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A DHODH inhibitor increases p53 synthesis and
enhances tumor cell killing by p53 degradation
blockage
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The development of non-genotoxic therapies that activate wild-type p53 in tumors is of great

interest since the discovery of p53 as a tumor suppressor. Here we report the identification of

over 100 small-molecules activating p53 in cells. We elucidate the mechanism of action of a

chiral tetrahydroindazole (HZ00), and through target deconvolution, we deduce that its

active enantiomer (R)-HZ00, inhibits dihydroorotate dehydrogenase (DHODH). The

chiral specificity of HZ05, a more potent analog, is revealed by the crystal structure of the

(R)-HZ05/DHODH complex. Twelve other DHODH inhibitor chemotypes are detailed

among the p53 activators, which identifies DHODH as a frequent target for structurally

diverse compounds. We observe that HZ compounds accumulate cancer cells in S-phase,

increase p53 synthesis, and synergize with an inhibitor of p53 degradation to reduce tumor

growth in vivo. We, therefore, propose a strategy to promote cancer cell killing by p53

instead of its reversible cell cycle arresting effect.

Corrected: Publisher correction

DOI: 10.1038/s41467-018-03441-3 OPEN

Correspondence and requests for materials should be addressed to S.Laín. (email: sonia.lain@ki.se). #A full list of authors and their affliations appears at the
end of the paper.

NATURE COMMUNICATIONS | �(2018)�9:1107� | DOI: 10.1038/s41467-018-03441-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

There are amendments to this paper

https://doi.org/10.1038/s41467-018-03441-3


Targeted therapeutics have demonstrated limited clinical
success and frequently need to be used in combination to
improve efficacy. For example, while imatinib and

second-generation ABL tyrosine-kinase inhibitors can hold
chronic myeloid leukemia (CML) in remission, new strategies to
eliminate CML stem cells are needed to achieve cure1. As
previously shown, p53 activation can enhance elimination of
CML stem cells in combination with imatinib2. This suggests
the potential therapeutic utility of p53 activating agents in
combinatorial studies with other targeted therapeutics to enhance
their efficacy.
A number of small molecules and peptides have been identified

that impair the interaction of p53 with mdm2, an important
negative regulator of p53 stability3. Although nutlin-34, the most
commonly used mdm2 inhibitor, has cytotoxic effects in some
cell types, it frequently induces a reversible cell cycle arrest that
could limit its efficacy in cancer treatment. Due to this, nutlin-3
can even protect cancer cells from standard chemotherapy that
relies upon cells progressing through the cell cycle5. Moreover,
mdm2 inhibitors may exhibit on-target clinical toxicity6 and can
predispose cells to genomic instability7. Therefore, if p53
activation is to be exploited as a cancer therapy, it is critical to
find compound combinations that reduce the dose of
mdm2 inhibitors required, while also enhancing their ability to
kill cells rather than inducing their reversible cell cycle arresting
effects.
We identify, from our phenotypic screen of activators of wild-

type p53 transcriptional function, that dihydroorotate
dehydrogenase (DHODH) is a remarkably frequent target for
activators of p53. Additionally, we examine a chiral tetra-
hydroindazole (HZ00) and its more potent analog as inhibitors of
DHODH following target deconvolution. Through our work, we
uncover the therapeutic implications of DHODH inhibition,
which include the accumulation of cells in S-phase, an increase in
p53 synthesis, and enhancement of the antitumor effect of an
inhibitor of p53 degradation.

Results
Identification and characterization of HZ00. A phenotypic
screen was performed to identify activators of p53-dependent
transcription. A total of 20,000 small molecules were tested using
two p53 wild-type reporter cell lines, a human melanoma cell line
(ARN8) and a murine fibroblast cell line (T22) (Fig. 1a). Twenty
compounds were shown to activate p53 in ARN8 melanoma cells
>1.5-fold and did not activate or did so below 1.5-fold in T22
fibroblasts. We focused on one of these 20 cell selective molecules
and named this tetrahydroindazole HZ00 (1) (Fig. 1b). Figure 1c
shows the increase in p53-reporter activity by HZ00 in ARN8
cells. HZ00 did not result in p53-reporter activity in p53-null
H1299 cells (Supplementary Fig. 1a). HZ00 also raised the mRNA
of p53 target genes in ARN8 cells (Supplementary Fig. 1b and
Supplementary Data 1).
HZ00 increased the levels of p53 and p53-induced proteins in

ARN8 melanoma cells (Fig. 1d). The rise in protein levels of p53
and its downstream targets in response to HZ00 were weaker in
human normal dermal fibroblasts (HNDFs) (Fig. 1d) and did not
occur in p53-deficient cells (Supplementary Fig. 1c). Accordingly,
HZ00 had a lesser inhibitory effect on proliferation of HNDFs
than on the growth of ARN8 cells (Fig. 1e).

HZ00 also differs from inhibitor of p53 degradation, nutlin-3,
as it does not bind to human mdm2 (hdm2) (Fig. 1f and
Supplementary Fig. 2a). Binding to human mdmx (hdmx),
another negative modulator of p53, was also not detected (Fig. 1f
and Supplementary Fig. 2a) nor were there indications of
p53 stabilization according to experiments performed in the

presence of cycloheximide (Supplementary Fig. 2b). In addition,
we did not observe any induction of DNA damage response
markers (Supplementary Figs. 2c−h). Instead, HZ00 was able to
increase p53 synthesis within 6 h of treatment (Fig. 1g). When
cells were pulse labeled with 35S methionine/cysteine for 30 min
we detected a robust increase in the amount of newly synthesized
p53 in contrast to the results seen with the inhibitor of p53
degradation, nutlin-3. This increase in p53 synthesis by
HZ00 coincides with the time at which p53 protein levels start
to rise (Supplementary Fig. 2f) but is not accompanied by a
commensurate rise in p53 mRNA (Supplementary Fig. 1d and
ENSG00000141510 in Supplementary Data 1).
One important feature of HZ00 is that it is not a pan assay

interference compound (PAIN)8. In support of a non-promiscuous
profile, we did not detect inhibition by HZ00 of any of the wide
panel of kinases that we tested (Supplementary Tables 1−3). In
addition, HZ00 possesses a stereogenic center. We describe a
synthetic route for the HZ00 racemic mix (for simplicity, the name
HZ00 is used in this text to refer to the racemic mixture) and each
of its enantiomers (Fig. 2a). As shown in Fig. 2b, the (R)-
enantiomer of HZ00 led to significantly higher p53 reporter activity
in ARN8 cultures than its (S)-enantiomer suggesting that (R)-HZ00
could be selective for one or few cellular targets.
HZ00 was not only more selective for ARN8 cancer cells than

HNDF normal cells when compared to nutlin-3 in MTT assays
(Fig. 1e) but, unlike nutlin-3, it also caused a sharp increase in the
sub-G1 population in ARN8 cells (Fig. 2c). We also noticed that
combining HZ00 with nutlin-3 increased the percentage of sub-
G1 cells even further. In contrast, in HNDF cultures, HZ00 did
not reduce proliferation after 48 h nor did it substantially enhance
cell death in the presence of nutlin-3 (Fig. 2c). We also tested
whether the combination of HZ00 with nutlin-3 was synergistic.
Indeed, according to two different models for synergy, HZ00 and
nutlin-3 exhibited a synergistic cell kill on ARN8 cells in vitro
(Fig. 2d).
These findings, together with the favorable in vitro pharma-

cokinetic properties (Supplementary Table 4) encouraged us to
investigate (R)-HZ00 in vivo in combination with nutlin-3. A
significant ARN8 xenograft tumor growth inhibition was
observed in response to the (R)-HZ00 and nutlin-3 combination
(Fig. 2e). Although (R)-HZ00 was not toxic, treatments had to be
discontinued after 9 days due to the toxicity of nutlin-3.

