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Abstract

Extracellular vesicles (EVs) are key mediators of intercellular communication that have been
ignored for decades. Tumour cells benefit from the secretion of vesicles as they can influence the
behaviour of neighbouring tumour cells within the tumour microenvironment. Several studies have
shown that extracellular vesicles play an active role in pre-metastatic niche formation and
importantly, they are involved in the metastatic organotropism of different tumour types. Tumour-
derived EVs carry and transfer molecules to recipient cells, modifying their behaviour through a
process known as “EV-driven education”. Several events that favour metastasis to sentinel lymph
nodes and distal organs are reinforced by EV education, including angiogenesis, inflammation and
lymphangiogenesis. Hence, in this review we will summarize the main mechanisms by which
tumour-derived EVs regulate lymph node and distal organ metastasis. Moreover, since some
cancers metastasize through the lymphatic system, we will discuss recent discoveries about the
presence and function of tumour EVs in the lymph. Finally, we will address the potential value of
tumour EVs as prognostic biomarkers in liquid biopsies, specially blood and lymphatic fluid, and
the use of these tools as early detectors of metastases.
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1. Introduction: Extracellular Vesicles as key vehicles of cell-cell

communication

Multicellular organisms rely on cell-cell communication to guarantee tissue homeostasis.
There are different ways that neighbouring cells can communicate, through cell-cell
contacts, gap junctions, extracellular vesicles and tunnelling nanotubes (McMillen and
Holley, 2015; Nawaz and Fatima, 2017). Of these, extracellular vesicles (EVs) have emerged
as key messenguers for the intercellular communication that regulates both physiological
and pathological processes (Becker et al., 2016; Maas et al., 2017). EVs are released by
most cell types and they carry different molecules that influence the activity of the
surrounding cells, including proteins, RNA, DNA, lipids and metabolites (Abels and
Breakefield, 2016; Tkach and Thery, 2016; Valadi et al., 2007). EVs are a heterogeneous
group of membrane vesicles mainly comprised of exosomes (40-100 nm diameter
multivesicular vesicles of endocytic origin) and microvesicles (MVs, 100 to 1000 nm
diameter that bud directly from the plasma membrane (Raposo and Stoorvogel, 2013).
Nevertheless, recent studies suggest that smaller vesicles (<100 nm) derived from plasma
membrane protrusions can be isolated together with exosomes (Colombo et al., 2014).
Larger vesicles are also actively secreted by some cell types, like cytoplasts (Headley et al.,
2016) and large oncosomes (Di Vizio et al., 2012), further demonstrating that EVs are a
heterogeneous population of vesicles that influence different biological processes.

Different techniques can be used to isolate EVs, such as ultracentrifugation, filtration, size
exclusion chromatography, immunoaffinity isolation and microfluidic approaches (Li et al.,
2017). As such, the International Society for Extracellular Vesicles (ISEV) has published
guidelines in order to standardize EV isolation methods across the research community
(Witwer et al., 2013; Witwer et al., 2017). Ultracentrifugation is considered the gold-
standard purification method to isolate exosomes and MVs, and it is one of the most
commonly used techniques (Li et al., 2017). Polymeric precipitation has raised concerns in
the EV research community due to the contamination with protein or soluble factors (Helwa
etal., 2017; Lobb et al., 2015). The further development of protocols to isolate and
characterize EVs, adapting microfluidic isolation (Gholizadeh et al., 2017), nanoplasmonic
sensors (Im et al., 2014; Liang et al., 2017; Maiolo et al., 2015) or asymmetric flow
fractionation (Petersen et al., 2014; Sitar et al., 2015), should shed light on their true
complexity and heterogeneity (Kowal et al., 2016).

Exosome shedding is normally dependent on canonical pathways regulated by the Rab
family of proteins, including Rab27, Rab11 and Rab35 (Hsu et al., 2010; Ostrowski et al.,
2010; Savina et al., 2005; Savina et al., 2002). There are common molecules involved in the
biogenesis of both MVs and exosomes, such as the VPS4 ATPase (Jackson et al., 2017).
MVs are normally formed by direct budding of the plasma membrane (Muralidharan-Chari
etal., 2010) and changes in Ca2* seems to be critical for these membrane lipid
rearrangements (Minciacchi et al., 2015). Although there has not been extensive research
into the mechanisms that control MV release, the calcium dependent enzyme Calpain
regulates MV biogenesis in platelets (Crespin et al., 2009) and malignant breast cancer cells,
its inhibition blocking their secretion by the latter (Taylor et al., 2017). ADP-ribosylation
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factor 6 (ARF6) also control MV formation and membrane release (D’Souza-Schorey and
Chavrier, 2006), and it has been implicated in regulating ERK-MLCK (myaosin light-chain
kinase) activation-dependent MV shedding from breast cancer cells (Muralidharan-Chari et
al., 2009). In other human cancer cells, small GTPases like RhoA, Rac and Cdc42 are key
players in MV biogenesis, not least because they regulate actin dynamics (Antonyak et al.,
2012; Li et al., 2012). Through independent and non-redundant mechanisms, Ubiquitin
ligase adaptors like the arrestin domain-containing proteins Arrdcl and Arrdc4, influence
the release and sorting of the EV cargo in HEK293 cells and gut explants (Mackenzie et al.,
2016). It has also been hypothesized that the MV cargo is recruited to specific foci at the
plasma membrane, increasing the local pressure at the membrane to force its curvature and
posterior budding. Hence, the enrichment of the protein cargo at sites of future MV
formation could be sufficient stimulus to generate extracellular MVs (Stachowiak et al.,
2012). Interestingly, novel pathways of vesicle release have also been described, such as
hyaluronan-coated EVs (Rilla et al., 2014). Due to this heterogeneity, it is sometimes not
clear what kind of vesicles are referred to in the literature and therefore, in this review we
will use the general term EV when the nomenclature is ambiguous or not defined.

