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Abstract

Purpose—Statistical equivalence testing is more appropriate than conventional tests of difference 

to assess the validity of physical activity (PA) measures. This paper presents the underlying 

principles of equivalence testing and gives three examples from PA and fitness assessment 

research.

Methods—The three examples illustrate different uses of equivalence tests. Example 1 uses PA 

data to evaluate an activity monitor’s equivalence to a known criterion. Example 2 illustrates the 

equivalence of two field-based measures of physical fitness with no known reference method. 

Example 3 uses regression to evaluate an activity monitor’s equivalence across a suite of 23 

activities.

Results—The examples illustrate the appropriate reporting and interpretation of results from 

equivalence tests. In the first example, the mean criterion measure is significantly within +/−15% 

of the mean PA monitor. The mean difference is 0.18 METs and the 90% confidence interval of 

[−0.15, 0.52] is inside the equivalence region of [−0.65, 0.65]. In the second example, we chose to 

define equivalence for these two measures as a ratio of mean values between 0.98 and 1.02. The 

estimated ratio of mean VO2 values is 0.99, which is significantly (p=0.007) inside the 

equivalence region. In the third example, the PA monitor is not equivalent to the criterion across 

the suite of activities. The estimated regression intercept and slope are −1.23 and 1.06. Neither 

confidence interval is within the suggested regression equivalence regions.
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Conclusions—When the study goal is to show similarity between methods, equivalence testing 

is more appropriate than traditional statistical tests of differences (e.g., ANOVA and t-tests).

Keywords

Calibration; validation; criterion validity; convergent validity

Introduction

Measurement research is an implicit and essential aspect of almost all areas of science. 

Studies in many fields depend on the availability of valid and reliable measures that can 

minimize error and bias. Increased precision is particularly important for answering more 

complex research questions since measurement error directly limits statistical power. Other 

fundamental needs are to develop alternative measures that can save costs, facilitate analyses 

and enable data collection in the field. This need is evident in many areas of science but it is 

particularly common in exercise science research where there is a continued need for better 

field-based measures of physical activity and physical fitness.

Two frequent measurement needs are to evaluate the validity of a new method (by 

comparing it to an established criterion) and to evaluate agreement between two alternative 

methods. The most common approach for evaluating validity and measurement agreement 

has been the Bland Altman method which enables error and bias to be visualized across a 

range of scores (1). These established principles of evaluating agreement (2, 3) have clearly 

advanced measurement research, but a limitation is that it does not enable the degree of 

agreement to be directly quantified. To address this, researchers routinely use standard 

statistical tests of mean differences (e.g. ANOVA, t-tests) to test the absolute differences 

between measures. However, this is a fundamentally flawed approach since these tests are 

designed to detect differences, not equivalence. Failure to reject the null hypothesis of “no 

difference” does not necessarily provide evidence of equivalence. Because of the nature of 

difference tests, studies with large samples are more likely to find statistically significant 

“differences” leading to conclusions that two measures do not agree. The opposite problem 

is more troubling, since smaller samples are less likely to detect differences, which 

ultimately leads to erroneous conclusions that a measure is “valid,” i.e. that two measures 

agree. Tests of mean difference are common in various lines of measurement agreement 

research, but that does not make them correct.

Previous papers have called for the use of more appropriate analytical methods when 

studying the measurement properties of physical activity/fitness assessment tools (4, 5). In 

this paper, we describe the use of “equivalence testing” as a more appropriate method for 

evaluating agreement among measures. A number of papers by our team have utilized this 

approach (6–15), but detailed descriptions of the methodology are needed to facilitate 

broader adoption. The statistical principles underlying equivalence testing will first be 

provided followed by examples of applications in exercise science research.
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General principles of equivalence testing

Equivalence testing has been developed as a statistical approach to directly provide 

empirical “evidence of equivalence”, rather than implying “no evidence of differences” 

between different measurement tools. In performing an equivalence test, the traditional null 

and alternative hypotheses are reversed, meaning the null hypothesis is that two methods are 

not equivalent (i.e., the difference between them is large). Thus, if the observed difference is 

sufficiently small, that null hypothesis is rejected in favor of the alternative, that the 

difference is considered (on subject-matter grounds) to be equivalent to 0.