(R)-HZ00 is a DHODH inhibitor. The results described above
persuaded us to elucidate the mechanism of action of HZ00. By
performing a time course analysis using BrdU/PI flow cytometry,
we observed that a short HZ00 treatment accumulates ARN8 cells
in S-phase (Fig. 3a). At 49 h cytotoxicity was observed in a large
proportion of ARN8 cells (Fig. 3b). However, unlike the
deoxynucleotide synthesis inhibitor hydroxyurea, HZ00 did
not increase levels of markers for replication fork stalling
(Supplementary Figs. 2c and h) and instead reduced expression of
cdc6, an ATPase involved in the licensing of replication
origins (Supplementary Figs. 2i and j). Interestingly, cdc6 is
repressed by the p53-DREAM complex9 and its repression
appears to be p21 dependent (Supplementary Fig. 2k). S-phase
accumulation in response to HZ00 also occurred in other cell
lines (Supplementary Fig. 3). In contrast, there were negligible
changes in the cell cycle profile of HNDF cultures at the 49 h time
point (Fig. 3b).
Additionally, we observed that nucleoli were disrupted early

upon HZ00 treatment (Supplementary Fig. 4a). A drop in total
RNA levels in ARN8 cells treated with HZ00 was also evident
(Supplementary Fig. 4b). Following these observations, we asked
whether addition of nucleosides could alter the cellular response

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03441-3

2 NATURE COMMUNICATIONS | �(2018)�9:1107� | DOI: 10.1038/s41467-018-03441-3 | www.nature.com/naturecommunications



to HZ00. As shown in Fig. 4a, b, HZ00’s effect on ARN8 cell
growth and p53 activation was completely abolished by
supplementation with high concentrations of uridine, suggesting
inhibition of an enzyme involved in the de novo synthesis of
UMP (Fig. 4c). The ablation of HZ00 activity was not achieved by

adding other nucleosides. Next, we examined whether two
intermediary metabolites in the de novo synthesis of UMP
protected cells from HZ00 treatment. As shown in Fig. 4d,
orotic acid but not dihydroorotic acid rescued ARN8 cells from
(R)-HZ00. Consistent with our results using orotic acid and
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Fig. 1 Discovery and activity of HZ00. a Compound library screening strategy to identify 20 compounds capable of activating p53 transcriptional function in
ARN8 melanoma cells >1.5-fold and did not activate or did so below 1.5-fold in T22 fibroblasts. b The structure of HZ00 (1). c p53 wild-type ARN8 human
melanoma cells were treated for 16 h with HZ00 and the level of p53-dependent transcription measured by CPRG assay. Values correspond to the average
of three technical repeats ± SD and are representative of 5 biological replicates. d ARN8 or HNDF were treated with HZ00 for 1 h and then 2 µM nutlin-3 was
added for an additional 18 h. Levels of p53, as well as downstream targets hdm2 (human mdm2) and p21 were determined. Levels of gapdh were used to
monitor protein loading. e ARN8 or HNDF cells were treated with the indicated compound concentrations for 72 h and subjected to MTT assays. Values
correspond to the average of 4 (HZ00) or 3 (nutlin-3) biological replicates ± SD. f ARN8 soluble cell extracts were prepared for the cellular thermal shift
assay (CETSA) in PBS as described37 and subjected to increasing temperatures in the absence or presence of 100 μM HZ00 or nutlin-3. Samples were
centrifuged and hdm2 or hdmx were detected in the supernatants. g ARN8 cells were treated with 20 μM HZ00, 5 μM nutlin-3 or vehicle (DMSO) for 5 h
50min and pulse labeled with 35S-Met-Cys for 30min (6 h 20min total). p53 was immunoprecipitated and p53 protein levels were determined by western
blotting. Incorporation of 35S in the p53 immunoprecipitate was determined by autoradiography. The experiment is shown in duplicate

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03441-3 ARTICLE

NATURE COMMUNICATIONS | �(2018)�9:1107� | DOI: 10.1038/s41467-018-03441-3 | www.nature.com/naturecommunications 3



dihydroorotate supplementation, known DHODH inhibitors
brequinar and teriflunomide (A77 1726)10 phenocopied the
effects of HZ00 (Fig. 4e). These observations indicated that HZ00
primarily targets DHODH. As uridine is also an important
component in blood, we tested whether HZ00 was still able to
reduce cell growth of tumor cells at physiological levels of uridine

using literature values which report human plasma uridine
concentration as between 2.5 and 4.9 μM and murine plasma
uridine concentrations from 1.2 to 3.2 μM11. Indeed, we found
that (R)-HZ00 was still successfully able to markedly reduce
tumor cell growth at 2.5 μM uridine and even at up to 5 μM
uridine (Fig. 4f).
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Fig. 2 Synthesis and characterization of HZ00 and its enantiomers. a Synthetic route to (R)-HZ00 involving the use of Ellman’s chiral auxillary. Reagents
and conditions: (i) (1.1) (SS)-2-methyl-2-propanesulfinamide, Ti(OEt)4, THF, 75 °C, (1.2) L-Selectride, THF, −48 °C, 73%, diastereomeric excess (d.e. 84
%). (ii) HCl, MeOH, RT; (iii) 2-picolinic acid, EDC.HCl, Et3N, HOBt, DMAP, DCM, RT, 82% over 2 steps. b p53 wild-type ARN8 human melanoma cells
were treated for 16 h with the indicated compounds and the level of p53-dependent transcription measured by CPRG assay. Values correspond to the
average of 3 technical repeats ± SD. c ARN8 or HNDF cells were treated with HZ00 for 1 h and then 2 µM nutlin-3 was added for an additional 48 h. Cells
were fixed and stained with propidium iodide (PI) and analyzed by flow cytometry. The percentages of sub-G1 cells are indicated. d ARN8 cells were
treated for 72 h with HZ00 and/or nutlin-3 at the indicated doses. After treatment, cell cycle distribution was analyzed by flow cytometry following
staining with PI. The effect of the compounds was quantified by obtaining the percentage of cells in sub-G1. The table shows the DMSO control subtracted
effect for each dose combination (dH, dN). The curves in the normalized EC50 isobologram for the HZ00-nutlin-3 combination indicate single-effect pairs
(x, y)= (Eff[dH]/100, Eff[dN]/100) expected to give a 0.5 effect in combination according to the additivity (solid line) and Bliss independence (dashed line)
models38, respectively. Data points (triangles) indicate pairs (x, y) that give 0.5 effect based on linear interpolation of the experimental data shown in the
combination matrix above. e The combination of (R)-HZ00 (150mg kg−1) and nutlin-3 (100mg kg−1) was assayed in a xenograft model of ARN8, and
significantly inhibited growth in this model compared with control groups (i.e., (R)-HZ00, nutlin-3 or vehicle). n= 5 mice per group. Error bars illustrate ±
SEM. (***p < 0.001, **p < 0.01 and *p < 0.05). P-values were calculated using multiple Student’s t-tests
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p53 activators frequently inhibit DHODH. An enzymatic assay
using purified human DHODH confirmed that HZ00 is indeed a
DHODH inhibitor and that (R)-HZ00 is significantly more
potent than (S)-HZ00. In these assays, we used coenzyme Q10 as
an electron acceptor and the following IC50 values were obtained:
HZ00 (2.2 μM), (R)-HZ00 (1.0 μM), and (S)-HZ00 (9.5 μM).
We then tested whether any of the other p53 activating