The uptake of EVs by recipient cells has been little studied, although it is thought to involve
two main mechanisms: direct membrane fusion or endocytosis (French et al., 2017). The
most canonical and best characterized mechanism of EV uptake is endocytosis, an active
process of engulfment that includes clathrin-mediated endocytosis, phagocytosis or
macropinocytosis (French et al., 2017). However, it remains unclear whether this mechanism
is dependent on specific receptors or proteins located on the EV surface that may target them
to specific cell types. Interestingly, epithelial cells and astrocytes cannot normally internalize
EVs from transformed cells, although they do internalize EVs when transformed through
oncogenic Ras or c-Src expression (French et al., 2017). Thus, cellular transformation may
reinforce EV uptake. The preferential interactions between EVs and certain cell types have
also been observed /in vivo, and melanoma-derived exosomes accumulate in the lungs and
bone increasing the frequency of metastasis at these sites (Peinado et al., 2012). Similarly,
integrins at the surface of exosomes and cells also influence exosome targeting to specific
cell types, promoting their uptake and reinforcing organ specific metastasis (Hoshino et al.,
2015). Exosomes from the lung-tropic 4175-LuT breast cancer cells contain a6p4 and a6p1
integrins, and they accumulate in regions of the lung rich in laminin (a ligand for these
integrins), which favours lung metastases. Similarly, exosomes from the liver-tropic BxPC-3
pancreatic cancer cell line contain integrin avp5 and they preferentially accumulate in
regions of the liver rich in the integrin avp5 ligand, fibronectin (Hoshino et al., 2015).
Overall, these data suggest that EV localization /n vivois determined by adhesion
molecules, such as integrins, and specific EV localization to these regions may be
responsible for specific EV uptake. Futher studies will determine if these molecules are
uniquely drivers of EV uptake or complementary to other receptors.
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2. Tumour-derived EVs that remodel the tumour microenvironment at
primary sites

Tumour cells release a wide variety of tumour-derived EVs (tEVs) that influence the
behaviour of cells in the primary tumour microenvironment ((Bobrie and Thery, 2013; Thery
et al., 2009). Pioneering studies showed that oncoproteins are shed and transferred from one
tumour cell to another via tumour MVs (tMVs), referred to as oncosomes (Al-Nedawi et al.,
2008; Rak and Guha, 2012). Thus, epidermal growth factor receptor variant 111 (EGFRvIII)
can be packaged into MVs from EGFRvIII expressing glioma cells and transferred to
EGFRvIlI-negative cancer cells, activating mitogen-activated protein kinase (MAPK) and
AKT signalling pathways in the recipient cells, and thereby enhancing their survival and
tumour growth (Al-Nedawi et al., 2008). Similarly, human breast and colorectal cancer cells
that harbour KRAS mutations secrete tumour exosomes (tExos) that are enriched in KRAS
and EGFR ligands, and that enhance the invasiveness of neighbouring recipient cells
(Demory Beckler et al., 2013; Higginbotham et al., 2011).

State-of-the-art technology has recently allowed the /7 vivo transfer of exosomes from
highly to less metastatic cells to be visualized. For example, a Cre-LoxP system has been
used in tExo-donor cells in association with GFP or Tomato genes to induce a colour switch
in the recipient cells upon tExo uptake (Zomer et al., 2015). This approach made it possible
to observe multiple non-tumour cells receiving tExos in both the tumour microenvironment
and in peripheral tissues (e.g., lymph nodes, the lungs and spleen). These data highlight the
ability of tExos to not only transfer information to neighbouring tumour cells but also, to
stromal cells within the primary tumour microenvironment and to metastatic organs (Zomer
et al., 2015). Endothelial cells have also been described as recipients of tEVs in glioblastoma
and pancreatic cancer models, resulting in an activation of the angiogenesis that favours
tumour growth and dissemination (Nazarenko et al., 2010; Skog et al., 2008). Fibroblasts
can also be transformed into myofibroblasts following the uptake of transforming growth
factor beta (TGFp)-enriched prostate tExos (De Wever et al., 2014), and the tumour
progression of these tExo-treated fibroblasts is favoured by vascularization, tumour growth
and local invasion (De Wever et al., 2008; De Wever et al., 2010). Moreover, this
myofibroblast phenotype is also observed in adipose tissue-derived mesenchymal stem cells
when they receive breast cancer-derived tExos (Cho et al., 2013). Similarly, tEVs also help
generate the immunosuppressive microenvironments that foster tumour growth, inducing a
reprograming of macrophages towards a M2 tumour-supportive phenotype (de Vrij et al.,
2015; Shinohara et al., 2017a), cytotoxic CD8" T cell apoptosis (Wieckowski et al., 2009), a
decrease in NK proliferation and a phenotypic shift of CD4* cells to T regulatory
lymphocytes (Whiteside, 2013). Myeloid-derived suppressor cells (MDSCs) can also be
reprogramed through the transfer of glioma and carcinoma EV-mRNAs so that they elicit
enhanced immunosuppression (Ridder et al., 2015).

Together, these data strongly support the role of tEVs as key vehicles driving information
transfer between tumour and stromal cells within the tumour microenvironment, and as a
relevant element in the progression of cancer. Indeed, attempts have been made to prevent
this cell-cell communication by interfering with EV biogenesis in cancer cells. Inhibiting
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RAB27 expression and that of its effector proteins, the synaptotagmin-like protein 4 (Slp4)
and synaptotagmin-like protein homologue lacking C2 domains b (Slac2b), reduced
exosome secretion, indicating this is an important pathway in the regulation of exosome
release (Hendrix and De Wever, 2013; Ostrowski et al., 2010). Interfering with RAB27 also
reduces exosome release from different melanoma, breast, fibrosarcoma or prostate cancer
cell lines, slowing down tumour progression, cell migration and metastasis (Tkach and
Thery, 2016) and references therein). Other strategies that target MV release include
blocking the small GTPasa RhoA and/or ADP-ribosylation factor 6 (Arf6) in cancer cells,
similarly impairing tumour progression (Li et al., 2012; Muralidharan-Chari et al., 2009).