An immediate complication is that a reversed null hypothesis of “not zero” is practically 

impossible to reject, since normal variability will almost always lead to some degree of 

difference between two measures, regardless of whether that difference has practical 

significance or not. Thus, for equivalence testing the user must define an equivalence region, 

which is defined as the set of differences between population means that are considered 

equivalent to zero. Because we focus on the difference of population means, the methods we 

describe evaluate what is called average equivalence in the equivalence testing literature (30, 

pp. 314–315).

Choosing and justifying the equivalence region is one of the most difficult aspects of an 

equivalence test. The equivalence region may be specified in absolute terms, e.g., two 

methods are equivalent when the mean for a test method is within 5 units of the mean for a 

reference method, or in relative terms, e.g., two methods are equivalent when the mean for a 

test method is within 10% of the reference mean. In either case, the magnitude (5 units, or 

10%) is selected either based on prior evidence on the clinical or practical importance of the 

value, or somewhat arbitrarily by the investigators. Our suggestions for various types of 

studies are discussed later.

If equivalence is specified as a test mean within 5 units of the reference mean, the 

equivalence region for the difference in means (δ) is −5 < δ < 5. The null hypothesis for our 

equivalence test is that the difference is large, either δ ≤ −5 or δ ≥ 5, and the alternative 

hypothesis is that −5 < δ < 5. There are many different statistical methods to test the 

equivalence null hypothesis (16), and we present two, the Two-One-Sided-Tests method and 

the confidence interval method.

Two-One-Sided-Tests method

In the Two-One-Sided-Tests (TOST) method (17), the null hypothesis of non-equivalence, 

either δ ≤ −5 or δ ≥ 5, is divided into two one-sided null hypotheses: Ha: δ ≤ −5 and Hb: δ ≥ 

5. Each hypothesis, Ha and Hb, is tested by a one-sided test at level α. The null hypothesis 

of non-equivalence is rejected at level α only if both one-sided null hypotheses (Ha and Hb) 

are rejected at level α. The larger of the p-values for these individual one-sided tests of Ha 
and Hb is the p-value for the test of the overall null hypothesis of non-equivalence, which 

follows from the Intersection-Union method for constructing a statistical test. This method 

says that if a null hypothesis can be written as a union of two parts, e.g. δ ≤ −5 or δ ≥ 5, it 

can be tested at a significance level of α, e.g. 5%, by testing each part at level α (18). In 

other words, it is not necessary to report the p-values from each one-sided test, since the 
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overall null hypothesis test has a single p-value, which is equal to the larger of the two one-

sided p-values.

This test procedure is illustrated in Figure 1a. The one-sided test of Ha: δ ≤ −5 rejects Ha 
when the observed difference is sufficiently larger than −5, i.e. any value along the right-

pointing arrow. The one-sided test of Hb: δ ≥5 rejects Hb when the observed difference is 

sufficiently smaller than 5, i.e. any value along the left-pointing arrow. The rejection region 

for a statistical hypothesis test is the set of observed differences for which the test rejects the 

null hypothesis. The rejection region for the equivalence test contains the observed 

differences around 0 that are in both one-sided rejection regions.

Figure 1 also shows that the TOST approach is conservative in the sense that a test with a 

type I error rate of 5% will actually reject the null hypothesis at a probability somewhat less 

than 5%. This can be seen by considering the one-sided test of Ha, carried out at α = 0.05. 

This means there is a 5% probability of finding an observed difference in the rejection 

region for Ha when the true difference is exactly −5. Since the rejection region for the two-

part equivalence test is a subset of the rejection region for Ha, the probability of finding an 

observed difference in the rejection region of the equivalence test is less than 5%. Hence, the 

true type-I error rate of a nominal 5% equivalence test is something less than 5%.

This conservative characteristic of equivalence testing can lead to an interesting property of 

the TOST method when the standard error of the estimated difference, is large. When the 

standard error is large, the rejection region for test Ha may only include large positive values 

and the rejection region for test Hb may only include large negative values of the observed 

difference, such that there is no overlap between the two one-sided rejection regions and, 

consequently, no rejection region. Figure 1 illustrates this situation. This situation has 

sometimes been seen as a fallacy of the TOST approach, which can be avoided by more 

complicated test methods (18). However, we consider this interpretation of the TOST results 

to still be reasonable. It makes scientific sense; if the difference is poorly estimated (large 

standard error), it does not seem reasonable to claim confidently that the difference is close 

to 0.

