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Abstract

A recent study by Waller and colleagues evaluated the reliability, specificity, and generalizability 

of using functional connectivity data to identify individuals from a group. The authors note they 

were able to replicate identification rates in a larger version of the original Human Connectome 

Project (HCP) dataset. However, they also report lower identification accuracies when using 

historical neuroimaging acquisitions with low spatial and temporal resolution. The authors suggest 

that their results indicate connectomes derived from historical imaging data may be similar across 

individuals, to the extent that this connectome-based approach may be inappropriate for precision 

psychiatry and the goal of drawing inferences based on subject-level data. Here we note that the 

authors did not take into account factors affecting data quality and hence identification rates, 

independent of whether a low spatiotemporal resolution acquisition or a high spatiotemporal 

resolution acquisition is used. Specifically, we show here that the amount of data collected per 

subject and in-scanner motion are the predominant factors influencing identification rates, not the 

spatiotemporal resolution of the acquisition. To do this, we investigated identification rates in the 

HCP dataset as a function of the amount of data and motion. Using a dataset from the Consortium 

for Reliability and Reproducibility (CoRR), we investigated the impact of multiband versus non-

multiband imaging parameters; that is, high spatiotemporal resolution versus low spatiotemporal 

resolution acquisitions. We show scan length and motion affect identification, whereas the imaging 

protocol does not affect these rates. Our results suggest that motion and amount of data per subject 

are the primary factors impacting individual connectivity profiles, but that within these constraints, 

individual differences in the connectome are readily observable.
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Introduction

A key goal of precision psychiatry is leveraging individual differences in neuroimaging data 

to generate predictive models related to behavior. As highlighted by Waller et al. (2017), 

finding reliable markers across datasets remains an important part of this process. As such, 

they investigate the generalizability of a previous method using functional connectivity 

fMRI data to identify individuals from a group (‘connectome fingerprinting’; Finn et al., 

2015). Waller et al. demonstrate that identification can be replicated in the same high 

spatiotemporal resolution dataset (i.e. acquired using multiband acquisition sequences), 

consistent with other work to replicate the method (Finn et al., 2017; Kaufmann et al., 2017; 

Vanderwal et al., 2017), though they note lower accuracies using a dataset acquired with 

lower spatiotemporal resolution (i.e. acquired using non-multiband acquisition sequences). 

In addition, the authors also show that the specificity of the identification procedure is lower 

when a within-subject correlation threshold is introduced into the ID pipeline. Therefore, the 

authors argue that the identification method may not generalize to datasets with lower 

spatiotemporal resolution because individual features may only be detectable in data 

acquired with high spatiotemporal resolution. However, in their study, the authors did not 

take into account other factors affecting data quality and hence the identification process, 

namely scan duration and subject motion. Here we evaluate the impact of not only 

spatiotemporal resolution during image acquisition, but also other data quality factors on 

identification rates.

Methods

The HCP 900 subjects release (Van Essen et al., 2013) was used to investigate scan time and 

motion. Data were pre-processed and connectivity matrices were calculated as described 

elsewhere (Finn et al., 2015; Finn et al., 2017; Shen et al., 2017). All analyses were 

performed using the left-to-right (LR) phase encoding rest runs from days one and two. Of 

note, HCP TR = 720 ms. To study motion, subjects were separated into low and high motion 

groups using a mean frame-frame displacement threshold of 0.1mm averaged over the two 

sessions. Of the 819 subjects available with all data and day one and two LR rest scans, 603 

were in the low motion group and 216 subjects were in the high motion group. To study the 

effect of scan time, we truncated time courses to correspond to the number of frames in 1, 2,

…,14 minutes and calculated connectivity matrices from the shortened data. Because of the 

difference in sample sizes among the low and high motion groups, we repeatedly 

subsampled 216 subjects in the low motion group and performed identification 1000 times. 

The mean ID rate and 95% confidence intervals were therefore calculated from the 

subsampled data (Fig 1A). To investigate when ID rates plateaued, we used the Levenberg-

Marquardt nonlinear least squares algorithm to fit the following nonlinear regression model 

function: , where t = time, IDrate = ID rate at time t, maxIDrate 
= maximum ID rate determined by the model, and x = time required for the ID rate to reach 

approximately 63% of its maximum value. We defined plateauing of the ID rate to be the 

time points when the rate was 95 and 99% of the maximum ID rate.