compounds in the 20,000 compound library inhibited human
DHODH. Furthermore, we re-screened another 30,000 com-
pounds, which had previously been tested in T22-RGCΔFos-LacZ
murine fibroblasts12, for their ability to activate p53 in ARN8
cells. In both screens, we found that a high proportion of
compounds that activated p53 in ARN8 cells also inhibited
DHODH (Supplementary Tables 5−6).
In summary, we present a large series of small molecules, in

addition to the HZ series, that enhance p53-reporter activity
(Supplementary Tables 5−7). These cluster into 31 chemotypes.
Of these 31 chemotypes, 12 include compounds that inhibit
DHODH by >40% at 10 μM.

Testing of HZ analogs reveals HZ05 as a potent DHODH
inhibitor. After conducting the initial screen for DHODH inhi-
bitors, we improved the DHODH activity assay by using 3,4-

dimethoxy-5-methyl-p-benzoquinone (a more water soluble
alternative to coenzyme Q10) and by using a kinetic assay rather
than an endpoint assay for enzyme activity. We then initiated a
structure activity relationship (SAR) study by testing commer-
cially available analogs of HZ00. Of the 29 HZ racemic mixtures
tested, only two (HZ02 (2) and HZ05 (3)) were able to inhibit
DHODH at nanomolar concentrations. HZ05 (Fig. 5a) was the
most potent among these analogs and markedly more potent than
HZ00.
To investigate the binding mode of the tetrahydroindazole

series, we carried out crystallographic studies with HZ05 (racemic
mix) and human DHODH (Fig. 5b, c). This resulted in a
co-crystal structure of the (R)-enantiomer of HZ05 with DHODH
at 1.7 Å resolution (PDB code 6ET4). The preference for the
(R)-HZ05 enantiomer is consistent with the superior inhibitory
potency of (R)-HZ05 versus (S)-HZ05 against DHODH (see IC50

values in Fig. 5a). Like many other DHODH inhibitors, including
brequinar and teriflunomide, (R)-HZ05 binds to the region
referred to as the quinone tunnel13. However, the interactions of
(R)-HZ05 with the protein are different to brequinar and related
inhibitors. When (R)-HZ05 is bound to DHODH, Gln47 is
displaced from the pocket allowing interactions between (R)-
HZ05 and Arg136 through water molecules. The co-crystal
structure also provides an explanation for the poor inhibitory
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salvage (black) pathways. d ARN8 cells were seeded in FBS supplemented DMEM with a change to serum replacement medium 24 h post seeding. Cells were
treated for 6 days with (R)-HZ00 in the presence of 1.5 mM orotic acid (OA, Sigma #O2750) or 1.5mM dihydroorotic acid (DHOA, Sigma #D7003) and
stained with Giemsa as described in a. e ARN8 cells were treated as in b but using DHODH inhibitors brequinar and teriflunomide. Values correspond to the
average of three technical repeats ± SD. f ARN8 cells were seeded in FBS supplemented DMEM with a change to serum replacement medium 24 h post
seeding. Cells were then treated with (R)-HZ00 for 72 h in the presence of 2.5 or 5 μM uridine and stained with Giemsa as described in a
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Fig. 6 HZ05 leads to an enrichment of cancer cells in S-phase. a ARN8 cells were treated with vehicle (DMSO) or HZ05 for 12 h and analyzed using BrdU/
PI flow cytometry. S* indicates cells with a DNA content between 2N and 4N that do not incorporate BrdU. b ARN8 cells treated for 72 h as indicated and
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properties of the inactive analog HZ25 (4) (Fig. 5a) since the gem-
dimethyl group in its central core appears to be too bulky to be
accommodated by human DHODH.
Correlating with its ability to inhibit DHODH at low

concentrations, HZ05 is also a potent inhibitor of ARN8 cell
growth and an activator of p53. Furthermore, like previously
shown for HZ00 (Fig. 4a, b), these effects were prevented by
addition of excess uridine (Fig. 5d). Serving to confirm the
similarity in their mechanism of action, (R)-HZ00 and
HZ05 showed comparable results in an RNASeq analysis
(Spearman correlation= 0.94 for genes with 50 reads or more)
(Fig. 5e and Supplementary Data 1). For the list of p53-inducible
mRNAs affected by HZ compounds see Supplementary Fig. 5a.
We also report a list of mRNAs reduced by HZ compounds that
are known to be downregulated upon activation of p53
(Supplementary Fig. 5b).

Following the successful identification of HZ05 as a DHODH
inhibitor, we compared the effect of serum albumin concentration
on the effectiveness of HZ05 or brequinar on cells. As has been
described in previous studies, a carboxylic acid group is essential
for the ability of brequinar to inhibit DHODH10; however, this
same group is also responsible for the binding of compounds to
serum albumin14. HZ05, like HZ00, lacks the carboxylic acid
group present in brequinar. As shown in Fig. 5f, HZ05 is affected
to a lesser degree than brequinar by increases in serum albumin
concentration. This highlights that HZ compounds are part of a
novel chemotype that may possess different pharmacokinetic
properties to brequinar. It is also important to note that HZ05,
much like (R)-HZ00, is able to ablate tumor cell growth in culture
at physiologically relevant uridine levels (Supplementary Fig. 6a).
In addition, brequinar has also shown itself to be effective at
physiological uridine levels in vivo and was successful at ablating
tumor cell growth15.