Confidence interval method

A second view of an equivalence test is based on the confidence interval for the difference in 

means. Comparing the equivalence region and a confidence interval for the difference in 

means provides information about the p-value of the TOST equivalence test. The null 

hypothesis of non-equivalence is rejected at level α if the 100(1 − 2α)% confidence interval 

for the difference in means lies entirely with the equivalence region. This is somewhat 

unintuitive, since the α level of the equivalence test differs from the confidence level of the 

confidence interval. For example, if we are interested in an α = 5% test of equivalence (often 

called 95% equivalence testing), we would calculate a 90% confidence interval for the 

difference in means. When the equivalence region is (−5, 5), we would reject the null 

hypothesis of non-equivalence and claim evidence of equivalence if the 90% confidence 

interval was (−4, 2), (−3, −1) or (2.9, 4.9). We would not reject the non-equivalence null 

hypothesis if the 90% confidence interval was (−7, −3) or (−6, 2) or (−10, 10). In all three of 

the non-reject cases, the confidence interval includes values outside the equivalence region.
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This ability to conduct a test by calculating a confidence interval makes it possible to easily 

test equivalence even when a study has a complicated design. All that is necessary is that 

you can obtain an appropriate 90% confidence interval for the difference in means. That 

confidence interval is then used to test equivalence at α = 5%. For example, a study of youth 

activity may include multiple classes in multiple schools. Classes and schools are usually 

considered random effects, so the statistical model for comparing two measurement methods 

is a mixed model. Most mixed model software does not easily compute a one-sided test of 

the difference in means = 5. But, it is easy to get a 90% confidence interval for the difference 

from mixed model software.

Methods and assumptions

The methods and assumptions for equivalence testing depend on whether a surrogate 

measure is compared to a known reference value (i.e. criterion measure). When there is a 

known reference value, the equivalence region can be expressed as a mean response or a 

difference from the reference method mean. In this case, the bounds of the equivalence 

region are known exactly on the scale of the response variable. For example, if a reference 

value is known to be 120, an equivalence region could be defined as (105, 135) if it were 

known that deviations of 15 units had little to no practical importance. Or, the equivalence 

region could be defined as +/− 10% of the reference value, i.e. (108, 132) for a reference 

value of 120 if it were known that deviations of 10% had little to no practical importance. In 

both cases, the bounds of the equivalence region are known exactly because the reference 

value, or the mean for the reference method, is presumed to be known exactly.

Applying the relationship between two one-sided tests and the confidence interval for the 

mean difference, the surrogate measurement would be considered equivalent to the reference 

at α = 0.05 if the 90% confidence interval for the surrogate measurement fell entirely inside 

the known equivalence range. If the data are paired, e.g., simultaneous measured by the 

surrogate and reference methods, the analysis would start by estimating the differences 

between the surrogate measurement and the constant reference value for each individual. 

The paired-data confidence interval for the mean difference would be compared to an 

equivalence region that is expressed in terms of the difference between the two methods. If a 

deviation of 15 units was considered to be of no practical importance, the surrogate method 

would be considered equivalent to the reference at α = 0.05 if the 90% confidence interval 

for the difference fell entirely within the range (−15, 15).

Slightly different approaches are needed when neither method can be treated as an accurate 

reference. When the equivalence region is specified in absolute terms, e.g. (−15, 15), the 

equivalence test is conducted similarly, based on a confidence interval for the difference in 

means, using a two-sample or paired-data method, depending on the design. The analysis is 

more difficult if the equivalence region is expressed as a percent error (i.e. standardized 

difference between the two measures). As before, we wish to show that the mean responses 

for method A and method B are within 10% of each other. This specification has two 

interpretations: µA > (1 − 0.1) µB or µA < (1 + 0.1) µB. Because neither “method A” nor 

“method B” is a criterion measure, we need to make sure that “within 10%” means the same 

thing for both µA/µB and µB/µA. The first interpretation above specifies the equivalence 
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bounds as 0.9 < µA/µB < 1/0.9; the second specifies the bounds as 1/1.1 < µA/µB < 1.1. The 

choice is arbitrary, but has little practical importance for a 10% difference because the two 

specifications of within 10% are very similar. They are more different for "within 20%" and 

even more different for "within 50%". For illustration, we will adopt the first specification of 

"within 10%": 0.9 < µA/µB < 1.1111.