In a separate analysis (Fig 1B), we subsampled data (after low-pass filtering; approximate 

cutoff frequency of 0.12 Hz) from each of the 603 low motions subjects to simulate the 
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effects of lower sampling frequencies (longer TR) versus total amount of scan time. For this 

analysis, we selected n frames from the duration of a subject’s time course such that 

sampling every other frame produced 600 frames of the original 1200; sampling every 3rd 

frame resulted in 400 frames remaining, etc. Hence, these subsampled data still spanned the 

same overall acquisition time window. It should also be noted that this subsampled data has 

lower signal to noise ratio (SNR) than real data acquired at a longer TR because of the 

additional T1 recovery that would occur with a longer TR. Connectivity matrices were 

subsequently calculated from the subsampled data. In addition, we performed a follow-up 

analysis using a similar strategy except that instead of removing every nth frame we 

averaged data from every n adjacent frames to again simulate a slower sampling frequency 

(Fig 1B) and boost the SNR.

To study the effect of spatiotemporal resolution (Fig 1C), we utilized a publically available 

test-retest dataset from the Nathan Kline Institute (NKI; http://fcon_1000.projects.nitrc.org/

indi/CoRR/html/nki_1.html). This dataset contains individuals scanned with both multiband 

and non-multiband acquisition sequences, thus allowing us to investigate the impact of 

different pulse sequences on ID rates. Data acquisition parameters have been described 

previously (Liao et al., 2013). Briefly, three resting-state fMRI sequences were obtained for 

each of the 24 subjects: 1) multiband scan with TR=645 ms; 2) multiband scan with 

TR=1400 ms; and 3) and a non-multiband echo planar imaging (EPI) scan with TR=2500 

ms. One subject was excluded due to brain atrophy (subject 0021001); one subject was 

excluded due to excessive head motion (3795193; greater than 3 degrees rotation); and we 

were unable to locate session 2 data for subject 6471972, leaving 21 subjects in the final 

analysis. We did not apply a further motion cutoff with these subjects due to the small 

sample size. The preprocessing steps have been previously described (Noble et al., 2017), 

except we performed skull-stripping using optiBET (Lutkenhoff et al., 2014). Though we 

did not perform slice-time correction on the multi-band data, we performed analyses on the 

TR=2500 subjects with and without slice-time correction.

The identification procedure was carried out as described previously using Matlab code 

released by Finn et al. (2015) and utilized by Waller and colleagues (https://www.nitrc.org/

frs/?group_id=51). To directly compare our results to the main findings of Waller et al. we 

used the same subset of nodes from the frontoparietal and medial frontal networks to 

perform identification. To generate 95% confidence intervals, we calculated bootstrapped 

identification accuracies by subsampling approximately 70% of the subjects in each 

condition tested.

Results

Using only the edges derived from the frontoparietal and medial frontal networks, we found 

identification was affected by both motion and total scan time in the HCP 900 dataset. Given 

the differences in sample sizes of the datasets used in this study and that of the authors (BLP 

85), ID rates should not be directly compared to those obtained by Waller et al. Rather our 

focus is on the relative importance of motion, scan time, and acquisition sequence.
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We observed that identification rates were consistently higher for subjects in the low motion 

group compared to the high motion group (P < 0.05; Fig 1A) with the only exception being 

when one minute of data was used. Increasing scan duration, or the amount of data per 

subject, resulted in increasing rates of identification for both groups. Using nonlinear 

regression, we determined that ID rates reached 95% and 99% percent of maximum at 

approximately 6.85 and 10.3 minutes, respectively, for the low motion group, and at 8.7 and 

14.4 minutes, respectively, for the high motion group, supporting the notion that increasing 

scan durations past 3.7 and 5.2 minutes (the scan times of 2/3 scans used in Waller et al.) 

results in higher ID rates for both groups, and that for high motion subjects, more data is 

needed to achieve a successful identification.

To further investigate the importance of total scan time, we subsampled the HCP 900 data 

from the 603 low motion subjects, in one case by taking every other volume, and in the other 

case by averaging adjacent frames, to simulate a lower TR. We found identification rates 

were relatively stable after both procedures (Fig 1B) and did not begin to decrease until 

removing every 20th frame (60 frames remaining; P < 0.05) and averaging over every 50 

frames (P < 0.05).

We next used the NKI dataset to evaluate the effect of spatiotemporal resolution on 

identification rates. Using the same framework as above, we found that identification rates 

were effectively the same across imaging conditions at a given time point (P > 0.05; Fig 1C). 

Similar to the HCP results above, we observed that increasing the scan duration increased 

identification rates in the NKI dataset. Interestingly, it was scan duration, and not number of 

samples, that had the largest effect on identification rates. In other words, a shorter TR 

cannot compensate for a shorter acquisition time: in general, it is better to have fewer 

samples distributed across a longer temporal window than more samples acquired in quick 

succession (echoing results in Laumann et al., 2015, Airan et al., 2016 and Noble et al., 

2017).

