimulation is one of the fastest growing areas of
psychiatric inquiry. Of these, repetitive transcranial magnetic stimulation (rTMS, hereafter
simply TMS) is an important and relatively new treatment. TMS has been clinically
available since 2008 when it was cleared by the U.S. Food and Drug Administration for
pharmacoresistant major depressive disorder (MDD). TMS uses a pulsed magnetic field to
induce neuronal depolarization in a targeted brain region. Since the initial multisite studies
(1, 2), a number of groups have published on the efficacy of TMS in naturalistic samples (3),
durability of effect (4), and efficacy across the lifespan (5, 6, 7). Furthermore, there is
emerging literature supporting the use of TMS for other psychiatric conditions including
schizophrenia (8, 9) and posttraumatic stress disorder (PTSD)(10, 11), and outside of
psychiatry in areas such as tinnitus, migraine and pain syndromes (e.g., (12, 13, 14)).

While the putative therapeutic mechanism of action of TMS remains unknown, recent
neuroimaging studies have set out to discover what is changing in the brain when a
depressed patient receives multiple daily sessions of TMS delivered to the prefrontal cortex.
This area of research is necessarily complex, requiring an interdisciplinary approach
inclusive of expertise from neuroimaging, clinical research, engineering, etc. Given the
myriad of approaches to data collection, processing, and analysis involved in human
neuroimaging studies, and potential effects of the analytical decision-making process on
study observations, a strong grounding in the fundamentals of neuroimaging methods and
statistics is needed to appreciate the strength (or lack thereof) of evidence within the TMS/
neuroimaging mechanisms literature.

In this review we synthesize findings from the key functional and resting state connectivity
studies to identify potential mechanisms of action of TMS for MDD (see supplemental
information for search details). To maintain a focus on clinically relevant mechanisms, all
studies described below used therapeutic TMS. We considered performing a meta-analysis
of these studies, but after reviewing the available literature we concluded that the vast
heterogeneity of variables, including treatment parameters (stimulation site, number of
sessions, etc.), imaging modalities (metabolic, resting state) and imaging analytic
approaches (region of interest versus whole brain analyses), precluded the use of meta-
analytic methods. To constrain the breadth of the review, we do not describe studies
designed to test or manipulate neurotransmitter levels related to TMS. We acknowledge
several studies reported TMS might be associated with increased dopamine release (reported
in (15, 16), although not observed in (17, 18) and changes in gamma-aminobutryic acid
(GABA) levels (e.g., (19, 20)). Our review also does not include diffusion or morphometry
research, although there is a nascent literature suggesting TMS can impact these domains
(e.g., (21, 22)).
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The review begins with an overview of TMS to provide the reader context for the
applications used in imaging studies. We then describe neuroimaging observations using
metabolic approaches, followed by the more recent resting state functional connectivity
studies. The review ends with an integrative summary of the current data, highlights
important design limitations and conceptual assumptions, and suggests directions for future
research.

TMS Overview

TMS for MDD starts with motor threshold (MT) determination, which calibrates the
stimulator to an individual’s cortical excitability. During MT determination, a clinician
delivers single pulse TMS to the motor cortex, and records the amount of stimulator output
necessary to induce movement in the contralateral hand in 50% of delivered pulses.
Following calibration, a course of TMS is delivered to the prefrontal cortex at 120% of MT
on a daily basis for up to 30 (or more) sessions, often followed by a taper phase (for a review
of clinical TMS see (23, 24)).

