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Abstract Transposable elements (TEs) are genetic
elements with the ability to mobilize and replicate
themselves in a genome. Mammalian genomes are
dominated by TEs, which can reach copy numbers
in the hundreds of thousands. As a result, TEs have
had significant impacts on mammalian evolution.
Here we summarize the current understanding of
TE content in mammal genomes and find that, with
a few exceptions, most fall within a predictable
range of observations. First, one third to one half
of the genome is derived from TEs. Second, most
mammalian genomes are dominated by LINE and
SINE retrotransposons, more limited LTR
retrotransposons, and minimal DNA transposon ac-
cumulation. Third, most mammal genome contains
at least one family of actively accumulating
retrotransposon. Finally, horizontal transfer of TEs
among lineages is rare. TE exaptation events are
being recognized with increasing frequency. Despite
these beneficial aspects of TE content and activity,
the majority of TE insertions are neutral or deleteri-
ous. To limit the deleterious effects of TE prolifera-
tion, the genome has evolved several defense mech-
anisms that act at the epigenetic, transcriptional, and
post-transcriptional levels. The interaction between
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TEs and these defense mechanisms has led to an
evolutionary arms race where TEs are suppressed,
evolve to escape suppression, then are suppressed
again as the defense mechanisms undergo compen-
satory change. The result is complex and constantly
evolving interactions between TEs and host
genomes.
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Abbreviations

TE Transposable element
ERV Endogenous retrovirus
LTR Long terminal repeat
LINE Long interspersed element
SINE Short interspersed element
Kb Kilobases

Mb Megabases

Bp Base pairs

ORF Open reading frame

L1 LINE1

L2 LINE2

RTE RNA transport element
MY Million years

MYA Million years ago

piRNA PIWl-interacting RNA
KRAB-ZFPs KRAB zinc finger proteins
APOBEC Apolipoprotein B mRNA editing

enzyme catalytic polypeptide-like
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Introduction

Genome evolution is a highly dynamic process where
large-scale genomic change can occur through a range of
events including whole genome duplications, inversions,
segmental duplications or deletions, and transposable ele-
ment (TE) insertions and excisions (Cheng et al. 2005;
Franke et al. 2017; Marques-Bonet et al. 2009; Ohno
1970). TEs are selfish genetic elements with the ability
to mobilize within a genome. During the mobilization
process, new copies of the TE can be created directly
(Ostertag and Kazazian Jr. 2001), or indirectly, depending
on the TE type or position of the TE relative to a DNA
replication fork (Chen et al. 1992). TEs often reach high
copy number over short evolutionary periods because of
their replicative nature and continuous accumulation.

In most cases, TE insertions have no identified func-
tion (Biémont 2010) but examples of exapted TE inser-
tions are becoming increasingly common (reviewed in
Warren et al. 2015). Function has been ascribed to indi-
vidual insertions (Mi et al. 2000), entire TE families
(Bourque et al. 2008), and TEs in general (Cowley and
Oakey 2013). Despite the potential advantages TEs pro-
vide, many insertions are neutral or deleterious, potential-
ly resulting in a disease-state, or even a lethal allele. As a
result, several genome defense mechanisms have evolved
to limit TE activity. The goal of this review is to explore
the role of TEs in mammal genome evolution. Below we
discuss TE content, advantageous and deleterious effects
of TE activity, and the evolution of TE defense strategies,
all within a mammalian evolutionary context.

Our knowledge of mammalian genomics is relatively
advanced compared to other vertebrates, yet we are still at
a point where most of our results are derived from a
handful of model taxa. Thus, broad conclusions may
reflect clade-specific phenomena rather than generaliza-
tions to the entire class of mammals. However, as new
sampling methods and sequencing technologies are devel-
oped, it will be possible to explore genomes increasing
numbers of non-model mammals as well as TE dynamics
at the population level to better understand the role of TEs
in mammalian evolution.