Another similarity between HZ00 and HZ05 is that in spite of
activating p53, both compounds lead to the accumulation of
ARN8 cells in S-phase within 8 and 24 h of treatment (Figs. 3a
and 6a). Also as described for HZ00 (Fig. 3a, b), the HZ05-
induced accumulation of cells in S-phase was followed by an
increase in the percentage of sub-G1 cells (Fig. 6b, c). Much like
with HZ00, this increase in sub-G1 cells was enhanced by co-
administration of nutlin-3a (Fig. 6c), the active enantiomer of
nutlin-34. We also saw that the co-treatment of ARN8 cells with
HZ05 and nutlin-3a in vitro led to a strong synergistic cell kill
(Supplementary Fig. 6b). Following the successful combination of
HZ05 and nutlin-3a in cell culture, we carried out further
xenograft studies. We found that as single agents, both nutlin-3a
and HZ05 were ineffective at ablating xenograft tumor growth
(Supplementary Fig. 7a). Despite the ineffective nature of the
single treatments, combining nutlin-3a and HZ05 caused a
statistically significant reduction in xenograft growth (Supple-
mentary Fig. 7a). To better understand why HZ05 was not
effective as a single agent, we examined it's in vivo pharmaco-
kinetic properties. We found that the half-life of HZ05 was 2.5 h
following subcutaneous administration (Supplementary Fig. 7b).
Given that co-administration of nutlin-3a and HZ05 was
markedly more effective than each compound as a single agent,
we investigated whether the increased efficacy was due to
drug–drug interactions leading to altered metabolism of nutlin-
3a. However, in the case of both (R)-HZ00 co-administered with
nutlin-3, and (R)-HZ05 with nutlin-3a, the half-life of nutlin-3 or
nutlin-3a was not prolonged (Supplementary Figs. 7c and d).
Additionally, we carried out xenografts using the p53-null H1299
cell line and dosed the mice using the same treatment regimen as
in Supplementary Fig. 7a. There was no synergy between (R)-
HZ05 and nutlin-3a in this p53-null xenograft (Supplementary
Fig. 7e). This suggests that the inhibition of the degradation of

p53 by nutlin-3a is important for the synergy seen between
(R)-HZ05 and nutlin-3a in wild-type p53 tumor xenografts.

HZ compounds accumulate cells in S-phase with high levels of
p53. As we could confirm the ability of DHODH inhibitors to
synergize with an inhibitor of p53 degradation in vivo with both
HZ00 and HZ05, we further investigated the effects of this
combination on other cell lines. Much like the ARN8 cell line,
SigM5, MV411 and U2OS cells also demonstrated the ability of
HZ compounds to accumulate cells in S-phase, followed by an
increase in the proportion of sub-G1 cells (Supplementary Fig. 3).
For both HZ00 and HZ05, these two consecutive events were
faster in ARN8 cells than in SigM5, MV411, and U2OS cells. Also
as in the case of ARN8 cells (Fig. 6c), adding nutlin-3a increased
the proportion of dead cells in HZ05 treated U2OS and MV411
cultures (Fig. 6d). In contrast, there were only marginal increases
in cell death in HNDF cultures treated with HZ05 alone or in
combination with nutlin-3a (Fig. 6d).
U2OS cells (Fig. 6d), like ARN8 cells (Figs. 2c and 6c), do not

die in response to nutlin-3 or nutlin-3a as single agents and
instead accumulate in G1/G2. However, unlike the ARN8 cells,
U2OS cultures are slower to accumulate in S-phase upon HZ
treatment (Fig. 6a, d and Supplementary Figs. 3a and b).
Furthermore, we observed that in order to see the promotion of
cell death by nutlin-3a in U2OS cells, it was necessary to pre-treat
with HZ05 and then add nutlin-3a (Supplementary Fig. 8). When
HZ05 and nutlin-3a were added simultaneously to U2OS cells,
the killing effect of HZ05 was ablated (Supplementary Fig. 8). We
then tested whether cells in S-phase may have higher levels of p53
due to HZ05 treatment. Indeed, these S-phase cells possessed
higher levels of p53 than vehicle treated controls (Fig. 7a).
Based on these results, we carried out a further experiment to

see whether nutlin-3a, on its own, could cause cell death in U2OS
osteosarcoma cells when they had been pretreated with HZ05.
This hypothesis was supported by the results of the experiment
shown in Fig. 7b, where we pretreated cells with HZ05 for 72 h,
washed out the pre-treatment, and then added nutlin-3a as a
single agent. This scheduling switched the effect of nutlin-3a from
one that caused G1/G2 arrest to one that triggered cell death.
These results suggest that HZ compounds sensitize cells to

inhibitors of mdm2 by accumulating them in S-phase with high
levels of p53 (Fig. 7c).

Discussion
In this study, we identify the enantiomer (R)-HZ00, as a cell
active and selective inhibitor of DHODH. We also show through
SAR and by examining the crystal structure of (R)-HZ05 bound
to DHODH that it is possible to improve the medicinal chemistry
properties of the HZ series for future studies and for lead
compound development. This study also illustrates that a
knowledge-based approach can lead to the identification of
cellular targets for small molecules from phenotypic screens. This
target deconvolution strategy is of particular relevance when the
target is difficult to extract in conditions that retain a native
conformation. In addition to being membrane bound, DHODH is
protected by the outer mitochondrial membrane16.

One implication of our work is that a high percentage of
compounds identified in a simple phenotypic p53-activation
screen are direct DHODH inhibitors. Several additional DHODH
inhibitors with unrelated structures have been reported in the
literature10,17–22. The wide range of chemotypes that can interact
with and inhibit DHODH suggests that the enzyme may act as a
target or sensor for xenobiotics, including the numerous and
abundant metabolites in blood derived from the action of the
microbiome23. Altogether, these results indicate that DHODH
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should be considered as a potential target in phenotypically dri-
ven drug discovery projects.
The prodrug leflunomide and its active metabolite teri-

flunomide are clinically approved DHODH inhibitors used for
treatment of rheumatoid arthritis and multiple sclerosis respec-
tively10. However, the clinical use of leflunomide and teri-
flunomide is limited by off-target effects and exceptionally long
persistence in the body24. Nevertheless, leflunomide reduces
xenograft tumor growth25–27. With regards to its effects on p53,
leflunomide, although itself inactive as a DHODH inhibitor, was
shown to elevate p53 protein levels in HeLa cells, a cell line where
p53 is modulated by viral oncoproteins rather than mdm228. In a
previous study, a very high concentration (100 μM) of a teri-
flunomide analog was shown to accumulate p53 in non-infected
cells29. Here we demonstrate that DHODH inhibitors such as
members of the HZ series and brequinar activate a p53-
dependent reporter in cells, and do so at low concentrations.
The specificity of these compounds for DHODH in cells is sup-
ported by the ablation of their effects on cell growth by excess
uridine. Furthermore, it is important to note that DHODH
inhibitors that interact with DHODH through a carboxylic acid
group, also bind extensively to serum albumin, which alters their
free unbound plasma concentration. This applies to compounds
structurally related to brequinar. In contrast, the HZ series of
compounds do not require a carboxylic acid group for their
interaction with DHODH, thus providing an alternative to
compounds related to brequinar.
We noted that HZ05 had a relatively short half-life in vivo.

Following this observation, we have embarked on refining the
structure to improve its pharmacokinetic properties to generate a
promising lead compound. Nevertheless, despite the relatively
short half-life of HZ05 in mice, we did confirm that as with HZ00,
the combination of a HZ compound with a blocker of p53
degradation led to synergy in cell culture experiments and sta-
tistically significant reductions in tumor growth in vivo without
evidence of toxicity.
Importantly, we also show that HZ compounds cause death in

cancer cell cultures and that this is preceded by an accumulation
of cells in S-phase, which is accompanied by the increased
synthesis of p53. TP53 gene transcription is enhanced during the
G1/S transition upon release from serum starvation30, suggesting
that the increase in p53 protein synthesis induced by HZ com-
pounds could occur as a consequence of the accumulation of p53
mRNA in cells in S-phase. However, we could not see marked
increases in p53 mRNA. Since there is no evidence of increased
stability of p53 protein, a plausible hypothesis would be to
consider that the increase in p53 protein is due to enhanced
translation as reported for DNA damaging agents by Takagi
et al.31.