When both methods are measured simultaneously on a subject, we need a way to test the 

one-sided null hypothesis that µA/µB < 0.9 and the one-sided null hypothesis that 1.1111 < 

µA/µB. When the sample average for method B (the denominator in the ratio) is a random 

variable, the ratio of sample averages, ȲA/ȲB, is not normally distributed and it is difficult to 

construct a confidence interval for that difference. However, each of the one-sided 

hypotheses can be re-expressed as a linear combination of normally distributed random 

variables, which avoids all the problems with ratios. The hypothesis µA/µB < 0.9 is 

equivalent to the hypothesis µA − 0.9µB < 0. The random variable ȲA − 0.9 ȲB is normally 

distributed when the two sample averages are normally distributed. Hence, the one-sided 

hypothesis that µA/µB < 0.9 can be tested by computing DA = YA − 0.9 YB for each 

participant and doing a one-sample T-test using the DA values. The null hypothesis is 

rejected if the average of the DA values is sufficiently greater than 0. Similarly, the other 

bound can be tested by computing DB = YA − (YB/0.9) for each subject. The second one-

sided hypothesis is rejected if the average of the DB values is sufficiently smaller than 0.

If the two measurements are log-normally distributed, i.e., the log transformed values are 

normally distributed, the equivalence test can be simplified. If, as is commonly found, the 

two measurements have the same variance, the log ratio of the means for each method is the 

difference in their log transformed measurements. Hence, the equivalence criterion 0.9 < 

µA/µB < 1/0.9 can be expressed as log 0.9 < µlog A − µlog B < − log 0.9. This can be tested at 

α = 0.05 either by calculating a 90% confidence interval for the mean difference of log 

transformed values and comparing it to (log 0.9, −log 0.9), or by computing two one-sided 

tests, one with a null hypothesis value of log 0.9 and the second with a null hypothesis value 

of −log 0.9.

When planning a study that will use equivalence testing, it is still important to determine an 

appropriate sample size. The principles are the same as those for determining a sample size 

for a test of no difference. The sample size depends on the error variance, the number of 

observations, properties of the statistical test or confidence interval, and the expected mean 

difference. The details of the calculation have been described elsewhere (Chao, Shao, and 

Wang 2003, pp. 52 and 59). Briefly, for paired data, the number of paired observations is 

given by

where tα and tβ/2 are the indicated quantiles of a t distribution with n−1 degrees of freedom, 

α is the type I error rate (often 0.05), 1 − β is the desired power (often 0.8), σ2 is the error 

variance, δ is the upper bound of the equivalence region, and ε is the true difference in 
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means. This equation usually has to solved iteratively because the t quantiles depend on the 

choice of n. The use of this formula is demonstrated at the end of example 1 (below).

Examples of Equivalence Testing

We provide three examples from exercise science research that illustrate the principles 

discussed above and their application. The examples are based on challenges that arise in 

trying to evaluate the absolute and relative validity of different measures of physical activity 

and physical fitness, but these are provided just as illustrations of the methodology. The 

three examples include 1) equivalence of a PA monitor and known criterion (n=15; 7–11yrs) 

for energy expenditure during walking; 2) equivalence between two field-based measures of 

aerobic capacity with no known reference method (n=680; 13–17yrs); and 3) equivalence of 

a PA monitor and a criterion measure across 23 activities (n=43; 7–11yrs) using regression. 

The principles and approaches described in the examples can be used in any area of 

measurement research, but these examples will help explain how to actually conduct the 

comparisons.

Example 1: Comparison of a surrogate measure to a known criterion measure

This example demonstrates how equivalence testing procedures can be used to evaluate 

agreement in physical activity measures when a known criterion is available. The data were 

from a study by Kim et al. (12), which evaluated the relative validity of an accelerometry-

based activity monitor for estimating energy expenditure. In this study, participants (43 

children ages 7–11) wore two different monitors while performing a series of 12 different 

lab-based activities (randomly selected from a pool of 24 activities) and while being 

monitored with a portable indirect calorimetry system which served as the criterion measure. 

The goal in this type of study is to determine if the surrogate accelerometry measure is 

equivalent to the criterion, indirect calorimetry.