TMS parameters may vary, including stimulation intensity, location, frequency, and duration.
These parameters have shifted over time, generally favoring higher stimulation intensity
(i.e., increase from 100% (25) to 120% of MT (1), informed by research demonstrating that
increased stimulation intensity was required to overcome coil-to-cortex variability associated
with age and other factors (26)). Protocols have also evolved to incorporate more TMS
sessions (i.e., increase from 10 (25) to >20 (1)), or multiple sessions given in a single day
(termed accelerated TMS (e.g., (27))). Regarding location, in earlier studies TMS was
delivered to the dorsolateral prefrontal cortex (DLPFC), usually the left DLPFC. This target
was initially determined using a so-called “5cm rule,” where the TMS coil was moved 5¢cm
anteriorly along the parasaggital line from the motor cortex. Follow up studies showed the
5cm rule could miss the DLPFC (28). Alternative targeting approaches utilize skull-based
landmarks (29) or MRI-based neuronavigation (i.e., using MRI images co-localized with the
TMS coil to enable placement over the DLPFC; e.g., (30)), and some evidence indicates that
landmark-based techniques and neuronavigation approximate the same location (31). In
recent years, various groups demonstrated the efficacy of different stimulation targets,
including the dorsomedial prefrontal cortex (DMPFC) (32) and broader prefrontal cortex
(33). When considering frequency, TMS pulses are typically considered to be either “high”
(=5Hz) or “low” (<1Hz), where these frequencies are considered excitatory and inhibitory,
respectively. These designations arose from corticospinal excitability studies measuring the
size of motor evoked potentials following TMS to motor cortex (reviewed in (34)). This
relationship was corroborated by metabolic neuroimaging (positron emission tomography
(PET) or single-photon computed emission tomography (SPECT)) that suggested low
frequency TMS reduced motor cortex activity, and higher frequency stimulation increased
activity (35, 36, 37). Comparable results were observed in the DLPFC using near infrared
spectroscopy (38). This apparently bimodal relationship between frequency and activity
likely represents an oversimplification of stimulation-related brain changes, as connectivity
studies in healthy controls suggest a more complicated relationship (39).
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Resting State SPECT/PET Studies of TMS

SPECT/PET imaging studies are listed in Tables 1 & 2. TMS to the DLPFC was initially
conceptualized as a way to reverse hypofrontality observed in depression (40, 41) and post-
stroke depression (42). In the first TMS imaging study, Teneback et al. (43)(N=22) measured
changes in regional cerebral blood flow (rCBF) in MDD patients scanned before and after
two weeks of 20Hz or 5Hz TMS to the left DLPFC. They reported that increased inferior
frontal lobe activity predicted subsequent TMS clinical response, and that active stimulation
was associated with increased blood flow in the prefrontal cortex and limbic/paralimbic
regions. Observed changes occurred under the TMS coil and distal to the stimulation site.
Speer et al. (44)(N=10) then measured TMS-related rCBF changes before and after 10
sessions of 20Hz or 1Hz TMS to the left DLPFC. 20Hz TMS was associated with increased
rCBF under the coil and in the amygdala, insula, hippocampus, parahippocampus, thalamus
and cerebellum. 1Hz TMS was associated with distal reductions in rCBF in the right
prefrontal cortex, left medial temporal cortex and amygdala. Changes in rCBF correlated
with mood changes, and individuals whose mood improved with one frequency worsened
with the other. Nahas et al. (45)(N=23; participants shared with (43)) delivered 5 sessions of
20Hz or 5Hz TMS to the DLPFC. They found higher frequency TMS caused greater
prefrontal rCBF, relative to lower frequency stimulation, and that significant rCBF increases
were observed both under the TMS coil and in distal regions. They also reported greater
coil-to-cortex distance was associated with reduced brain activation, confirming
observations by Kozel et al. (26). Loo et al. (46)(N=18) found similar results scanning
during 15Hz and 1Hz TMS to the left DLPFC, with effects generally observed distal from
the site of stimulation.

Several SPECT/PET studies described predictors of response to TMS alongside effects of
stimulation, potentially identifying requisite neural circuits for clinical improvement. Kito et
al. (47, 48, 49)(total N=26) found that treatment response to 1Hz TMS was predicted by
increased rCBF to the ventromedial prefrontal cortex (VMPFC). Efficacy was associated
with reduced rCBF in the prefrontal cortex (including under the TMS coil), orbitofrontal
cortex, subcallosal cingulate, putamen and anterior insula. Baeken et al. (50)(N=21)
delivered 10 sessions of 10Hz TMS to the left DLPFC, and found that higher baseline
activity in the DLPFC and anterior cingulate predicted superior clinical outcomes. Efficacy
was associated with increased post-treatment activity in the anterior cingulate, bordering on
the subgenual anterior cingulate cortex (SgJACC). Recently, Baeken et al. (51)(N=15)
delivered 20 sessions of sham-controlled accelerated TMS. They found that higher baseline
SgACC activity predicted superior clinical outcomes, and clinical response was associated
with reduced sgACC activity.