Another interesting feature noted in HZ treated cells is that
p21 protein levels, but not mRNA levels, are relatively weakly
induced compared to nutlin-3 (Fig. 1d). Furthermore, HZ com-
pounds reduce the p21 levels induced by nutlin-3 treatment. On
the one hand, this could contribute to accumulation of cells in S-
phase, on the other hand it may also indicate a change in the
amount of translation of p21 mRNA.
Whichever mechanisms hold true, we have demonstrated that

HZ treated cultures possess more S-phase cells with higher p53
levels than untreated controls (Fig. 7a). Therefore, as depicted in
the model in Fig. 7c, we propose that releasing p53 from the
inhibitory effects of mdm2 during S-phase, especially when p53 is
in excess, enhances p53’s pro-apoptotic functions over its cell
cycle inhibitory effect.
The discovery of new DHODH inhibitors, as well as a novel

strategy to increase p53 activation and synergism with mdm2
inhibitors offers an exciting prospect to bring p53 therapy to

fruition and may allow the cure of diseases like CML that retain
resistance to elimination via a p53 sensitive stem cell population2.

Methods
Cell culture. ARN8 cells and T22 cells, stably expressing the p53 reporter
RGCΔFos-LacZ were described previously12,32–34. H1299, U2OS, and MV411 cells
were purchased from the ATCC and SigM5 were purchased from DSMZ. HCT116
cells were a kind gift from Professor B. Vogelstein (Johns Hopkins). HNDF cells
were purchased from PromoCell. Cell lines were checked for mycoplasma con-
tamination using the MycoAlert kit (Lonza LT07-318). HCT116 cells were grown in
McCoy’s 5A medium supplemented with 10% FBS and 100 UmL−1 of pen/strep.
SigM5 cells were grown in IMDM supplemented with 20% FBS and 100 UmL−1 of
pen/strep. All other cells were grown in DMEM and supplemented with 10% FBS
and 100 UmL−1 of pen/strep. For serum replacement studies, DMEM was sup-
plemented with 1× serum replacement solution 3 (Sigma S2640). All cells not
sourced from ATCC or DSMZ in the last year were checked using single tandem
repeat analysis conducted by Public Health England. ARN8 cells were a 100% match
to A375 cells, U2OS were a 100% match, H1299 were a 97% match and HCT116
cells used in Supplementary Fig. 2k were an 85% match. HCT116 cells used in
Supplementary Figs. 1c and 4a were a match on 30 out of 32 alleles, but demon-
strated multiple peaks at loci D7, D8, D13, D16, as well as FGA and vWA.

Compound library screens for p53 activation (CPRG assay). A 20,000 com-
pound library was purchased from ChemBridge consisting of 10,000 from the
DIVERSet and 10,000 from the CombiSet libraries. ARN8 cells were treated with
each compound at 10 µM for 18 h and β-galactosidase activity measured using the
β-galactosidase CPRG substrate as previously described12,32–34. A total of 30,000
additional compounds from the ChemBridge DIVERSet that were previously
screened in a T22 cell background12 were re-screened in ARN8 cells at 5 µM. The
ChemBridge codes for these compounds can be made available upon request. All
chemical synthesis is detailed in Supplementary Information with NMR spectra
and reaction schemes detailed in Supplementary Figs. 13–19.

Western blotting and immunofluorescence. Protein extracts were prepared in
1× LDS sample buffer (Invitrogen) with 100 mM DTT and separated and trans-
ferred using the Invitrogen western blotting system except in Supplementary Fig. 1c
where the BioRad western blotting system was used. HRP-conjugated secondary
antibodies were obtained from Dako (#P016102 and #P0211702) or Santa Cruz
(#SC-2020). Immunofluorescence was performed by fixing cells in 4% paraf-
ormaldehyde freshly made in PBS for 10 min at 37 °C. Following fixation, cells were
permeabilized in 0.15% Triton X-100 for 1–2 min at 37 ºC followed by staining
with the indicated antibodies. Images were taken using Olympus IX-71 microscope
controlled by DeltaVision SoftWoRx. Image stacks were deconvolved, quick-
projected and saved as tiff images to be processed using Adobe Photoshop. Anti-
bodies to specific antigens are listed in Supplementary Table 8. All original films for
blots in Fig. 1 are shown in Supplementary Figs. 9–12.

p53 synthesis assay. ARN8 cells were seeded at 2.5 × 106 cells per 10 cm dish.
Next day, cells were treated for 5.5 h with DMSO, 20 μM HZ00 or 5 μM nutlin-3.
After 5.5 h, medium was substituted for Met- and Cys-deprived DMEM, supple-
mented with 5 μM nutlin-3, 0.5% FBS and 4 mM L-glutamine for 20 min in the
presence of the corresponding compounds. 35S-Met-Cys (50 μCi mL−1) was added
for 30 min. Cells were washed twice with PBS and scraped off in 800 µL per dish of
20 mM Tris, pH 7.5, 50 mM NaCl, 0.5% Triton X-114, 0.5% sodium deoxycholate,
0.5% SDS, 1 mM EDTA and sonicated. Samples were centrifuged at 16,000×g for
15 min at 4 °C. Volume of 30 µL of each supernatant was stored as input. The
remaining supernatants were incubated with 5 µg anti-p53 DO-1 antibody and
rotated overnight at 4 °C. Samples were transferred to Dynabeads Protein G
(# D10004D, Life Technologies) and rotated for 30 min at RT. Samples were
centrifuged briefly for 10 s and placed in front of a magnet. Pellets were washed
twice with RIPA buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% Triton X-114,
1% sodium deoxycholate, 0.1% SDS), once with high-salt buffer (10 mM Tris, pH
7.4, 2 M NaCl, 1% Triton X-114) and once with RIPA buffer. Pellets were resus-
pended in 3× LDS containing 100 mM DTT. Samples were separated by SDS-
PAGE and the gels were incubated in enhancer solution (#6NE9741, PerkinElmer),
dried and exposed to Carestream Kodak BioMax MR films at −80 °C.

MTT and SRB growth/viability assays. MTT assays were performed in 96 well
plates. After treatments, medium was replaced with 200 μL of MTT solution (3 mg
mL−1 MTT (Sigma #M2128) in PBS diluted 1:5 in growth medium). Cells were
incubated for 3 h after which medium was removed and substituted with 25 μL
Sorensen’s Glycine buffer (0.1 M glycine, 0.1 M NaCl, pH 10.5). Volume of 200 μL
DMSO per well were added and plates were read at 570 nm.

SRB assays measuring protein content were performed in 96-well plates as
previously described35.

Flow cytometry. Cell cycle distribution analysis was performed on a Becton
Dickinson FACScan flow cytometer or FACSCalibur (BD Biosciences) following
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staining with propidium iodide (PI) or dual labeling with BrdU and PI36. These
assays were analyzed using CellQuest Pro (BD Biosciences).

For the detection of apoptotic cells, the Annexin V-FITC Apoptosis detection
kit (Ab#14085) was used with analysis conducted using FlowJo software V10.2.