In the first part of this example, we consider one activity, brisk walking. This activity was 

measured on 15 individuals. The measurements from the activity monitor are made 

simultaneously with the indirect calorimetry measurement, so the data are paired. The mean 

MET using indirect calorimetry is 4.34, so to be equivalent using a ±15% equivalence region 

requires that the confidence interval for the difference between the surrogate and reference 

measures falls between −0.65 MET and 0.65 MET. For the activity monitor, the mean MET 

is 4.16. The standard error of the difference is 0.19, so the 90% confidence interval for the 

difference is (−0.52, 0.15). For this activity, the estimate from the monitor instrument is 

significantly equivalent to the reference with p < 0.05 because the 90% confidence interval 

of (−0.52, 0.15) is completely inside the equivalence region of (−0.65, 0.65).

If the actual p-value for the equivalence test is required, it is important to first calculate the 

p-values for the two one-sided tests. For the hypothesis Ha: δ < −0.65, the T statistic is 

computed as T = (4.16 – 4.34 – (−0.65)) / 0.19 = 2.47. The associated one-sided p-value is 

the probability that a T random variable with 14 degrees of freedom is larger than 2.47, 

which is 0.013. For the hypothesis Hb: δ > 0.65, the T statistic is computed as T = (4.16 – 

4.34 – 0.65) / 0.19 = −4.40. The associated one-sided p-value is the probability that a T 
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random variable with 14 degrees of freedom is less than −4.40, which is 0.0003. The p-value 

for the equivalence test is the larger of the two one-sided p-values, i.e. 0.013.

To illustrate that equivalence requires more than just a non-significant difference in 

traditional tests between two measurements, we consider another activity, light calisthenics, 

which was measured in 19 subjects. The mean MET using indirect calorimetry is 3.77, so 

the 15% equivalence region is that the difference falls between −0.57 and 0.57. The 

estimated difference, 0.04, is within that region and the p-value for the usual paired t-test of 

no difference is 0.93. However, the standard error of the difference is 0.45, which is 

sufficiently large that the 90% confidence interval, (−0.74, 0.83) crosses outside the 

equivalence region. Hence, the estimate from this instrument is not significantly equivalent 

(p > 0.05) for this activity. The p-values for the two one-sided hypotheses are 0.098 for Ha: 

δ < −0.57, and 0.13 for Hb: δ > 0.57, so the p-value for the equivalence test is 0.13.

The decision about equivalence depends on the definition of the equivalence region. 

Returning to the brisk walking example, if equivalence was defined more narrowly, e.g. as 

within 10% of the reference measurement, the equivalence region would be (−0.43, 0.43). 

With this definition of equivalence, the activity monitor cannot be shown to be equivalent to 

indirect calorimetry. The p-values for the two one-sided tests for brisk walking are 0.10 and 

0.0029, so the p-value for the equivalence test is 0.10. Conversely for light calisthenics, if 

equivalence was considered more liberal, e.g. as within 25% of the reference measurements, 

the equivalence region would be (−0.94, 0.94). With this definition of equivalence, the 

activity monitor is significantly equivalent when assessed with light calisthenics. The p-

values for the two one-sided tests are 0.022 and 0.031, so the p-value for the equivalence test 

is 0.031.

When appropriate, the equivalence region can be set up asymmetrically around 0. For 

example, if under-estimating activity is considered more serious than over-estimating 

activity, the equivalence region could be defined as (−5%, 10%) of the reference mean 

activity. When the equivalence region is defined this way, a surrogate measure with a mean 

that is 6% lower than the reference cannot be equivalent but a surrogate that is 6% higher 

may be equivalent if the estimated difference in means is sufficiently precise.

A key question in this case is to determine how many subjects are needed to demonstrate 

equivalence within 10% of the reference measurement (i.e. an equivalence region of (−0.43, 

0.43)). If we consider an α = 5% test, and want a power of 80%, then β = 0.2, We believe 

that the error standard deviation will be similar to that seen in the current data, so σ = 0.74. 

The smallest sample size is when the true mean difference is ε = 0. In that situation, the 

sample size formula for paired data given by Chao, Shao, and Wang (2003, pp. 52) is as 

follows:
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In this case, a sample size of n=27 subjects (26 df for the t quantiles) is needed. When the 

true difference is not 0, the appropriate sample size increases considerably. For example, if 

the true difference is ε = 0.10 (instead of 0), then a sample size of n = 43 is needed.

Example 2: Comparison of two methods when neither is a reference method

This example will demonstrate the utility of equivalence testing when a known criterion is 

not available. The example uses data from a study by Saint-Maurice et al. (9) which 

evaluated the agreement between two common field measures of aerobic fitness in youth. 