TE classification
TEs are generally classified into two groups based on their

mobilization intermediates (Finnegan 1989). Class I ele-
ments, also known as retrotransposons, mobilize as an

@ Springer

RNA intermediate. All retrotransposons, commonly called
“copy and paste” elements, create new copies of them-
selves as they are reversely transcribed into the genome.
Retrotransposons fall into two major groups, the long
terminal repeat (LTR) elements and non-LTR elements,
distinguished by the presence or absence of 100-300 bp
direct terminal repeats (Fig. 1). The LTR elements, includ-
ing endogenous retroviruses (ERVs), range in size from a
few hundred base pairs to 10 Kb and are structured
similarly to retroviruses (discussed below). Autonomous
LTR elements encode at least a gag and pol protein,
flanked by the long terminal repeats (LTRs) that give the
elements their name. LTR retrotransposons mobilize and
replicate through tRNA-primed template switching occur-
ring within a viral-like particle encoded by the gag gene
(Fig. 1; Leis et al. 1993; Levin 1995).

The non-LTR elements include long interspersed ele-
ments (LINEs) and short interspersed elements (SINEs).
Both LINEs and SINEs can be identified by the presence
of a repetitive tail, usually poly-A, and a lack of LTRs.
LINEs are 4-7 Kb long and may encode between one
and three proteins that provide the enzymatic machinery
necessary for mobilization. The most common mamma-
lian LINE, LINE1 (L1) contains two open reading
frames (ORFSs), a nuclear chaperone protein (ORF1)
and a reverse transcriptase (ORF2; Fig. 1). A third very
short protein (ORF0) was recently described in primate
L1 elements but its function is unknown (Denli et al.
2015). SINEs can range in size from 150 to 500 bp and
lack the machinery necessary for self-mobilization, i.e.,
non-autonomous (Fig. 1). Most mammal SINEs are
derived from the combination of a 5" head that is derived
from a ribosomal or tRNA pseudogene and a 3’ tail
homologous to a LINE. The LINE-like region of the
SINE is used to parasitize the enzymatic machinery of
LINEs for mobilization (Eickbush 1992). Unlike LINEs,
de novo origination of SINEs is relatively common in
mammals (Fig. 2).

Phylogenetic relationships estimated from the con-
served residues of the RT domain indicate four distinct
clades including LINE-like retrotransposons, Penelope-
like retortransposons, prokaryotic retroelements (ex.
group Il introns) and the LTR containing retroelements,
including LTR retrotransposons and retroviruses
(Gladyshev and Arkhipova 2011). Retroviruses are
structurally similar to LTR retrotransposons except for
the addition of an env gene. The env gene codes an
envelope protein which allows a retrovirus to potentially
infect other cells. Env gene acquisition could be from
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Fig.1 Mammalian transposable elements. a Structure of common
mammalian transposable elements. A and B box, promoter regions
derived from 7SL RNA; FRAM, free right Alu monomer; FLAM,
free left Alu monomer; A(n) poly A repeat; UTR, untranslated
region; ORFO, primate-specific open reading frame 0; ORF1,
nuclear chaperone protein; ORF2 reverse transcriptase; EN, endo-
nuclease domain; RT, reverse transcriptase domain; AP-EN,
apurinic-apyrimidinic endonuclease; U3, unique 3’ sequence; R,
repeated sequence; U5, unique 5’ sequence; PBS, tRNA primer
binding site; GAG, GAG protein; MA, matrix domain; CA, capsid

recombination between infected hosts with active
retrotransposition of LTR retrotransposons or the acqui-
sition of modification of a host encoded gene (Eickbush
and Malik 2002; Koonin et al. 1991). These events have
likely occurred multiple times leading to the indepen-
dent origins of retroviruses with some groups obtaining
the ability to leave the cell and infect others including
the caulimoviruses and gypsy viruses (Eickbush and
Jamburuthugoda 2008; Herédia et al. 2004). Once a
germ cell is infected, the retrovirus becomes
endogenized and can then be transmitted vertically from
parent to offspring.

domain; NC, nucleocapsid domain; POL, polyprotein; PR, prote-
ase domain; INT, integrase domain; RH, RNAse H domain; ENV,
envelope protein; Rec/NP9, Rec and NP9 proteins including pos-
sible alternative splicing events; TIR, terminal inverted repeat;
DNA-B, DNA binding domain; DDD, three conserved aspartate
residues; TC, TC dinucleotide sequence; ZnF, zinc-finger-
containing motifs; RepHel, replicase protein; Rep, replicase do-
main; Hel, helicase domain; CTAG -CTAG nucleotide sequence. b
Representative elements drawn to scale