Impeding EV release has been successfully tested in several cell types, such as by inhibiting
neutral sphingomyelinase (n-SMase), an enzyme regulating ceramide production (Trajkovic
et al., 2008). There were fewer lung metastasis in a mouse model of Lewis lung carcinoma
(LLC) treated with the n-SMase inhibitor GW4869, and part of this effect may be mediated
by reduced exosome production (Fabbri et al., 2012). In addition, EV release is dampened
by dimethyl amiloride (DMA), an inhibitor of Na*/H* and Na*/Ca2* exchangers (Vader et
al., 2014). In three mouse tumour models, DMA effectively reduced EV release and restored
anti-cancer immunity, as well as the effectiveness of the chemotherapeutic agent
cyclophosphamide (Chalmin et al., 2010). In fact, many of the signals delivered to immune
cells via cancer exosomes are involved in directing the immune system to specifically ignore
cancer cells and hence, blocking cancer exosome release may be an effective adjuvant to
current therapies. Another strategy might be to filter out or reduce the circulating tumour-
derived exosomes in plasma using filtration or capture methods (Marleau et al., 2012),
further evidence of the potential benefits of inhibiting EV release to treat of cancer.
However, it remains unclear how to specifically interfere with these pathways in tumour
cells without affecting the physiological function of these vesicles in normal cells. Indeed, it
remains unclear how to differentiate tEVs from EVs secreted by hematopoietic or other
stromal cells. There is currently no reliable method to identify and specifically eliminate
tEVs, and thus, novel strategies must be developed to shed more light on the potential
therapeutic benefits of specifically blocking or eradicating tEVs.

3. Circulating EVs

3.1. Tumour-derived EVs in plasma from cancer patients

Interestingly, tEVs are thought to be promising biomarkers of cancer diagnosis and/or
prognosis, as well as novel targets for future therapies to combat cancer (Boukouris and
Mathivanan, 2015; Ciardiello et al., 2016; Peinado et al., 2012). These EVs have been
detected in the blood of patients with glioblastoma, breast, lung, ovary, prostate, colorectal,
melanoma and gastric cancer (Costa-Silva et al., 2015; Hoshino et al., 2015; Peinado et al.,
2012; Rosell et al., 2009; Silva et al., 2012; Skog et al., 2008; Sueta et al., 2017;
Tavoosidana et al., 2011; Taylor and Gercel-Taylor, 2008). Whereas the size of tEVs is
similar between healthy and cancer patients, particularly that of exosomes, the exosomal
protein concentration is higher in cancer patients, which increases in a stage-dependent
manner (Peinado et al., 2012).
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Specific molecular signatures appear to be associated with tEVs, which has led to the
identification of miRNAs with prognostic potential in different cancer types, such as
colorectal cancer (Ogata-Kawata et al., 2014). In these patients, exosomal miR19a and
miR17-92a expression was correlated with poor prognosis and increased recurrence
(Matsumura et al., 2015). Similarly, miR141 and miR375 have been correlated with a
metastatic disease in prostate cancer (Bryant et al., 2012; Ciardiello et al., 2016). In
oesophageal cancer, exosomal miR21 expression was associated with recurrence and
metastasis (Liao et al., 2016), while miR-21-3p was correlated with cisplatin resistance in
ovarian cancer cells (Pink et al., 2015). By contrast, lower levels of miR125b were found in
serum-derived EVs from advanced melanoma (Alegre et al., 2014), similar to the expression
of miR718 or miR92a in exosomes of hepatocarcinoma (HCC), the levels of which are
inversely correlated with tumour recurrence after liver transplantation and tumour
progression (Masyuk et al., 2013; Wang et al., 2014).

Proteomics analysis of circulating EVs from the plasma or serum of cancer patients has also
shed light on the specific protein signatures associated to tumour progression. There is more
hepatocyte growth factor regulated tyrosine kinase substrate (HGS) in EVs, which is
correlated with colorectal cancer (CRC) progression (Sun et al., 2016). Similarly, hepatocyte
growth factor receptor (HGFR or c-MET) was also found in circulating exosomes of
aggressive melanomas, together with VLA-4, HSP70, HSP90 and tyrosinase-related protein
2 (TYRP2: (Peinado et al., 2012). Circulating exosomal MIF has been proposed as a
candidate prognostic marker of liver metastasis in pancreatic ductal adenocarcinoma (PDAC:
(Costa-Silva et al., 2015), similar to exosomal EpCAM for ovarian cancer progression
(Taylor and Gercel-Taylor, 2008). Other molecules have been identified as potential
candidates in liquid biopsies of circulating breast cancer EVs, like Fibronectin, Survivin or
Del-1 (Khan et al., 2014; Moon et al., 2016). Interestingly, exosomal integrins identify
organotropic metastasis in different cancer subtypes (Hoshino et al., 2015), suggesting that
identifying other markers within circulating EVs may also help predict future sites of
metastasis.

Exosomal DNA is an additional source of material in the diagnosis and prognosis of cancer
(Kalluri and LeBleu, 2016), and tEVs may contain single-stranded DNA (Balaj et al., 2011),
mitochondrial DNA (Guescini et al., 2010a; Guescini et al., 2010b; Sansone et al., 2017) and
double-stranded DNA (Kahlert et al., 2014; Thakur et al., 2014), protecting these nucleic
acids from degradation (Jin et al., 2016). ExoDNA reflects the mutational status of the cell
of origin, and BRAF (V600E) and EGFR mutations have been described in exoDNA
isolated from various cancer cell lines (Thakur et al., 2014). Moreover, the entire gDNA
mutational landscape could be represented in exoDNA. For example, KRAS, TP53,
NOTCH1 and BRCA2 mutations have been detected in circulating exosomes from patients
with pancreatic cancer (Kahlert et al., 2014; San Lucas et al., 2016; Yang et al., 2017), and
gDNA mutations were also detected in prostate cancer-derived EVs (Lazaro-1banez et al.,
2014). Interestingly, DNA sequences from glioma-derived EVs in the peripheral blood of
patients could identify tumours able to cross the blood brain barrier (Garcia-Romero et al.,
2017). However, the use of exoDNA is still limited in the clinical setting due to the isolation
yields and sensitivity of detection.

Mol Aspects Med. Author manuscript; available in PMC 2019 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Nogués et al.