The data set includes a sample of 680 participants (324 boys and 356 girls) 7th through 12th 

grade that completed two different field based assessments of aerobic capacity as part of 

their normal physical education programming. One measure is from the Progressive Aerobic 

Cardiovascular Endurance Run (PACER) and the other is from the established Mile Run 

assessment. The validity of both assessments has been well established (19) but they have 

different measurement characteristics and motivational factors. The PACER test requires that 

participants complete a series of 20-meter shuttle runs at a progressively faster cadence until 

voluntary exhaustion (similar to a maximal treadmill test). The number of completed laps is 

then used to predict maximal oxygen consumption using established prediction equations 

(8). The Mile Run test is an alternative assessment of aerobic capacity that requires 

participants to complete a 1 mile distance as quickly as possible with estimates of aerobic 

capacity determined based on a prediction algorithm developed by Cureton et al (20). To 

evaluate the agreement between the two assessments, youth completed both tests (within 10 

days of each other) in a counter balanced design. Both tests provide the same outcome 

indicator of aerobic capacity (VO2 in ml·kg−1·min−1) but neither can be considered a true 

criterion. Thus, this data set provides a useful example to demonstrate an equivalence test 

when neither method is a reference.

Summary statistics for the PACER and Mile Run assessments of fitness are shown in Table 

1a. The mean difference of −0.39 ml/kg/min is approximately 1% of the mean for each 

method. Because of the large sample size, we will consider differences of up to 2% as 

equivalent. That means the null hypothesis is that µpacer/µmile < 0.9800 or 1.0204 < µpacer/

µmile. As described above, we compute DA= Ypacer − 0.98 Ymile for each participant and do 

a one-sample T-test using the DA values. We also compute DB = Ypacer − 1.0204 Ymile for 

each participant and do a second one-sample T-test using the DB values. The T statistic for 

the one-sided test of DA is large and the T-statistic for the one-sided test of DB is negative 

(Table 1a), so the p-values for both tests are small (0.0070 for DA and < 0.0001 for DB). The 

p-value for the equivalence test is the larger of the two p-values from the one-sided tests, i.e. 

0.0070. There is strong evidence that the two assessments are equivalent.

Example 3: Comparison of surrogate and reference measures for many activities

This example is based on the same data used for Example 1 from Kim et al. (12), but 

highlights how equivalence testing can be used to assess overall agreement across a range of 

indicators or comparisons. A common strategy in research on activity monitors is to examine 

the validity for individual activities (often termed “point estimates”) but this has limited 

value since the overall goal is typically to determine the overall accuracy for an array of 

activities. Instead of testing mean equivalence for each separate activity, we really want to 
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capture a single evaluation of equivalence that takes into account all of the activities. When 

there is a reference measure, one way to do this is to fit a regression model, surrogate = β0 + 

β1 reference, to the pairs of values (reference mean, surrogate mean) for each activity. If the 

surrogate method is equivalent to the reference method across multiple activities, then the 

intercept of this regression, β0, is close to 0 and the slope, β1, is close to 1.

The average of the estimates from the surrogate monitor and the indirect calorimetry system 

for each of the tested activities are plotted in Figure 2. The estimated regression line 

predicting the surrogate mean measurements from the reference mean measurements has an 

intercept of −1.23 and slope of 1.06 (Table 2). The intercept is not significantly different 

from 0 (p = 0.0608) and the slope is not significantly different from 1 (p = 0.69). The 

correlation of surrogate and reference means across the 23 activities is 0.82 (p < 0.0001). 

Using the traditional null hypotheses of no difference, it appears that the average activity 

measured by the surrogate monitor is similar to that measured by indirect calorimetry.

As with a single comparison of means, failing to reject a traditional null hypothesis (such as 

intercept = 0 and/or slope = 1) does not demonstrate equivalence. Robinson et al. (21) 

propose using equivalence tests and concluding equivalence when the intercept is equivalent 

to 0 and the slope is equivalent to 1. To claim equivalence across the array of activities at α 
= 0.05 requires that two 90% confidence intervals, one for the intercept and one for the 

slope, fall inside their respective equivalence regions. Robinson et al. (21) suggested 

regression-based equivalence regions as +/− 10% of the reference mean for the intercept and 

(0.9, 1.1) for the slope (i.e., +/− 10% of the slope of 1 that would be expected for equal 

means on the two measures). As before, conclusion(s) about equivalence depend on the 

choice of equivalence region, which should be informed by its clinical or practical relevance 

or subject-matter considerations.