For the detection of p53, cells were treated as indicated and fixed using Fix/
Perm buffer solution (eBiosciences). Following fixation cells were stained with p53-
FITC DO-7 (645804, BioLegend) in Permeabilization buffer (eBiosciences)
according to manufacturer’s instructions. Cells were resuspended in FACS buffer
(2 mM EDTA, 0.5% BSA) containing 2 μg mL−1 FxCycle Violet (Thermo
Scientific). Stained cells were acquired on LSRII (BD Biosciences) and analyzed
using FlowJo software V10.2.

Endpoint and kinetic DHODH enzyme assays. In Supplementary Tables 5 and 6,
endpoint assays were performed with 10 nM recombinant human DHODH
(#ENZ-642, Prospecbio). The reaction mixture consisted of 624.6 µM DL-
dihydroorotic acid, 66.4 µM coenzyme Q10, 66.4 µM 2,6-dichlorophenolindophenol
sodium salt (DCIP) (all reagents purchased from Sigma-Aldrich) in enzyme buffer
(50 mM Tris-HCl, pH 8.0, 0.1% Triton X-100, 150 mM KCl). Loss in absorbance by
DCIP was measured at 595 nm after incubation at RT for 60 min.

In Fig. 5a enzyme assays were optimized and performed with 6 nM
recombinant human DHODH prepared as described13. The reaction mixture for
these kinetic assays consisted of 1 mM DL-dihydroorotic acid, 100 µM 3,4-
dimethoxy-5-methyl-p-benzoquinone (#D9150, Sigma-Aldrich), and 100 µM DCIP
in enzyme buffer. A stock solution of 20 mM DCIP was prepared in enzyme buffer
and filtered through filter paper (20–25 μm pore size) just before use. Loss in
absorbance by DCIP was measured at 595 nm at RT in a stepped time course (8 × 2
min, 8 × 3 min, 6 × 5 min). The observed decrease in absorbance over time was
linear between 8 and 26 min. Therefore, for each concentration of inhibitor tested,
a value for DHODH’s Vmax was estimated by linear regression within this time
frame. The IC50 is defined as the concentration of inhibitor that gives Vmax ([I])=
Vmax (DMSO)/2.

RNASeq. Libraries were generated using the NEBNext Ultra Directional RNA
Library Prep Kit for Illumina (New England Biolabs). Data are deposited at GEO
with the accession code: GSE87577. In this site, compound M is (R)-HZ00 and
compound A is HZ05 and used at 20 μM and 5 μM, respectively. Differential
expression and gene ontology analysis are in Supplementary Data 1. Values cor-
respond to the average of three biological repeats.

Co-crystallization of (R)-HZ05 and human DHODH. Co-crystals were prepared
as described13. Details can be found in Supplementary Methods.

Animal experiments. All animal xenograft experiments were approved by the
Norwegian Animal Research Authority and conducted according to The European
Convention for the Protection of Vertebrates Used for Scientific Purposes. To
determine the efficacy of (R)-HZ00 in combination with nutlin-3 in vivo, 20 z (5
per group as determined by power calculation assuming a fivefold difference and
an expected p-value of <0.005 with a power of 85%) were injected subcutaneously
in the left flank area with 5 × 106 ARN8 cells resuspended in 100 µL of PBS solution
containing 12.5% Matrigel (BD Biosciences, Franklin Lakes, NJ, USA). The health
status and weight of the mice were monitored daily and they were randomized in a
non-blinded manner into 4 groups when tumor volumes reached 30–40 mm3. The
mice were either treated with vehicle solution (10% DMSO and 40% polyethylene
glycol), (R)-HZ00 (at 150 mg kg−1 q.d. in vehicle solution containing 10% DMSO
and 40% polyethylene glycol 400 dissolved in sterile water), nutlin-3 (100 mg kg−1

q.d. in a vehicle solution containing 2% hydroxypropyl cellulose and 0.5% Tween
80 dissolved in sterile water) or by a combination of the two drugs. The vehicle
solution and (R)-HZ00 were given by intraperitoneal injection (i.p.) and nutlin-3
was administered orally (p.o.). Tumor volumes were measured every second day by
a digital caliper using the following ellipsoid formula: Volume= π (length ×
width × height)/6.

To determine the efficacy of (R)-HZ05 in combination with nutlin-3a, 4 groups
of NSG mice (n= 8 per group) were subcutaneously injected in the flank region
with a single 100 μL injection of 2 × 106 ARN8 cells in a solution of PBS:Matrigel
(volume ratio 3:1). Treatment was initiated when tumors reached ~50 mm3. The
maximum tolerated dose for this combination of drugs was previously determined
for the strain we used. The endpoint of the experiment was determined by the
tumor size (<1000 mm3) weight loss, and general condition of the mice according
to The Norwegian Animal Research Authority.

Data availability. The atomic coordinates and structure factors are deposited in
the Protein Data Bank with accession code 6ET4. GEO for the RNA seq. accession
code: GSE87577. All data generated or analysed during this study are included in
this article.

Received: 12 May 2017 Accepted: 13 February 2018

References
1. Corbin, A. S. et al. Human chronic myeloid leukemia stem cells are insensitive

to imatinib despite inhibition of BCR-ABL activity. J. Clin. Invest. 121,
396–409 (2011).

2. Li, L. et al. Activation of p53 by SIRT1 inhibition enhances elimination of
CML leukemia stem cells in combination with imatinib. Cancer Cell 21,
266–281 (2012).

3. Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R. & Lane, D. P. Awakening
guardian angels: drugging the p53 pathway. Nat. Rev. Cancer 9, 862–873 (2009).

4. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule
antagonists of MDM2. Science 303, 844–848 (2004).

5. Kranz, D. & Dobbelstein, M. Nongenotoxic p53 activation protects cells
against S-phase-specific chemotherapy. Cancer Res. 66, 10274–10280 (2006).

6. Khoo, K. H., Verma, C. S. & Lane, D. P. Drugging the p53 pathway:
understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 13,
217–236 (2014).

7. Shen, H., Moran, D. M. & Maki, C. G. Transient nutlin-3a treatment promotes
endoreduplication and the generation of therapy-resistant tetraploid cells.
Cancer Res. 68, 8260–8268 (2008).

8. Baell, J. & Walters, M. A. Chemistry: chemical con artists foil drug discovery.
Nature 513, 481–483 (2014).

9. Fischer, M., Uxa, S., Stanko, C., Magin, T. M. & Engeland, K. Human
papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Sci.
Rep. 7, 2603 (2017).

10. Munier-Lehmann, H., Vidalain, P. O., Tangy, F. & Janin, Y. L. On
dihydroorotate dehydrogenases and their inhibitors and uses. J. Med. Chem.
56, 3148–3167 (2013).

11. Traut, T. W. Physiological concentrations of purines and pyrimidines. Mol.
Cell Biochem. 140, 1–22 (1994).

12. Lain, S. et al. Discovery, in vivo activity, and mechanism of action of a small-
molecule p53 activator. Cancer Cell 13, 454–463 (2008).