Page 7

The isolation of exoDNA and exoRNA in combination with circulating free DNA might
offer a more reliable and sensitive screening tool to detect specific mutations. Thus,
approaches now focus on developing new techniques that favour the sensitive detection of
cancer-specific circulating EVs without the need for a purification step (Yoshioka et al.,
2014). The development of kits to isolate RNA from circulating EVs has re-shaped the
analysis of circulating mutations and RNAs in liquid biopsies, facilitating the analysis of
larger patient cohorts (Enderle et al., 2015; Figueroa et al., 2017; McKiernan et al., 2016).
Rencetly, next generation sequencing in nucleid acids from exosomes analyzing BRAF,
KRAS, and EGFR mutations in advance cencer patients suggest that has higher sensitivity
compared with clinical testing of archival tumor and testing of plasma cfDNA (Mohrmann et
al., 2017).

Taken together, liquid biopsies of tumour-derived EVs offer notable advantages, since they
represent a non-invasive method that can provide diagnostic and prognostic information
prior to, during and after cancer treatment. RNA, proteins and DNA are promising
biomarkers that are shed into tEVs, although most studies performed have analysed limited
numbers of patients. The analysis of larger patient cohorts, combination of exosomal with
circulating nucleid acids and the development of standardized protocols in clinical trials will
better define the utility of these biomarkers in clinical settings.

3.2 EVs in Lymphatic fluid

Many cancer types use lymphatic spread to reach distal sites of metastasis, such as
melanoma or breast cancer (van Akkooi et al., 2010). Since EVs mimic features of their
tumours of origin and their size is within the range for lymphatic transport (5-100 nm:
(Srinivasan et al., 2016), it is tempting to speculate that, besides soluble factors, tEVs could
also use lymphatic pathways to establish pre-metastatic niches at both local (lymph nodes)
or a distal sites (lungs)(Sleeman, 2015a, b). Given that EVs can be isolated from diverse
body fluids other than blood, including urine, semen, saliva, breast milk, amniotic fluid,
ascites fluid, cerebrospinal and bile fluids (Raposo and Stoorvogel, 2013), it should be
possible to use tEVs from lymphatic fluid as a diagnostic and prognostic tools in cancer
patients.

In vitro experiments show that human ovarian cancer-derived exosomes can be quickly and
selectively transported through the lymphatic endothelium, suggesting that the lymphatic
system actively transports tExos (Srinivasan et al., 2016). This process could be mediated by
lymphatic endothelial cells (LECs: Figure 1a). /n vivotransport of tExos through the
lymphatic system has also been demonstrated in mouse models and, for example, tExos
from human ovarian cancer cells (HEY) were detected in lymphatic vessels within minutes
of being injected into the tip of the mouse’s tail. Indeed, the steady state value of tExos was
reached 20 min after injection in both dominant and secondary draining lymphatic vessels
(Srinivasan et al., 2016). Footpad injection of melanoma-derived EVs, which permits direct
and exclusive entry of EVs into the lymphatic system, indicating that melanoma exosomes
can home to lymph nodes ipsilateral to the injection site, in contrast to liposomes that
distribute to both ipsilateral and contralateral lymph nodes (Hood et al., 2011). This is
consistent with the efficient /n vivo dissemination of tEVs via the lymphatic system to the
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lymph nodes (Pucci et al., 2016). These data not only confirm the ability of tExos to travel
through the lymphatic system but also, to home selectively to the lymph nodes, suggesting a
possible role of tEVs in the formation of a permissive microenvironment for tumour cells in
the lymph nodes. This would be consistent with their already established functions in the
formation of pre-metastatic niches (PMNs) at distal sites (Costa-Silva et al., 2015; Hoshino
et al., 2015; Peinado et al., 2012).

There is still no explanation as to why some tumours metastasize preferentially to lymph
nodes, whereas other rarely use lymphatic spread to reach distal sites and intravasate directly
into blood vessels, such as sarcomas (Leong et al., 2006). Transport via the blood and lymph
is likely to result in different bio-distributions of exosomes. Indeed, intradermal injection
preferentially targets the lymphatic pathway and ends with an accumulation of exosomes in
the nodes and liver, whereas intravenous injection increases the EV load in the spleen and
kidney (Saunderson et al., 2014; Srinivasan et al., 2016). Moreover, recent evidence from
our laboratory suggests that the lymph is richer in tEVs than plasma (unpublished
observations), which strongly supports the use of lymphatic fluid as suitable liquid biopsy
tissue. However, using lymphatic fluid as a source of tEVs has only rarely been addressed
(Maus et al., 2017; Pucci et al., 2016).

The number of metastatic lymph nodes directly correlates with decreased overall survival in
clinical stage Il (no lymph node metastases) and I11 (positive lymph node metastasis)
patients. However, the exact relationship between lymph node metastasis and cancer
dissemination remains unclear. Lymph node dissemination could merely represent a
metastatic disease state in parallel with distant metastasis, or it could be a central hub
necessary to establish future sites of dissemination (van Akkooi et al., 2010). The
identification of biomarkers that help us predict distinct modes of metastasis could have an
impact on patient diagnosis and treatment, with the source of tEVs possibly a powerful way
to achieve this goal. Whereas blood-circulating exosomes could identify distal metastatic
markers, specific signatures found in lymph-circulating exosomes could predict the
dependence of metastasis on lymph nodes, helping to evaluate the benefits of invasive
therapies like lymph node resection for patient survival. Analysing lymph-circulating EVs
might shed light onto the mechanisms of metastasis. Nevertheless, one limitation of
lymphatic fluid isolation compared to blood-based testing is that it normally requires
invasive techniques like fine-needle aspiration or surgical intervention. Lymphatic drainage
from the lymph node obtained after dissection has been used to profile disease markers in
melanoma patients (Nowecki et al., 2008; Rutkowski et al., 2008; Wlodzimierz et al., 2004).
Indeed, evaluating the presence of melanoma cell markers in lymphatic drainage after lymph
node dissection facilitates a more reliable selection of patients at high and low risk of relapse
when compared to blood. These findings suggest that melanoma marker detection in
lymphatic drainage could be a promising approach with strong prognostic value (Nowecki et
al., 2008; Rutkowski et al., 2008; Wlodzimierz et al., 2004). However, several limitations
must first be overcome, including: 1) the standardization of the protocol in the clinic; 2) the
poor quality of the samples obtained due to the storage time (normally overnight and at
room temperature); and 3) the mix of the fractions of lymphatic fluid and plasma, sometimes
obtaining a mixed fluid called seroma or lymphatic exudate. Development of state-of-the-art
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approaches allowing the isolation of this fluid and profiling secreted EVs would represent a
significant advantage in the field.