We recommend a revision of the Robinson et al. (21) approach when assessing physical 

activity monitors. When a regression is fit to data points where the X values are the mean 

reference measurement for an activity, the regression intercept estimates the mean surrogate 

measure when the reference measure equals 0. For physical activity, this X value is on the 

edge of possible values and is quite likely to be far outside a relevant range of activity. We 

recommend centering the X values by subtracting the overall reference mean (averaged over 

all activities) from the mean reference values. The intercept now describes an average 

activity. To maintain an intercept of 0 when two methods are equivalent, the overall 

reference mean (average X) is also subtracted from all Y values. The regression slope is 

unchanged by centering. Table 2 illustrates effects of this adjustment on the estimated 

regression intercept and slope.

We evaluate equivalence for the collection of activities using both regressions. We use the 

equivalence regions suggested by Robinson et al. (21) which for the slope is (0.9, 1.1). The 

overall average of all 23 activities is 3.73 MET, so the intercept equivalence region is (−0.37, 

0.37). The 90% confidence intervals for both the intercept and the slope (Table 2) cross 

outside their respective equivalence regions, so we have not demonstrated equivalence. The 

adjusted regression leads to the same conclusion (Table 2). The intercept is more precisely 

estimated in the adjusted regression (Table 2), but the confidence interval for the intercept 
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now falls completely outside its equivalence region. The null hypothesis of non-equivalence 

cannot be rejected. Even though the intercept and slope are not significantly different from 

their target values, the estimates of those parameters are not sufficiently precise to show 

equivalence.

When a p-value is required for the regression test of equivalence, it is essential to examine 

the individual tests that associated with the 90% confidence interval. The regression test of 

equivalence requires four one-sided tests: two that compare the intercept to its equivalence 

region and two that compare the slope to its equivalence region. The Intersection-Union test 

principle (18) says that the p-value for the equivalence test is the largest of the p-values from 

these four one-sided tests. Using the adjusted regression, the p-values for the one-sided tests 

of the intercept are 1.000 and < 0.0001 and the p-values for the one-sided tests of the slope 

are 0.16 and 0.41. Hence, the p-value for the equivalence test of both the intercept and slope 

is 1.000.

The statistical methods used to estimate the 90% confidence interval or test one-sided 

hypotheses can be simple when appropriate or complicated when necessary. For example, 

different numbers of subjects completed each activity, from a minimum of 6 subjects to a 

maximum of 36 subjects. Thus, the activity means for the activities done by large numbers 

of subjects are more precisely estimated. This can be accounted for by fitting a meta-

regression mixed model (22). The results of fitting that mixed model are estimates and 

confidence intervals for the intercept and the slope. For these data, the consequences of 

unequal numbers of observations for each activity are minor: the 90% confidence intervals 

from the mixed model with the adjusted X and Y, (−1.19, −0.68) for the intercept and (0.75, 

1.32) for the slope, are almost the same as those from the simple regression model. The 

important point is that once confidence intervals are available, the evaluation of equivalence 

can be done without considering the details of how those intervals were computed.

Discussion

Science progresses through incremental advances in knowledge as well as through improved 

methods for evaluating and studying phenomena. Researchers often follow methods used in 

past studies but this has limitations if the past methods are inherently flawed. This paper 

documents that there are major limitations to the “standard” methods used to evaluate 

validity and measurement agreement in exercise science and physical activity research. The 

key point is that traditional tests of differences (e.g. ANOVA and t-tests) are inappropriate 

for evaluating agreement. Significant correlations are not sufficient to document validity, and 

failing to show a difference between two methods does not demonstrate that measures are 

equivalent. There are numerous examples in the exercise science literature of validity being 

inferred based on inappropriate analyses and it is particularly concerning when results from 

poorly-conducted studies get cited as evidence and become further reinforced in the 

literature over time. To advance clinical and research practice more attention needs to be 

paid to the selection of statistical tests being used.