13. Walse, B. et al. The structures of human dihydroorotate dehydrogenase with
and without inhibitor reveal conformational flexibility in the inhibitor and
substrate binding sites. Biochemistry 47, 8929–8936 (2008).

14. Yamasaki, K., Chuang, V. T., Maruyama, T. & Otagiri, M. Albumin-drug
interaction and its clinical implication. Biochim. Biophys. Acta 1830,
5435–5443 (2013).

15. Dexter, D. L. et al. Activity of a novel 4-quinolinecarboxylic acid, NSC 368390
[6-fluoro-2-(2’-fluoro-1,1’-biphenyl-4-yl)-3-methyl-4-quinolinecarboxylic
acid sodium salt], against experimental tumors. Cancer Res. 45, 5563–5568
(1985).

16. Loffler, M., Jockel, J., Schuster, G. & Becker, C. Dihydroorotat-ubiquinone
oxidoreductase links mitochondria in the biosynthesis of pyrimidine
nucleotides. Mol. Cell Biochem. 174, 125–129 (1997).

17. Zhu, J. et al. Design, synthesis, X-ray crystallographic analysis, and biological
evaluation of thiazole derivatives as potent and selective inhibitors of human
dihydroorotate dehydrogenase. J. Med. Chem. 58, 1123–1139 (2015).

18. Sykes, D. B. et al. Inhibition of dihydroorotate dehydrogenase overcomes
differentiation blockade in acute myeloid leukemia. Cell 167, 171–186 e15 (2016).

19. Lewis, T. A. et al. Development of ML390: a human DHODH inhibitor that
induces differentiation in acute myeloid leukemia. ACS Med Chem. Lett. 7,
1112–1117 (2016).

20. Lucas-Hourani, M. et al. Original 2-(3-Alkoxy-1H-pyrazol-1-yl)azines
inhibitors of human dihydroorotate dehydrogenase (DHODH). J. Med. Chem.
58, 5579–5598 (2015).

21. Lucas-Hourani, M. et al. Inhibition of pyrimidine biosynthesis pathway suppresses
viral growth through innate immunity. PLoS Pathog. 9, e1003678 (2013).

22. Hoffmann, H. H., Kunz, A., Simon, V. A., Palese, P. & Shaw, M. L. Broad-
spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc.
Natl Acad. Sci. USA 108, 5777–5782 (2011).

23. Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut
microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106,
3698–3703 (2009).

24. Brent, R. L. Teratogen update: reproductive risks of leflunomide (Arava); a
pyrimidine synthesis inhibitor: counseling women taking leflunomide before
or during pregnancy and men taking leflunomide who are contemplating
fathering a child. Teratology 63, 106–112 (2001).

25. White, R. M. et al. DHODH modulates transcriptional elongation in the
neural crest and melanoma. Nature 471, 518–522 (2011).

26. Brown, K. K., Spinelli, J. B., Asara, J. M. & Toker, A. Adaptive reprogramming
of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative
breast cancer. Cancer Discov. 7, 391–399 (2017).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03441-3

12 NATURE COMMUNICATIONS | �(2018)�9:1107� | DOI: 10.1038/s41467-018-03441-3 | www.nature.com/naturecommunications



27. Mathur, D. et al. PTEN regulates glutamine flux to pyrimidine synthesis and
sensitivity to dihydroorotate dehydrogenase inhibition. Cancer Discov. 7,
380–390 (2017).

28. Khutornenko, A. A. et al. Pyrimidine biosynthesis links mitochondrial respiration
to the p53 pathway. Proc. Natl Acad. Sci. USA 107, 12828–12833 (2010).

29. Hoppe-Seyler, K., Weigand, K., Lohrey, C., Hoppe-Seyler, F. & Sauer, P.
Cellular growth inhibition by FK778 is linked to G1 arrest or S phase
accumulation, dependent on the functional status of the retinoblastoma
protein. Int. J. Mol. Med. 23, 415–420 (2009).

30. Reisman, D., Takahashi, P., Polson, A. & Boggs, K. Transcriptional
regulation of the p53 tumor suppressor gene in S-phase of the cell-cycle
and the cellular response to DNA damage. Biochem. Res. Int. 2012, 808934
(2012).

31. Takagi, M., Absalon, M. J., McLure, K. G. & Kastan, M. B. Regulation of p53
translation and induction after DNA damage by ribosomal protein L26 and
nucleolin. Cell 123, 49–63 (2005).

32. Frebourg, T. et al. A functional screen for germ line p53 mutations based on
transcriptional activation. Cancer Res 52, 6976–6978 (1992).

33. Lu, X., Burbidge, S.A., Griffin, S. & Smith, H.M. Discordance between
accumulated p53 protein level and its transcriptional activity in response to u.
v. radiation. Oncogene 13, 413–418 (1996).

34. Blaydes, J.P. & Hupp, T.R. DNA damage triggers DRB-resistant
phosphorylation of human p53 at the CK2 site. Oncogene 17, 1045–1052
(1998).

35. Skehan, P. et al. New colorimetric cytotoxicity assay for anticancer-drug
screening. J. Natl Cancer Inst. 82, 1107–1112 (1990).

36. Renzing, J., Hansen, S. & Lane, D. P. Oxidative stress is involved in the UV
activation of p53. J. Cell Sci. 109, 1105–1112 (1996).

37. Martinez Molina, D. et al. Monitoring drug target engagement in cells and
tissues using the cellular thermal shift assay. Science 341, 84–87
(2013).

38. Chou, T. C. Theoretical basis, experimental design, and computerized
simulation of synergism and antagonism in drug combination studies.
Pharmacol. Rev. 58, 621–681 (2006).

Acknowledgements
The authors would like to acknowledge ChemAxon (www.chemaxon.com) for providing an
academic license to their cheminformatics software and Sweden Contract In vivo Design AB
for performing in vivo PK studies. We also thank Annika Lindquist, Eliane Hesse, Melina
Vallbracht, Levin Schulze, Amparo Martínez Pérez, and Antonio Ramírez Fernández for
technical support, as well as EPRSC National Mass Spectrometry Service Centre (Swansea)
for analytical data. Financial Support: M.J.G.W.L., C.J.D., I.M.M.v.L., G.P., T.M., S.D., M.C.C.
S., A.P.-F., C.T., D.P.L., M.A.H., K.L., and S.L.: project grants from the Swedish Research
Council, the Swedish Cancer Society and the Swedish Childhood Cancer Foundation. M.H.
and J.C.: Cancer Research UK (C8/A6613). M.C., E.P., and W.C.E.: Wellcome Trust
(073915). M.N. and B.V.: projects MEYS-NPS-LO1413 and GACR P206/12/G151. E.M.C.,
M.P., M.M.S., Z.F., and P.G.: Norwegian Cancer Society (182735, 732200) and Helse Vest
(911884, 911789). R.B. and S.C.: NIH (R01 CA95684), the Leukemia and Lymphoma Society
and the Waxman Foundation. N.J.W., A.R.H., A.C.A.d’H.: Cancer Research UK (C21383/
A6950) and Engineering and Physical Sciences Research Council Doctoral Training Pro-
gram. J.L. and Y.Z.: Cancer Research UK (C240/A15751). M.H. and B.W.: SARomics
Biostructures AB. U.Y., K.F.: DDDP SciLife, Sweden. L.J., M.H., R.S., and A.-L.G.: CBCS,
Sweden. VP: SciLife fellowship. AMT: Breast Cancer Research Scotland