In summary, metabolic imaging studies found generally consistent effects of TMS. Higher
frequency stimulation was associated with increased brain activity, and therapeutic efficacy
was associated with changes in brain regions associated with emotion processing or mood
regulation. Observed changes often occurred under the coil (DLPFC), in regions with direct
anatomical connections (e.g., orbitofrontal cortex, ventromedial prefrontal cortex, basal
ganglia), and regions with polysynaptic relationships to the DLPFC (e.g., SQACC and
posterior cingulate cortex (52); reviewed in (53)). The sgACC has been implicated in a
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number of these studies, and most observed reduced sgACC activity following stimulation.
The principle limitations of these studies are those associated with early TMS use, including
lower stimulation intensity, fewer sessions, and modest sample sizes.

Resting State Functional Connectivity and Neural Networks in TMS

Resting state functional connectivity has been favored by recent studies examining TMS
from a neural network perspective. The brain is organized into functional networks (54, 55),
and capacity for dynamic network change in response to changing demands (environmental
or cognitive) is a hallmark of healthy brain function (e.g., (55)). Network relationships are
disrupted in MDD; patients consistently exhibit some degree of default mode network
(DMN) dysfunction, typically hyperconnectivity (56), alongside disruptions in the
frontoparietal executive control network (ECN) and the attention/limbic or salience network
(SN). Taking the DMN as an example, pathological connectivity observed at the group level
is typically ascribed to rumination since DMN regions are implicated in introspection in
healthy controls (57). It is hypothesized that pathological sgACC activity in depression
induces broader DMN dysfunction (57). While hypotheses at the population level may not
extend to all patients with MDD, this model-driven approach provides a conceptual
framework to examine the interplay between clinical phenotypes and imaging observations.

Two key studies by Fox et al. (58, 59) implicated sgACC-to-DLPFC connectivity in the
mechanism of action of TMS, and laid the foundation for future network-related
investigations. These studies built upon reports linking MDD treatment response (see Table
1in (58)) to reduced sgACC hyperactivity (60, 61). In the first study, connectivity
relationships between different DLPFC TMS targets (extracted from TMS efficacy studies)
and sgACC were evaluated in data from 98 healthy controls and 13 MDD patients (58).
Superior clinical outcomes were associated with targets exhibiting the greatest DLPFC-to-
SgACC negative connectivity (described as “anticorrelation™). The importance of this result
was underscored by their next report (59)(n=98 healthy controls used in (58); n=42 new
healthy controls scanned 68+54 days apart; and n=2 MDD patients scanned before and after
a course of TMS), where individual differences in DLPFC-to-sgACC connectivity were
large and reproducible across imaging sessions. These papers suggested that remote
suppression of the sgACC via DLPFC stimulation may be an antidepressant mechanism of
TMS, and that connectivity could be utilized to optimize TMS therapy at the individual
level.

Prospective Resting State Connectivity TMS Studies

TMS to the DLPFC

Resting state functional connectivity studies are described in Tables 3 & 4. Of these, most
delivered TMS to the left DLPFC. Baeken et al. (62)(N=20) acquired resting state images
before and after accelerated TMS to evaluate sgACC functional connectivity, though only a
subset of imaging data was available (n=12; five responders and seven non-responders). At
baseline, future TMS responders displayed greater negative connectivity between the sgACC
and superior medial prefrontal cortex, including portions of the DMPFC. After TMS,
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responders demonstrated reduced negative connectivity between the sgACC and medial
prefrontal cortex (MPFC). No sgACC changes were observed in non-responders.

Liston et al. (63)(N=17 patients; 35 controls) delivered 10Hz TMS to the left DLPFC and
imaged patients before and after TMS. Seeds were based on (58) and networks were small
volume-corrected using the Shirer atlas (64). Compared to controls at baseline, MDD
patients exhibited greater within-DMN connectivity (sgACC-to-DMN), reduced ECN
connectivity (DLPFC-to-ECN), and disrupted between-network connectivity (reduced
DLPFC-to-DMN connectivity and increased sgACC-to-ECN connectivity). These results
were broadly consistent with other MDD imaging research (e.g., (56)). After MDD patients
received TMS, sgACC-to-DMN connectivity was attenuated; sgJACC-to-ECN connectivity
changes were not observed. TMS also reduced connectivity between the DLPFC and the
MPFC/VMPFC. From these results, the authors posited that TMS acts by reducing sgACC-
to-DMN connectivity and inducing negative connectivity between the DLPFC and DMN.
They also reported greater baseline sgACC connectivity predicted superior clinical
outcomes, consistent with literature reviewed above.