4. EVs at local sites of Metastasis: lymph node reprograming

While melanoma and ovarian tEVs can be readily found in the lymph nodes (Hood et al.,
2011; Pucci et al., 2016; Srinivasan et al., 2016), there is evidence that tEVs from other
tumour origins also home to lymph nodes, such as breast or pancreatic cancer (Chow et al.,
2014; Jung et al., 2009; Zomer et al., 2015). Importantly, while injected human ovarian
cancer EVs are no longer detected in the lymphatic vessels after 24 hours, tEVS remain
evident within the lymph nodes even 2 days later (Srinivasan et al., 2016). This persistence
could reflect their fusion with recipient cells in the lymph nodes and support the positive
role of tEVs in the formation of PMNSs in the nodes. Similar results were obtained using live
magnetic resonance imaging (MRI) to detect melanoma exosomes in the popliteal lymph
nodes 1 and 48 hours after footpad injection (Hu et al., 2014). Melanoma-derived EVs can
be captured by subcapsular sinus (SCS) macrophages (Figure 1b) and exosomes that interact
with these macrophages prevent tEV fusion with B lymphocytes in the cortex (Pucci et al.,
2016).

The association of tExos with macrophages has also been described in axillary lymph nodes
of mice bearing xenografted human breast cancer (Chow et al., 2014). Interestingly, human
ovarian cancer-derived exosomes more rapidly interact with CD11b* cells in the nodes,
whereas the association between exosomes and B cells is enhanced after 48 hours
(Srinivasan et al., 2016), suggesting macrophages are the first barrier to exosome uptake.
However, although CD11b™ is expressed by monocytes and macrophages in the SCS of the
lymph nodes, the possibility that lymph node resident dendritic cells (DCs) also take-up
tEVs cannot be ruled out, as they also express this receptor (Heath and Carbone, 2013).
Moreover, melanoma EVs appear to influence DC maturation and they also promote PMN
formation in tumour-draining lymph nodes (Maus et al., 2017).

Nevertheless, it is still not fully understood how melanoma-derived exosomes reach the
sentinel lymph nodes (sLN), and how they affect the lymph node microenvironment during
PMN formation, although there is evidence that tExos guide melanoma cells to exosome rich
sites in draining lymph nodes (Hood et al., 2011; Peinado et al., 2012). Studies on gastric
cancers also confirmed that tExos could promote metastatic behaviour in the lymph node,
increasing human cancer gastric cell proliferation and invasion (Liu et al., 2016a). However,
they also show that exosomes act in conjunction with other soluble factors to support
metastatic spread, since conditioned medium containing both tExo and soluble factors
enhanced the pro-metastatic effect of gastric cells (Liu et al., 2016a). These results are
similar to those observed with CD44v6 conditioned media and rat pancreatic cancer cells
(Jung et al., 2009). Hence, while regional or sentinel lymph nodes preconditioned by tEVs
may play an active role in metastatic progression, little is known about the mechanisms
underlying this process. For instance, do tEVs have a specific molecular signature that
defines its lymph node predilection? What are the pre-metastatic changes they produce
within the node to allow tumour cells to colonize them?
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PMN formation is initiated by local changes, such as the induction of vascular leakiness, and
a remodelling of the stroma and extracellular matrix (ECM), followed by dramatic systemic
effects on the immune system (Peinado et al., 2017). Analysis of inguinal lymph nodes
revealed that melanoma-derived exosomes produce significant changes in gene expression,
including alterations to genes associated with tumour cell recruitment (Stabilin 1, Ephrin R
b4 and integrin av), modifications of the ECM (MapK14, urokinase plasminogen activator
protease -uPA, Laminin 5, Collagen 18 a-1 and G-a.13) and importantly, in vascular growth
factors that are critical to promote tumour angiogenesis (TNF-a, VEGF-B, HIF1-a and
Thbsl1: (Hood et al., 2011). EVs containing CD97, a member of the GPRC family of
adhesion molecules, seems to be essential to prepare the lymph node PMN for gastric
cancer, upregulating their partners CD55 and a5B1 Integrin in the lymph nodes, and tumour
metastatic factors like CD151, EpCAM or CD44v6 and CD31 that promote angiogenesis
(Liu et al., 2016a). Interestingly, pancreatic cancer exosomes also induce CD31 expression
in the lymph nodes (Jung et al., 2009). Moreover, CD44v6 expression in these EVs affects
the profile of exosomal miRNA transfer to stromal cells in the lymph nodes, triggering
cadherin-17 (Cdh17) downregulation and matrix metalloproteinase upregulation (Mmp2,
Mmp3 and Mmp14:(Jung et al., 2009; Rana et al., 2013). Lymphangiogenesis is thought to
be another key contributor to lymph node PMN formation, not only favouring local
metastasis but also distal colonization (Mumprecht and Detmar, 2009; Olmeda et al., 2017).
Interestingly, the heparin-binding factor Midkine (MDK) appears to be a systemic inducer of
neo-lymphangiogenesis that defines patient prognosis (Olmeda et al., 2017). Despite being
identified in exosomes, both exosomal or soluble MDK seems to underlie these pro-
lymphangiogenic effects, highlighting the need for further studies to distinguish the specific
contribution of exosomal MDK to the pre-metastatic transformation of the lymph node.