Class II elements, also known as the DNA transpo-
sons, mobilize as a DNA intermediate associated with a
transposase. DNA transposons can be subdivided into
two major groups; the cut-and-paste and rolling-circle
transposons (Wicker et al. 2007). Cut-and-paste elements
excise themselves from the genome as a double-stranded
DNA intermediate associated with a transposase, an
enzyme encoded by autonomous instances of the ele-
ment family in question. Common cut-and-paste trans-
posons found in mammals include the Tcl/mariner,
hATs, and piggyBac families, all of which can be char-
acterized by their terminal inverted repeats—ranging in
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Fig. 2 Major transitions in TE content along are plotted along the
mammalian phylogeny. The mammal phylogeny is modified from
Meredith et al. (Meredith et al. 2011). Events were inferred to
specific nodes using information from (Alf6ldi et al. 2011;
Churakov et al. 2010; Gogolevsky et al. 2008; Gogolevsky et al.
2009; Green et al. 2014; Hillier et al. 2004; Kriegs et al. 2007,
Lupan et al. 2015; Nikaido et al. 2003; Novick et al. 2010; Pace
et al. 2008; Pagan et al. 2010; Pritham and Feschotte 2007; Ray
etal. 2015; Ray et al. 2006; Rinehart et al. 2005; Shimamura et al.

size from 10 to1,000 bp—and the catalytic domains of
their transposase (Fig. 1; Feschotte and Pritham 2007).
Rolling-circle transposons, or Helitrons, mobilize as a
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Ornithyorhynchus anatinus

1999; Smit et al. 1995; Suh et al. 2014; Vassetzky and Kramerov
2002; Walsh et al. 2013; Wang et al. 2005; Warren et al. 2008) and
are generally classified into four categories. “Origination Events”
(red) refer to the de novo or composite origin of new TEs.
“Horizontal Transfer Events” (blue) refer to the horizontal trans-
mission of TEs from non-mammalian lineages. “Reduction or
Expansion Events” (green) refer to dramatic shifts in accumulation
patterns. “Ancestral Elements” (pink) refer to elements that were
present in the ancestral mammalian genome

single-stranded DNA copying itself via rolling-circle
replication (Kapitonov and Jurka 2001). Autonomous
Helitrons contain a RepHel protein and a ~20 bp
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palindrome that functions as a termination sequence 10—
20 bp from the 3’ end of the element (Fig. 1; Kapitonov
and Jurka 2007).

Mammalian TE content and evolution

A survey of TEs from species spanning the mammalian
phylogeny (Meredith et al. 2011) can be used to gener-
alize TE content in mammals as a whole (Fig. 2). Under
this assumption, we can make the following observa-
tions regarding TE content and dynamics in mammalian
genomes:

e One half to one third of the mammal genome is
derived from TEs.

* LINE and SINE retrotransposons are the most com-
mon types of TE. DNA transposons are rare and/or
ancient.

*  Mammals usually have one or more actively mobi-
lizing TE family

* Horizontal transfer of TEs is rare in mammals

As with any observations made across a group as
diverse as mammals and a phenomenon as dynamic as
TEs, there are exceptions to each of these observations.
Data supporting the above observations plus the excep-
tions are described below.

One half to one third of the genome is derived from TEs

TEs typically make up between one third and one
half of mammal genomes (Fig. 3; Elsik et al. 2009;
Lander et al. 2001; Mikkelsen et al. 2007; Miller
et al. 2008; Warren et al. 2008; Waterston and
Pachter 2002) but it is likely that estimates of TE
content are biased downwards based on computa-
tional and methodological limitations of TE identi-
fication. At the time of insertion, novel TE inser-
tions are identical, or nearly identical to, the parent
insertion. As neutrally evolving TE insertions age,
the genetic distance between insertions increases.
Ancient insertions with less than 50% sequence sim-
ilarity to a query TE rapidly become unidentifiable
using homology-based methods. In addition to nat-
ural sequence divergence between TE insertions,
homology-based searches may not identify lineage-
specific repeats if they are not defined a priori (Platt
II et al. 2016a). De novo TE identifications tend to

be more accurate and can be used to identify partic-
ularly ancient elements. For comparison, current
estimates of TE content in the human genome range
from 49% to as high as 69% when using homology
or de novo-based searches, respectively (de Koning
et al. 2011). Because of sequence degradation and
homology-based limitations, estimates of TE content
are always biased against older elements and some-
times against newer elements. It is almost certain
that mammalian genomes are more repeat rich than
currently recognized.