Several important points arose from the study by Liston et al. (36). First, TMS selectively
reduced pathological DMN connectivity and reduced ECN-to-DMN connectivity, without
significant changes within the ECN. Another important observation was that “excitatory”
10Hz TMS was associated with reduced connectivity, emphasizing that simple assumptions
regarding frequency and directionality of downstream effects may not be appropriate for
connectivity studies. Importantly, no connectivity changes were associated with clinical
improvement, which complicates the interpretation of their findings.

Baeken et al. (65)(N=44 patients, 44 controls) imaged before and after accelerated
intermittent theta burst stimulation (aiTBS) as part of a larger inconclusive efficacy study
(66). Compared to controls at baseline, patients had greater sgJACC connectivity with the
DLPFC and precuneus (consistent with (56)). Greater baseline connectivity between the
SgACC and orbitofrontal cortex predicted clinical response. After TMS, sgACC connectivity
with the middle frontal gyrus and motor cortex was reduced, and increased with the
VMPFC. They did not observe TMS-induction of negative connectivity (i.e., increased
anticorrelations) between the sgACC and prefrontal regions (e.g., (58, 63)).

We recently imaged participants with comorbid MDD+PTSD before and after 5Hz TMS
(67)(N=33). Using a combination of seed-based and data-driven analyses followed by leave-
one-out cross validation, we found baseline SN connectivity predicted subsequent clinical
response, and MDD symptom reduction was associated with reduced sgACC-to-DMN
connectivity. Interestingly, PTSD symptom improvement was associated with TMS-induced
negative connectivity between the sgACC and DLPFC, similar to mechanisms proposed for
TMS in MDD (58).

Several pilot or unpublished studies are relevant to potential mechanisms of TMS. Kang et
al. (68)(N=24) delivered low-dose TMS and reported reduced DLFPC-to-caudate
connectivity after treatment, using jackknife procedures (69) to validate their findings. Post-
hoc analysis indicated DLPFC-to-caudate connectivity predicted improvement. Ge et al. (70)
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(N=20 patients, 21 controls) examined biomarkers of response, where patients received
iTBS or 10Hz TMS. Responders (regardless of stimulation type) demonstrated stronger
baseline DMN-to-SN connectivity. Avissar et al. (71)(N=27 patients, 27 controls; including
a subset from (63)) reported higher left DLPFC to striatum connectivity predicted TMS
response. Taylor et al. (personal communication)(N=32) delivered 10Hz TMS to the left
DLPFC; while they observed no significant differences between active and sham TMS, post-
treatment sgACC connectivity was reduced in all responders (i.e., sham and active) but not
non-responders. Higher baseline connectivity between the posterior cingulate and insula
predicted non-response.

TMS to the DMPFC

Downar et al. (72)(N=47) delivered 10Hz stimulation to the DMPFC, with treatment target
based on prior work (32, 73). Non-responders demonstrated lower connectivity in reward
pathways (ventral tegmental area, striatum, VMPFC), suggesting intact reward circuit
function was necessary for response. Salomons et al. (74) (N=25, a subset of participants
from (72)) delivered TMS to the DMPFC and compared connectivity before and after
treatment. They seeded the DMPFC (composed of surface and midcingulate seeds from
(75)) and a post-hoc defined sgACC; only midcingulate connectivity led to subsequent
significant results. Several connectivity patterns predicted clinical response, including
positive midcingulate-to-sgACC/MPFC connectivity, and negative midcingulate-to-
thalamus, -hippocampus and -amygdala connectivity. Higher sJACC-to-DLPFC
connectivity, and lower sgACC-to-insula, -putamen and -parahippocampus/amygdala
connectivity also predicted clinical response. When evaluating TMS effects, they observed
reduced DMPFC connectivity with the insula and parahippocampus/amygdala. When testing
the sgACC seed, TMS reduced connectivity between the DMPFC and ventral striatum, and
participants with the best clinical response developed more negative connectivity between
the DMPFC and sgACC. These DMPFC studies use a less common treatment target but
nevertheless reiterate the central role of the sgACC in mechanisms of action of TMS, and
similar to DLPFC studies, they highlight how changes in regions and networks distal from
the stimulation site are associated with clinical improvement.