Since lymph nodes are key organs in orchestrating immune responses and several immune
cells like macrophages, B cells and potentially DC cells are responsible for tEV uptake by
the lymph node, it’s tempting to suggest that tEVs probably modulate immune responses in
this organ, generating immune tolerance to support lymph node colonization. Thus, breast
cancer cell-derived exosomes stimulate the activation of tumour-associated macrophages
(TAMs), resulting in the secretion of pro-inflammatory IL6 and NF-kB activation (Chow et
al., 2014). Moreover, breakdown of the SCS macrophage barrier in lymph nodes allows
melanoma EVs to interact with B lymphocytes and initiate tumour-promoting humoral
immunity (Pucci et al., 2016). Finally, the cargo of melanoma EVs significantly
compromises DC maturation without affecting antigen presentation (Maus et al., 2017),
further evidence that tEVs are key modulators of immune responses in the lymph node.
However, although tEVs appear to regulate T, NK and myeloid cells in other settings (de
Vrij et al., 2015; Ridder et al., 2015; Shinohara et al., 2017b; Whiteside, 2013; Wieckowski
etal., 2009), it is still not fully understood how melanoma-derived exosomes influence
immune responses in the sSLN to promote tumour metastasis. Are tEVs passively or actively
involved in PMN formation in lymph nodes? Are specific subpopulations of exosomes
involved? Are PMNs in lymph nodes different to those at distal sites? Further studies will be
required to resolve these questions.
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5. EVs at distal sites of metastasis

Although several mechanisms have been proposed for tumour dissemination, homing, and
metastatic organotropism (Obenauf and Massague, 2015), there is little information about
the role of tEVs in these processes. How tumour cells reach distal organs and what are the
mechanisms involved in metastatic organotropism are still key questions in metastasis
biology. In this section, we will summarize the current information about the role of tEVs in
PMN formation in four of the most common organs for metastasis: lungs, brain, bone, and
liver.

5.1-Extracellular Vesicles and Lung Metastasis

The lungs are a common organ for metastasis, and lung metastases are usually correlated
with poor prognosis and low overall survival. Lung metastases are frequently derived from
cancers of the head and neck, melanoma, breast, stomach, pancreas, kidney, bladder, the
male and female genitourinary tract, and sarcomas (Coleman, 2001; Herold et al., 1996). A
role for EVs in lung metastasis was first proposed in 2005 (Janowska-Wieczorek et al.,
2005). Intravenous injection of Lewis lung carcinoma cells covered with platelet-derived
MVs (PMVs) increased lung metastasis (Janowska-Wieczorek et al., 2005) and
mechanistically, PMV transferred the integrin a2f3 (CDA41) to lung cancer cell lines, thereby
stimulating proliferation and increasing tumour cell invasion (Janowska-Wieczorek et al.,
2005). Similarly, CD105" MVs from human renal cancer stem cells promote angiogenesis
and the formation of PMNs in the lungs, reinforcing the metastasis of human renal
carcinoma cells (Grange et al., 2011). Some of the events controlling the PMN have been
described (Kaplan et al., 2005), indicating that “tumour-secreted humoral factors promote
metastatic spread in specific distant organs”, although the nature of these factors was unclear
at that time. Later, melanoma-secreted exosomes were shown to foster PMN formation in
the lung by educating bone marrow-derived cells (BMDCs). Mechanistically, c-Met
upregulation in bone marrow progenitor cells via tExos promoted pro-vasculogenic
behaviour and the mobilization of BMDCs, reinforcing melanoma metastatic behaviour
(Peinado et al., 2012). Specific integrin profiles of tExos target them to given organs, thereby
driving metastatic organotropism (Hoshino et al., 2015). For example, expression of the
a6p4 integrin heterodimer at the surface of tExos promotes their homing to lung PMNS.
Two main types of stromal cell in the lung take-up tExos during this process, s100a4 positive
cells (namely fibroblasts) and lung epithelial cells. However, lung fibroblasts are the main
cell type involved in PMN formation after exosome uptake, upregulating s100 genes
(Hoshino et al., 2015). The uptake of tExos by lung epithelial cells was also reported to
promote neutrophil recruitment in the lung and metastasis (Liu et al., 2016b). In this model,
transfer of non-coding snRNAs by tExos enhanced S100a8, S100a9 and fibronectin
expression by lung epithelial cells and activated the toll-like receptor 3 (TLR3). TLR3
expression by epithelial cells promotes the recruitment of neutrophils to PMNs (Liu et al.,
2016b).

EVs secreted by highly metastatic osteosarcoma are also preferentially detected in the lungs
and these vesicles can induce metastatic behaviour in poorly metastatic clones (Macklin et
al., 2016). Annexin Il (Anxll), usually detected in exosomes, was recently proposed to be a
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key protein secreted in exosomes that promote lung metastasis. Anxll is expressed strongly
by malignant breast cancer cells and it promotes tissue-type plasminogen activator
dependent angiogenesis through its effects on immune cells. Indeed, exosomes carrying
Anxll promote macrophage-mediated activation of the p38-MAPK pathway, and they
increase IL-6 and TNF-a secretion, which participate in the pathogenesis of breast cancer.
Significantly, treatment with AnxIl-depleted exosomes reduces lung (2-fold) and brain (4-
fold) metastasis (Maji et al., 2017). The importance of the lungs as a target organ for many
metastatic primary tumours makes it hard to determine whether organotropic lung metastasis
are regulated by specific EVs, or alternatively, if EVs drive systemic metastatic outgrowth of
tumour cells, thereby promoting lung invasion concomitant with that of other organs.