Author contributions
CPRG Assay for compound screen was conducted by J.C. and M.Hi. CPRG assays for the
selection of HZ00 amongst active compounds from the screen was carried out by A.R.M.,
C.J.D. and S.L. The q-RT-PCR was conducted by J.C. and M.Hi. Western blotting was
carried out by M.J.G.W.L., I.M.M.v.L., C.J.D., A.P.F., M.C.C.S., M.N. and B.V. Flow

Cytometry (propidium iodide) was done by M.J.G.W.L., I.M.M.v.L., C.J.D., S.C., G.P.,
T.M. and A.P.-F. Flow Cytometry (BrdU/PI) was conducted by M.J.G.W.L., C.J.D. and
G.P. Flow Cytometry using Annexin/PI was done by MJGWL. Flow Cytometry exam-
ining p53/DNA content was carried out and analyzed by M.J.G.W.L. and S.K.S. SRB.
Viability Assays were done by I.M.M.v.L., S.D. and A.P.F. and the MTT. Viability Assay
by C.J.D. The CPRG p53 transcriptional activity assay (excluding the screen) were carried
out by I.M.M.v.L., C.J.D., S.D. and A.P.F. Clonogenic assays were done by M.J.G.W.L.,
A.P.F. and C.T. The HDM2/HDMX binding assay (ELISA) was carried out by Y.Z. and
J.L. Immunofluorescence was carried out by E.M.P., M.C. and W.C.E. The DHODH
enzyme activity assay was done by I.M.M.v.L., G.P. and C.T. All RNASeq was done by
G.P. and V.P. All 35S Radiolabelling was done by I.M.M.v.L. Protein Crystallography was
carried out by A.-L.G., M.Håk., and B.W. Chemical Synthesis of compounds and
their characterization was done by A.H., M.Har., L.J., U.Y., A.-L.G., K.F., A.C.A.d.H. and
N.J.W. In vivo xenograft experiments were carried out by M.P., M.M.S., P.G., Z.F.,
E.M. and A.M.T. In vitro pharmacokinetic properties were carried out by R.S. and K.F.
while the in vivo pharmacokinetic analysis was conducted by A.S. Analysis (e.g.,
statistical analysis, bio-statistics, computational analysis) and interpretation of data
was done by M.J.G.W.L., S.K.S., M.P., M.M.S, A.-L.G., M.Håk., B.W., V.P., M.A.H.,
D.P.L., E.M. and S.L. Supporting data on effects of compounds on various cell types was
done by M.J.G.W.L., I.M.M.v.L., C.J.D., G.P., T.M., S.C., M.F., K.L., M.N., B.V. and R.B.
Writing, of the manuscript was carried out by M.J.G.W.L., C.J.D., N.J.W. and S.L.
Review, and/or revision of the manuscript was conducted by M.J.G.W.L., I.M.M.v.L., C.J.
D., A.H., L.J., U.Y., A.-L.G., M.Håk., B.W., N.J.W., M.A.H., D.P.L., E.M. and S.L.
Administrative, technical, or material support (i.e., reporting or organizing data,
constructing databases) was organized by G.P., M.Håk., and V.P. All studies were
supervised by S.L.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-03441-3.

Competing interests: S.L. has filed a patent application on the use of HZ compounds for
cancer treatment, which was sent for publication on 4 May 2017. The remaining authors
declare no competing interest.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

Marcus J.G.W. Ladds1,2, Ingeborg M.M. van Leeuwen1, Catherine J. Drummond1, Su Chu3, Alan R. Healy4,

Gergana Popova1, Andrés Pastor Fernández1, Tanzina Mollick1,2, Suhas Darekar1,2, Saikiran K. Sedimbi1,2,

Marta Nekulova1,5, Marijke C.C. Sachweh1, Johanna Campbell6, Maureen Higgins6, Chloe Tuck1, Mihaela Popa7,

Mireia Mayoral Safont7, Pascal Gelebart7, Zinayida Fandalyuk7, Alastair M. Thompson8, Richard Svensson9,

Anna-Lena Gustavsson10, Lars Johansson10, Katarina Färnegårdh11, Ulrika Yngve12, Aljona Saleh12,

Martin Haraldsson11, Agathe C.A. D’Hollander4, Marcela Franco1, Yan Zhao13, Maria Håkansson14, Björn Walse14,

Karin Larsson 1, Emma M. Peat15, Vicent Pelechano2, John Lunec13, Borivoj Vojtesek5, Mar Carmena 15,

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03441-3 ARTICLE

NATURE COMMUNICATIONS | �(2018)�9:1107� | DOI: 10.1038/s41467-018-03441-3 | www.nature.com/naturecommunications 13

, corrected publication 2023



William C. Earnshaw15, Anna R. McCarthy1, Nicholas J. Westwood 4, Marie Arsenian-Henriksson1,

David P. Lane1,2, Ravi Bhatia3, Emmet McCormack7,16 & Sonia Laín1,2

1Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 77 Stockholm, Sweden. 2SciLifeLab, Department of
Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Tomtebodavägen 23, SE-171 21 Stockholm, Sweden. 3Division of Hematology
and Oncology, Comprehensive Cancer Center, 1720 2nd Avenue South, NP2540, Birmingham, AL 35294-3300, USA. 4School of Chemistry and
Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St. Andrews, Fife, Scotland KY16 9ST, UK. 5RECAMO, Masaryk
Memorial Cancer Institute, Zluty Kopec 7, 65653 Brno, Czech Republic. 6Centre for Oncology and Molecular Medicine, University of Dundee,
Ninewells Hospital and Medical School, Dundee, Tayside DD1 9SY, UK. 7Centre for Cancer Biomarkers, CCBIO, Department of Clinical Science,
Hematology Section, University of Bergen, 5021 Bergen, Norway. 8Department of Breast Surgical Oncology, MD Anderson Cancer Center,
Holcombe Boulevard, Houston 77030, USA. 9Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling
Platform (UDOPP), Department of Pharmacy, Uppsala University, SE-752 37 Uppsala, Sweden. 10Chemical Biology Consortium Sweden, Science for
Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet,
SE-171 21 Stockholm, Sweden. 11Drug Discovery and Development Platform, Science for Life Laboratory, Tomtebodavägen 23, SE-171 21 Solna,
Sweden. 12Department of Medicinal Chemistry, Science for Life Laboratories, Uppsala University, SE-751 23 Uppsala, Sweden. 13Newcastle Cancer
Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle NE1 7RU, UK. 14SARomics Biostructures, Medicon Village, SE-223
81 Lund, Sweden. 15The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
16Department of Medicine, Haematology Section, Haukeland University Hospital, Bergen, Norway. These authors contributed equally: Marcus J.G.
W. Ladds, Ingeborg M.M. van Leeuwen, and Catherine J. Drummond. Deceased: Anna R. McCarthy

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03441-3

14 NATURE COMMUNICATIONS | �(2018)�9:1107� | DOI: 10.1038/s41467-018-03441-3 | www.nature.com/naturecommunications