New Approaches to Understanding Mechanisms of Action: Computational
Psychiatry

Recently, novel computational approaches brought new insights into TMS mechanisms of
action. In a recent study Drysdale et al. (76) used hierarchical clustering and machine
learning to describe “biotypes” of depression using previously published neuroimaging data
from multiple sites (N=1,188). While this was not formally a TMS treatment study, several
findings are relevant to TMS mechanisms. Each of the 4 depression biotypes demonstrated
distinct functional connectivity and clinical symptomatology profiles (see Figure 2d & 3c in
(76)). Within this study, a subsample (n=124) had imaging prior to TMS to the DMPFC
(other relevant findings described in (72) and (74)). A biotype characterized clinically by
anhedonia, relatively severe anxiety, early insomnia, and middle insomnia (“biotype 4”)
characterized patients who had the most robust clinical response to stimulation. Patients
stimulated at other TMS targets were not included, so it is unknown whether this biotype is
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specifically responsive to DMPFC stimulation. Importantly, the biotypes defined by this
analysis were stable over time (n=50, MRI scans 4-6 weeks apart), indicating that imaging
changes observed after a course of TMS could be attributable to treatment and not biotype
fluctuation. The authors also tested whether biotypes transcended categorical diagnostic
boundaries by analyzing a cohort of patients with generalized anxiety disorder (GAD)
(n=39) without comorbid MDD. Over two thirds of GAD patients were classified as
belonging to a biotype, with nearly 60% assigned to the TMS-responsive biotype. This
suggests functional circuits in mechanisms of TMS response might be independent of
categorical diagnosis, and has implications for the nascent field of TMS for anxiety
disorders (e.g., (77)). Whether conceptually similar results could be obtained when looking
at more diagnostically heterogeneous groups (e.g., depressed patients with schizophrenia,
substance use disorders, etc.) remains an important question.

Discussion and Future Directions

In the last ten years, research into mechanisms of TMS has rapidly expanded. The most
commonly observation is that TMS applied near the cortical surface induces changes distal
from the stimulation site and involves multiple neural networks. Interestingly, a similar
thread emerges from studies using different stimulation sites, intensities, and frequencies:
TMS is consistently associated with changes to the DMN (46, 62, 63, 67, 74) and induces
some degree of change in multinetwork relationships. This unexpected consistency is poorly
understood, though the common use of resting state scanning — designed to elicit the DMN —
is a likely contributor. Distinguishing specific effects of TMS from non-specific changes
related to symptom improvement will require more sham-controlled imaging studies.
Despite direct stimulation of the ECN, the absence of significant ECN change across studies
is also noteworthy. While statistical power considerations can lead to negative imaging
results, it is also possible that local changes in metabolic demand induced by TMS
complicate BOLD-based assessment of ECN connectivity. Regardless, the most
parsimonious explanation for these convergent results is that changes near the cortical
surface are less important for therapeutic response than those at distal locations and
networks, inclusive of the subgenual cingulate.

Many important questions remain, and to this end, it is important to consider and challenge
prior assumptions. Much emphasis has been placed on TMS stimulation site (DLPFC,
DMPFC) and approach (high- versus low-frequency stimulation; repetitive, accelerated, and
theta burst TMS)(Figure 1), yet there are strikingly few direct comparisons of these methods.
Based on the general convergence of findings, it is possible that TMS parameters such as
target site, intensity, and frequency either do not matter or are not relevant at the group level;
without prospective data it will be impossible examine this issue. Assumptions about the
nature and direction of connectivity effects from TMS, particularly as a function of pulse
frequency, merit further testing. Summary findings from the metabolic imaging literature
comparing higher and lower-frequency stimulation suggest opposing effects, whereas in
connectivity studies higher frequency TMS is generally associated with reduced
connectivity, an observation supported by a follow up analysis of participants (51) exhibiting
increased GABA signal after 20Hz TMS (20).
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Like many emerging fields, sample sizes are modest (mean n=~24), which is likely related to
the financial resources required for imaging and TMS. It is important to note that effects of
limited power are more substantial when contrasting subgroups (i.e., responders versus non-
responders). Beyond increased type Il error, using small sample sizes in conjunction with
stringent alpha correction negatively impacts predictive value and reproducibility (78, 79).
Synthesis of this collective work is also limited by the heterogeneity of connectivity methods
(Supplemental Table S1). For example, global signal regression, a preprocessing approach
that complicates the interpretation of connectivity results (80, 81), has occasionally been
utilized. Stringent motion correction methods (82, 83, 84) have often not been implemented,
and many studies used multiple comparisons correction procedures recently associated with
false positive inflation (85, 86). Only two reports utilized statistical cross validation (67, 68),
a procedure that should be adopted to enhance the rigor of future TMS imaging studies.