LINEs and SINEs are more abundant than LTR
elements and DNA transposons

The repetitive portion of mammal genomes is dominated
by LINEs and SINEs, followed by LTR retrotransposons,
and then DNA transposons. In most, ~ 75% of the repet-
itive portion is derived from non-LTR retrotransposons
(Fig. 3; Lander et al. 2001; Waterston and Pachter 2002).
Non-LTR retrotransposons in the platypus genome make
up 97.4% of all repetitive sequences and LINEs by
themselves occupy 20% of the genome (Warren et al.
2008). The LINE-1 (L1) family is the most successful TE
family in mammals, and frequently occupies hundreds of
megabases in therian genomes. SINE expansions in
mammals piggyback on the success of their autonomous
LINE partners. Rather than continuous expansion from a
single SINE family, as in the case of L1, unique and
lineage-specific SINE families have arisen multiple times
(Fig. 2; Kramerov and Vassetzky 2011).

LTR retrotransposons are present in mammal ge-
nomes at moderately high copy number, and can
occupy between ~4 and 10% of the genome
(Mikkelsen et al. 2007). However, the accumulation
of LTR elements in the genome may not reflect past
activity because recombination between the terminal
repeats of LTR elements can remove nearly the entire
element, leaving behind a solitary LTR (Bennetzen
and Kellogg 1997; Smit 1993).

DNA transposons are usually present in low copy
numbers relative to retrotransposons, occupying less
than 3% of mammalian genomes (Platt I and Ray
2012). Low copy number of DNA transposons is driv-
en in part by two factors. First, most mammals lack
autonomous class II elements (Pace and Feschotte
2007), so the DNA transposons that are present in
mammalian genomes are decaying vestiges of earlier
transposition events. Second, if a cut-and-paste DNA
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Fig.3 TE content in mammal and non-mammal vertebrate genomes.
TE content was quantified from pre-masked genomes available at

http://repeatmasker.org/genomicDatasets/RMGenomicDatasets.html

transposon is active, a new copy is only created if it
reinserts in front of a replication fork. To date, the
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(last accessed 30 November 2014). Genome size was estimated from
the number of bases in the genome assembly

vespertilionid bats are the only mammals with signif-
icant, active DNA transposition (discussed below).
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Most mammals have one or more actively mobilizing
TE family

The vast majority of TE insertions in mammal genomes
are incapable of mobilization (Fanning 1983). With L1
elements, this is true primarily because most insertions
are truncated at the 5’ end due to inefficient reverse
transcription (Grimaldi et al. 1984). Furthermore, de
novo insertions of any type may be mutated during the
insertion process or targeted for transcriptional and post-
transcriptional silencing by one of several defense mech-
anisms (described below). So, while there may be tens of
thousands of copies of any TE present, only a small
fraction is capable of mobilizing at any moment. In
humans and mice, only 6 of more than ~868,000 and
2382 0f ~599,000 L1s are retrocompetent in their respec-
tive genomes (Brouha et al. 2003; Zemojtel et al. 2007).

Despite the limited number of retrocompetent ele-
ments, retrotransposition of LINEs and/or SINEs persists
in mouse, human, and most other mammal genomes
examined to date. TE quiescence of LINEs and/or
SINES has only been observed in the ground squirrel
(Platt IT and Ray 2012), Tasmanian devil (Nilsson 2016),
Ateles spider monkeys (Boissinot et al. 2004),
sigmodontine rodents (Grahn et al. 2005; Rinehart
et al. 2005), and pteropodid bats (Cantrell et al. 2008)
but, given the timing and phylogenetic distribution of
these silencing events, it is plausible that quiescence has
impacted in as many as 15% of all mammal species
(Platt 1T and Ray 2012). Understanding the genomic
mechanisms, population genetic parameters, and random
factors that reduce or eliminate TE activity is one of the
major questions in vertebrate genome evolution
(Goodier 2016).