The present study documents the advantages and specific applications of equivalence testing 

(as opposed to tests of differences) for evaluating measurement agreement. A number of 
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recent papers provide research-based examples of the specific advantages and applications 

of equivalence tests for methodological comparisons (7, 8, 10, 12, 13, 15, 17, 21, 23), but the 

present paper provides the background and concepts needed to promote broader adoption 

and utilization in measurement research..

This paper focused on average equivalence by providing specific examples of how 

equivalence testing can be used in different types of exercise science research. Examples of 

the applications were provided for evaluating the utility of field measures of physical activity 

and physical fitness, but the method has applications for any realm of measurement research 

focused on agreement. While equivalence testing should not be used alone to define 

agreement, if reported consistently in validation studies, this approach would facilitate 

systematic reporting and evaluations of different measurement instruments and methods. To 

facilitate adoption of the method, sample SAS code and R code (and associated Excel data 

files) are provided for each of the examples presented in the text (see Supplemental Digital 

Content 1, Code and Data.zip).

A few additional comments are warranted to help ensure appropriate use of these methods. 

A challenge for some in interpreting equivalence tests is that (like a Bland-Altman plot) the 

visual examination of the confidence intervals can seem somewhat subjective. However, this 

is not the case with equivalence tests since the ranges are determined and judged empirically. 

As described, p values can be computed for equivalence tests but we very strongly 

recommend reporting the confidence interval since it provides much more information than 

the p-value. However, if statistical significance is defined using traditional methods (i.e. a p-

value < 0.05), this translates to reporting 90% confidence intervals when evaluating 

equivalence. In most situations, the confidence interval is easier to obtain from statistical 

software. The one commonly occurring exception is when equivalence is expressed in terms 

of a ratio without a known criterion value (e.g., example 2). In that case, it is easy to 

construct tests for specific ratios, but more difficult to estimate a confidence interval for the 

ratio.

It is important to acknowledge that the concept of “statistical equivalence” is heavily 

influenced by the choice of the equivalence region. This should be determined by the 

intended use of the surrogate measure. Some guidelines are available from other application 

areas. The US Food and Drug Administration requires that a proposed generic drug satisfies 

an average equivalence comparison to a patented drug, which is the reference measure, with 

an equivalence region of (80%, 125%) (24). The US Occupational Safety and Health 

Administration has an individual-like equivalence criterion that at least 90% of surrogate 

measurements be within (75%, 125%) of a reference measurement, with 95% confidence 

(25). The FDA bioequivalence criterion is the result of practical experience and extensive 

discussions between drug developers and regulators. The appropriate choice, or choices, of 

equivalence region for exercise science research depend on the application. Readers should 

understand that the selection of confidence interval for equivalence is arbitrary in the same 

way as the selection of p < .05 is arbitrary for significance tests.

In conclusion, the present study provides a detailed background on equivalence testing and 

its potential to advance measurement research in exercise science. The rationale for this 
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approach has been well documented but further discussions are needed towards reconciling 

how to best use this information to guide researchers developing/testing new measures and 

researchers interested in the direct applications of these same measures. A good illustration 

of such efforts includes those aimed at standardizing procedures for measure selection or 

those aimed at harmonizing activity outcomes generated by different measures of physical 

activity (26, 27). Similar efforts could be applied to develop standardized approaches for 

evaluating new and existent measures of physical activity or fitness while providing clear 

documentation for the implications (regarding measurement error) of choosing one measure 

over another. Thus, this framework could demonstrate value for improving the quality of the 

measures employed in exercise science research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rejection regions for the two one-sided T tests and for the equivalence test. The equivalence 

region is (l, u). Ha is the hypothesis that Ha: δ < l and Hb is the hypothesis that Ha: δ > u. 

The equivalence null hypothesis, Hequiv, is that Ha: δ < l or δ > u. Each line segment shows 

the set of observed differences for which that null hypothesis is rejected.
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Figure 2. 
Plot of the mean measurements for the reference method and the surrogate method for 23 

activities. The solid line is the fitted regression line. The dashed line shows equality of the 

two measurements.
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Table 1

Summary statistics for the pacer and mile run assessments of fitness on 680 school children. Both pacer and 

mile run values are expressed as VO2 for comparability. Da and Db statistics are the quantities used in each 

one-sided test.

Statistic average se T statistic one-sided p-value

Pacer 43.14 0.27

mile run 43.54 0.26

Difference −0.39 0.20

Da 0.48 0.19 2.46 0.0070

Db −1.28 0.20 −6.50 < 0.0001
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