Inconsistencies in reporting direction(s) of connectivity effects also complicate interpretation
of this area. The use of “anticorrelation” can be confusing and it is unclear whether different
groups utilize the term consistently. Furthermore, “positive connectivity” observed after
treatment could reflect either an increase in Z scores, a reduction in positive Z scores that
remains greater than zero, or a change from negative to positive Z scores. Greater negative
connectivity could also be described as an increased correlation. Additionally, when papers
describe directionality of effects it is not always clear whether they refer to raw BOLD
timeseries relationships or whether covariates were incorporated.

Review of this literature highlights a number of recommendations for future work. One
important consideration is selection of study designs that will generate data to fill important
gaps in the current knowledge base. The majority of studies reviewed above imaged
participants before and after TMS. This design provides information regarding overall
changes, yet sheds little light on changes occurring over the course of stimulation (Figure 2).
We have little information about how treatment-related changes in connectivity, neuronal
activity, or regional metabolism might shift over time, or about the durability of such
changes over the longitudinal course of MDD in remission, upon relapse, or in the context of
persistent chronic depression. Serial imaging, interleaved MRI/TMS (e.g., (87)) or
ambulatory (e.g., EEG) assessment methods capturing data at different treatment intervals in
conjunction with behavioral data will be essential for elucidating answers to these questions.
Also, because the field has relied heavily on resting state designs that target the DMN, future
investigations should also include task-based imaging. For example, one research study
suggested brain activation during a planning task might predict TMS response (88).
Integration of multimodal neuroimaging measures to assess TMS-related structural changes
is also an important and relatively understudied area. Preliminary evidence of increased
fractional anisotropy after TMS has been observed (21), and exploratory morphometry
studies observed small increases in DMN and salience regional volume after TMS (22), and
pointed to baseline hippocampal volume as a possible predictor of TMS response (89).

As noninvasive neuromodulation expands to new disease indications and additional imaging
data becomes available, it is critical to advance our understanding of the specificity of
effects. It is possible the findings summarized above are not unique to MDD and instead
represent broader epiphenomena of neural networks moving from a state of disease to a state
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of wellness. It is also possible we have incorrectly interpreted imaging findings as putative
mechanisms of TMS antidepressant action simply because most TMS research to date has
examined effects in depressed samples. Testing this hypothesis requires prospective
comparisons in different disease groups and across various treatment conditions, e.g., TMS
versus, medications, psychotherapy, or other neuromodulatory interventions (e.g., (90)).

In summary, this review reflects a body of work in its infancy, but one that has already
revealed important findings on which to rationally build the next steps of research. Ongoing
and future methodological innovations hold tremendous potential for shedding important
new insights into the putative mechanisms of TMS and advancing our understanding of
neural mechanisms of disease more broadly.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Clinical Variables in TMS Neuroimaging Research
Several important variables in TMS neuroimaging research include site of stimulation,

stimulation frequency and treatment schedule. Each of these may impact imaging findings,
the use of differing approaches complicates interpretation of the current literature.
Abbreviations: DMPFC, dorsomedial prefrontal cortex; DLFPC, dorsolateral prefrontal
cortex; TMS, transcranial magnetic stimulation; TBS, theta burst stimulation
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Potential Designs

Serial Neuroimaging/EEG Longitudinal Imaging

m

Time or Relapse

)
Figure 2. Current and Future Approaches to TMS Neuroimaging

The most common approach in TMS neuroimaging research is to scan participants prior to
and following TMS procedures. While this approach captures change over time, it does not
provide information on what happens during the stimulation itself. Future designs may
include a) serial neuroimaging, where multiple scans or other imaging modalities are
performed at multiple timepoints during a course of TMS, b) causal assessments of neural
network function using interleaved MRI/TMS, and c) testing the durability of neuroimaging
findings across the course of depressive illness (e.g., over time or in the context of clinical
relapse, etc.).

Abbreviations: TMS, transcranial magnetic stimulation; EEG, electroencephalography;
MRI, magnetic resonance imaging
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