General comments

The study by Waller et al. (2017) provides a valuable contribution to the goal of precision 

psychiatry by replicating the original connectome fingerprinting work, and we applaud their 

efforts to expand the method to other datasets and generalize the findings to larger groups of 

subjects. However, the authors point out that accuracy and specificity are expected to drop 

with lower quality datasets (in the authors’ words, datasets of “standard quality,” as opposed 

to “high quality” datasets like the HCP). While we agree that identification rates are 

expected to drop as sample size increases, higher identification accuracies can still be 

obtained by improving factors other than the particular EPI acquisition used. Here, we have 

demonstrated that scan duration and subject movement both affect identification rates, but 

were unable to find an effect of the particular EPI acquisition strategy. Given the known 

effect of motion on estimates of functional connectivity (Power et al., 2015; Satterthwaite et 

al., 2012), it is reasonable that high motion subjects might be harder to identify from scan to 

scan. Further, the findings with respect to EPI protocol (i.e. spatiotemporal resolution) are 

generally consistent with the work of Airan et al. (2016), in which they applied a non-

parametric measure to study the differentiation of subjects in the NKI dataset and observed 
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no clear relationship regarding multiband versus non-multiband data. Taking all of these 

factors into account, we suggest that if Waller et al. (2017) had applied a similar motion 

threshold to the BLP 85 dataset and if they had longer scan durations per subject, they would 

have higher identification rates—even with their standard quality fMRI data.

In a more general sense, our results reinforce the importance of the amount of data collected 

per subject in detecting between-subject differences. In the original connectome 

fingerprinting article it was shown that identification rates increase with increasing data 

(Finn et al., 2015); follow-up work similarly demonstrated identification is affected by time 

(Finn et al., 2017). Other studies have also shown that longer acquisition times and more 

data are associated with increases in the test-retest reliability of functional connectivity 

measures (Birn et al., 2013; Mueller et al., 2015; Shah et al., 2016; Noble et al., 2017; 

Laumann et al., 2015) as well as estimates of individual differentiation (Airan et al., 2016).

We note that the authors showed that the specificity of the ID method could be low even 

when high accuracies are obtained. While the specificity findings are noteworthy and we 

appreciate their work, it is not clear to what extent specificity in the context of identification-

based studies is necessary. Identifiability of the functional connectome by itself is 

interesting, yet identification provides no information related to behavioral/cognitive 

measures, disease course, etc. The goal is the development of connectome-based predictive 

models that the unique patterns of connectivity provide (Shen et al., 2017). Identification per 

se is not the primary objective, and thus identifying a patient with high confidence from scan 

to scan does not inform patient response to treatment or disease prognosis.

With this in mind, we reiterate an important aspect of our original work: capitalizing on 

individual variability in functional connectomes and using this to build meaningful models 

predicting some cognitive feature as opposed to only identification of participants. 

Prediction of individual features is a valuable objective for neuroimaging (Gabrieli et al., 

2015) and our previous work (Finn et al., 2015; Rosenberg et al., 2017) supports the notion 

that it is possible to generate predictive models of behavior from neuroimaging data. While 

we agree with Waller et al. that further developments are needed to yield clinically available 

biomarkers based on individual connectomes, there are several emerging promising results 

suggesting the potential clinical utility (Drysdale et al., 2017) of this approach. In this 

development, attention to the impact of factors such as motion, scan duration, and 

acquisition parameters is a key part of the process. We maintain that establishing the link 

between individual connectomes and behavior is an important goal for precision psychiatry. 

We thank Waller et al. for extending the work of our identification method, and we look 

forward to further developments in using individual connectome data in precision psychiatry.
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Figure 1. 
The effect of scan duration, motion, and differences in spatiotemporal resolution on 

identification rates. (A) Top: Separating the HCP 900 subjects into groups based on motion 

and performing identification with increasing amounts of data. Identification rate for each 

group is indicated at each scan duration time. Note that the high and low motion groups have 

the same scan durations at a given time point on the x-axis. Both groups have equal sample 

sizes (n = 216). Red and blue bars represent the low and high motion groups, respectively. 

(B) Top: Simulating the effects of a lower TR in the HCP. Data from all 603 low motion 

subjects were subsampled (white bar); x-axis indicates the number of frames remaining. In a 

separate analysis every n adjacent frames were averaged; (grey bars); x-axis indicates in 

parentheses the number of adjacent frames used to average. (C) Top: Identification rates 

achieved using multiband or non-multiband imaging parameters to assess the effect of 

spatiotemporal resolution. Multiband imaging was performed on groups labelled as TR 645 

and TR 1400; TR 2500 was acquired via non-multiband imaging; TR 2500 (ST) indicates 

these subjects underwent slice-time correction. Identification rate achieved for each scanning 

protocol is indicated at each scan duration time. Error bars correspond to 95% confidence 

intervals. Note that in (A), (B), and (C), the lower part of each panel includes the actual ID 

rate obtained and the 95% confidence intervals.
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