5.2- Brain tumours and brain metastasis

Brain metastases most commonly arise in melanoma, lung and breast cancer patients.
Although the incidence of brain metastasis should decrease due to improved primary tumour
detection and treatment, the overall median survival time after diagnosis with current
treatment regimens is still typically less than one year (Nieder et al., 2011). The brain is
considered a “sanctuary site”, where the blood brain barrier (BBB, that blocks entry into the
brain) protects it from the entry of tumour cells, although it also excludes most of the
systemic therapeutic agents available. Thus, it is ultimately the ability of tumour cells to
thrive in the parenchyma after crossing the BBB that determines their metastatic success.
Several factors that promote the survival and outgrowth of brain metastases have been
identified, including secreted proteins (Sevenich et al., 2014; Valiente et al., 2014) and
microRNAs in tExos (Tominaga et al., 2015). In particular, transmigration of cancer cells
across the BBB requires proteolytic processing of the junctional adhesion molecule B
(JAMB -JAM2) by the cysteine cathepsin S secreted by tumour cells (Sevenich et al., 2014).
Although the role of this protease in tExos has yet to be defined, it has been detected in
microglia-derived exosomes (Potolicchio et al., 2005) suggesting that exosomes secreted by
cells in the brain could play a role in BBB rupture. The capacity of tExos to disrupt BBB
permeability has been studied, and breast cancer-derived exosomes can transfer miR105 to
endothelial cells and alter their tight junctions (Zhou et al., 2014). MiR105 transfer enhances
vascular permeability and reduces ZO1 expression, promoting BBB disruption followed by
lung and brain metastases (Zhou et al., 2014). Similarly, miR-181c in breast cancer-derived
exosomes promotes the BBB destruction through abnormal actin localization driven by the
downregulation of its target gene in endothelial cells, PDPK1 (Tominaga et al., 2015). Brain
metastasis is specifically reinforced in mice that receive breast cancer-derived exosomes
through a mechanism dependent on miR-181c (Tominaga et al., 2015). High levels of
miR-122 secreted by breast cancer cells also suppresses glucose uptake by niche cells /n
vitroand in vivo due to a downregulation of the glycolytic enzyme pyruvate kinase (PKM:
(Zhang et al., 2015). Thus, breast tumour cells adapt to the metabolic environment in the
PMN by increasing glucose available. /7 vivo inhibition of miR-122 restores glucose uptake
in distant organs, including the brain and lungs, decreasing the incidence of metastasis (Fong
et al., 2015). Downregulating PTEN in breast cancer cells is a mechanism by which
astrocytes and stromal cells promote brain metastasis (Zhang et al., 2015). Interestingly,
treatment with astrocyte-derived exosomes leads to a dose-dependent increase in miR-19a
and an ensuing decrease in PTEN mRNA expression by brain metastatic breast cancer cells.
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Common signatures have been described in exosomes derived from brain metastatic cell
lines (mainly protein and miRNAs: (Camacho et al., 2013; Hoshino et al., 2015). MiR-210
was upregulated and miR-19/miR-29¢ downregulated in exosomes derived from brain
metastatic breast cancer cells lines (Camacho et al., 2013). Similarly, there was an
enrichment in proteins implicated in cell communication, the cell cycle, and in key cancer
invasion and metastasis pathways, although the relevance of these molecules in brain
metastasis remains elusive due to the absence of validated functional studies /n vivo
(Camacho et al., 2013). Quantitative mass spectrometry in a panel of exosomes derived from
brain metastatic breast cancer and melanoma models showed that ITGB3 was commonly
present (Hoshino et al., 2015). The main stromal cell type that takes up these exosomes in
the brain were endothelial cells. Thus, BBB rupture driven by tEVs could be considered as
the first hallmark of PMN formation in the brain. In conjunction with the subsequent transfer
of miRNAs between tumour and stromal cells, these may be the main mechanisms by which
EVs favour brain metastasis. Future studies assessing the relevance of other cell types (e.g.,
microglia or immune cells) will further clarify the mechanisms involved in the selection and
generation of brain metastatic clones.

5.3- Bone microenvironment, EVs and metastasis

Solid tumours frequently metastasize to bone, as occurs in approximately 70-80% of
patients with breast or prostate cancer, and 30-40% of lung cancer patients (Kwakwa and
Sterling, 2017). In patients with solid cancers (including breast and prostate cancer), the
skeleton is the most frequent site for metastasis (Mundy, 1993; Paget, 1889). The formation
of bone metastases alters bone homeostasis (the balance of the osteoclast degradation of the
bone against the bone reconstruction by osteoblasts), a dynamic process that constantly
changes the bone microenvironment and forces invading tumour cells to evolve with the
milieu as it changes. Bone metastasis progresses from colonization to survival, dormancy
and finally reactivation, interfering with physiological bone homeostasis (Croucher et al.,
2016). Primary tumours modulate osteoblast activity and drive PMN formation by secreting
factors like WNT, Bone Morphogenetic Proteins (BMPs), Fibroblast growth factors (FGF),
insulin growth factors (IGF1 and IGF2), endothelin 1, Prostate specific antigen (PSA) or
Vascular endothelial growth factor (VEGF-A: (Dai et al., 2005; Logothetis and Lin, 2005).
Tumour cells also secrete signals that regulate osteoclast differentiation, modulating the
production of receptor activator of nuclear factor-xB ligand (RANKL), a cytokine essential
for osteoclast differentiation, and its antagonist osteoprotegerin (OPG). The RANK-RANKL
interaction is a fundamental part of the osteoblast-osteoclast cycle, and OPG is a regulator of
this cycle detected in EVs (Benito-Martin et al., 2013). Several carcinoma cells express
RANK, including breast, prostate and murine melanoma cells, and RANKL promotes the
motility of these cells in vitro, whereas inhibiting RANKL signalling with OPG prevents the
establishment of bone metastasis after intracardiac injection of B16 melanoma cells (Jones
et al., 2006). Non-small lung cell carcinoma exosomes that contain Amphiregulin (AREG)
activate the EGFR pathway in pre-osteoclasts, in turn enhancing RANKL expression and
triggering the vicious cycle in osteolytic bone metastasis (Taverna et al., 2017).

The tEVs derived from miR-192 overexpressing lung adenocarcinoma cells precondition the
bone microenvironment, probably promoting osteolytic lesions and bone colonization by
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decreasing tumour-induced angiogenesis /n vivo (Valencia et al., 2014). Bone tropic tExos
express a limited integrin repertoire but they are capable of inducing vascular leakiness in
the lung, despite not being taken up by the lung parenchyma (Hoshino et al., 2015).
Interestingly, education with exosomes derived from lung tropic metastatic models redirects
the metastasis of breast cancer cells with bone tropic behaviour to the lung (Hoshino et al.,
2015). Hence, cell-extrinsic factors provided by tExos in PMNs appear to play an active role
regulating metastatic organotropism.

5.4- EVs and LIVER metastasis

The role of EVs in metastasis to the liver has been assessed in the HCC context, suggesting
that EV's may be involved in the intercellular communication within HCCs. Exosome-
mediated miRNA transfer appears to be a means of auto-regulating miRNA expression by
HCC cells, using Vps4A as a tumour suppressor. VpsA4 utilizes exosomes as mediators to
regulate secretion and for the uptake of miRNAs by hepatoma cells (Wei et al., 2015).
Exosomes secreted from pancreatic tumour cells execute the stepwise progression for PMN
formation in the liver. Specifically, Kupffer cells, the resident macrophages in the liver, are
the primary cell type that is activated following the uptake of exosomes derived from
pancreatic cancer cells (Costa-Silva et al., 2015). Analysis of pancreatic ductal
adenocarcinomas (PDAC)-derived exosomes revealed strong macrophage-inhibitory factor
(MIF) expression, which when knocked-down in exosomes provoked a pronounced
reduction in TGF@, FN deposition, macrophage recruitment and heightened metastatic liver
burden, without affecting the binding of exosomes to Kupffer cells. These findings suggest
that MIF may serve as a potential prognostic marker for the development of PDAC liver
metastasis. Recently, exosomes from highly metastatic pancreatic cancer cells were shown to
induce liver PMN formation in naive mice, as well as promoting primary tumour growth and
liver metastasis in vivo (Yu et al., 2017).

Exosomes have also been proposed to promote colorectal cancer metastasis to the liver. The
exosomes secreted from a highly liver metastatic colorectal cancer cell line (HT-29) increase
the metastatic tumour burden and distribution of Caco-2 colorectal cancer cells in the mouse
liver, cells that ordinarily exhibit poor liver metastatic potential. Colorectal cancer derived
exosomes may promote colorectal cancer metastasis by inducing CXCR4-expressing
stromal cells to develop a permissive metastatic microenvironment (Fong et al., 2015). The
expression of the integrin avp5 heterodimer at the surface of tumour-derived exosomes
promotes their homing to liver PMNs. Moreover, exosomes derived from liver-tropic cancer
cells (BxPC-3, HPAF-II, Pan02) were taken up four times more efficiently by F4/80* liver
cells than non-liver tropic exosomes (Hoshino et al., 2015). In other studies assessing the
liver organotropism driven by tumour exosomes, those secreted by gastric cancer cells
carrying EGFR can be delivered into the liver. EGFR integrates into the plasma membrane
of liver stromal cells and when it is translocated, it effectively activates hepatocyte growth
factor (HGF) by suppressing miR-26a/b expression, contributing to PMN formation (Zhang
etal., 2017).
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6. Concluding remarks

Irrespective of the cancer type, metastatic disease is responsible for approximately 90% of
cancer-associated deaths and thus, new strategies are required to prevent or detect metastasis
at early stages. EVs represent promising biomarkers to assess the risk of tumour progression
and the metastatic potential of primary tumours, and they have also been proposed as
markers for other pathological situations (Karpman et al., 2017; Raghavan, 2017). A novel
role for EVs in promoting metastasis has been proposed in recent years, as well as in helping
to establish PMNs in target organs (Becker et al., 2016). From the early stages, to sentinel
and draining lymph node invasion, to the invasion and successful colonization of highly
protected organs, exosomes and secreted particles appear to play a determinant role in
disease progression. EVs have been implicated in PMN formation in pre-clinical models,
with evidence indicating that this process could also be crucial in human metastatic disease.
Recent data suggest that metastasis could be happening earlier than thought before (Harper
et al., 2016; Hosseini et al., 2016), therefore determining whether tEVs could condition
metastatic lymph nodes and organs from the very begining in the tumor progression may
help to interpret current theories of metastatic disease. TEVSs play a crucial role in preparing
the lymph nodes environment supporting processes such as lymphangiogenesis and
extracellular matrix remodelling. Since lymph nodes adjacent to the primary tumor are often
the first site of metastases, defining the mechanisms involved in lymph node PMN formation
by tEVs could bring new clues to block the metastatic process from the beginning. The
discovery of the exosomal integrin code and its role in determining organotropic metastasis
has redefined our concept of the metastatic process (Hoshino et al., 2015). Defining if there
are specific receptors for tEV uptake in sites of metastasis and the molecular mechanisms
involved may define targeted therapies to block PMN formation and metastatic spread.

In the years to come, the use of EVs in clinical practice should become a reality, with
circulating EVs in liquid biopsies serving as a novel and/or complementary tool to predict
metastatic disease. Indeed, novel sources of EVs (e.g., lymphatic fluid) will open new
avenues to explore the role of EVs in the formation of the PMN in lymph nodes and their
repercussion on distal metastasis, and they could possibly be used to predict metastatic
seeding in patients. Finally, identifying the specific molecules that define the release and
uptake of the different types of EVs (including those related to their biogenesis, cargo or
their implication in the metastatic process) could give an important impulse to the design of
new therapies that block the communication between tumours and their metastatic
microenvironments, or re-activate anti-tumor cell immunity which could put a brake on
tumour dissemination.
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Figure 1. Tumour-derived extracellular vesicles (tEVs) in the lymphatic system
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Tumour derived extracellular vesicles can disseminate quickly through the lymphatic vessels
and reach the draining lymph nodes, a process favoured by lymphatic endothelial cells (a).

Once in the lymph node, EVs are found in either the subscapular sinus (SCS) or in the
follicular regions (b). At first, tEVs fuse with SCS macrophages but after crossing the

macrophage barrier, they can also be taken up by B lymphocytes or Dendritic cells. The
tEVs seem to condition the lymph node microenvironment to generate a pre-metastatic niche

(PMN) that allows tumour cells to spread through the lymphatic system.
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Figure 2. Extracellular vesicles determine organotropic metastasis
Extracellular vesicles contain proteins and nucleic acids that will differentially interact with

target organs to promote metastasis. Exosomes secreted by the primary tumour will be
selectively taken up by different cells in the lung, liver, bone and brain, transforming the
microenvironment to facilitate pre-metastatic niche formation and the metastatic cascade.
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