Horizontal transfer of TEs is relatively rare

TEs in mammals are spread primarily through vertical
inheritance, though the mobile nature of TEs means the
insertion patterns may vary among lineages. In some
rare instances, TEs are horizontally transferred among
taxa. In mammals, there are fewer than 20 documented
horizontal transfer (HT) events in the last 160 MY,
compared to 2248 in the last 10 MY in insects (Fig. 2;
Peccoud et al. 2017). The most successful HT event in
mammals was the expansion of BovB LINES into a
diverse group of mammals including afrotherians (ex.
elephants and tenerecs), ruminants (ex. cattle and deer),
marsupials (ex. kangaroos and possums), and

protherians (platypuses and echidnas). The expansion
of BovB in mammals is the result of at least four
separate transfer events (Walsh et al. 2013) as recently
as 50 MYA (Kordis and Gubensek 1998) likely from a
parasite vector (Walsh et al. 2013). Despite the relatively
recent invasion into an ancestral ruminant, BovB LINEs
and SINEs make up as much as 18.4% (Elsik et al.
2009) and 10.37% (Ge et al. 2013) of the bovid genome,
respectively.

Various DNA transposon families have successfully
invaded mammalian genomes but not accumulated as
successfully as the BovBs. HT of SPIN transposons
occurred between 15 and 46 MYA into the galago,
murine rodents, opossum, tenerec, and vespertilionid
bats (Pace et al. 2008), hATs were transferred to the
opossum, tenerec, some primates, and vespertilionid
bats (Novick et al. 2010) and piggyBacs were trans-
ferred into the mouse lemur and vesperitionlind bats
(Pagan et al. 2010). The frequency of these events and
the fact that many occur in the same taxa suggest that
some species may be more susceptible to HT than
others, most notably the vespertilionid bats, who also
have experienced HT of Helitrons, and Tcl/mariners.
The HT of hATS, piggyBacs, Tcl/mariners, and Helitron
transposons into these bats occurred over a series of
events within a narrow 10-20 MY window (Platt II
et al. 2016b; Pritham and Feschotte 2007; Ray et al.
2008; Ray et al. 2006; Thomas et al. 2011). As a result,
almost half of all recent transposition in the vesper bats
has been from DNA transposons compared to less than
1% in other laurasiatherians (Platt II et al. 2014). Still,
DNA transposons only account for 3-5% of
vespertilionid genomes despite the recent increase in
accumulation (Pagan et al. 2012).

Impacts of advantageous TE insertions
on mammalian genomes

The presence of TEs and their dynamic nature has
shaped mammal genomes in significant ways (reviewed
in Chalopin et al. 2015; Sotero-Caio et al. 2017; Warren
etal. 2015). Below we describe some advantageous and
deleterious effects of TE activity and content. We em-
phasize that despite our focus on the selectively advan-
tageous or deleterious impacts of TEs, many TE inser-
tions have accumulated through non-adaptive processes
associated with reduced effective population sizes and
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the resulting increased effects of genetic drift (Lynch
and Conery 2003).

Exaptation of TEs

More than a quarter million conserved non-coding ele-
ments are derived from TEs in the human genome alone
(Lowe and Haussler 2012). Further, identification of
additional exaptation events, notably TEs as regulatory
units, is becoming increasingly common. Some TE’s
promoters contain transcription factor binding sites and
other regulatory motifs (Bourque et al. 2008). As TEs
mobilize in the genome, they spread their own regula-
tory motifs to new loci. If a TE inserts near-promoter
regions of other genes, selection can then co-opt the
TE’s regulatory elements to alter gene expression of
the nearby genes. Given enough time, a novel regulatory
network can emerge where a single transcription factor,
originally associated with TE transcription, may link
dozens, or even hundreds, of previously unrelated genes
(Chuong et al. 2017). As selection acts on the nascent
network, it can become highly specialized. In the case of
MER20, binding sites for hormone responsiveness and
pregnancy-related transcription factors found within the
TE itself were spread throughout the genome of the
ancestral placental mammal.

Multiple examples exist including the differentiation
of endometrial cells in the presence of progesterone,
which was a critical step in the evolution of pregnancy
in placental mammals. Thirteen percent of genes associ-
ated with differentiation of endometrial stromal cells
appear to be regulated by motifs found in a eutherian-
specific #AT transposon, MER20. In addition, almost
half of all MER20s in the human genome are found
within 200 Kb of progesterone responsive genes
(Lynch et al. 2011). In some instances, MER20 would
insert next genes providing transcription factor-binding
sites (or epigenetic modifications) that may not have
previously affected that genes. As this continued to
happen, a complex network of genes, partially regulated
by MER20-derived regulatory sites, developed into a
cell-type specific regulatory network for differentiation
of endometrial cells (Lynch et al. 2011; Lynch et al.
2015). In another example, three TEs, an AmnSINE,
X6b DNA transposon, and MER117 hAT inserted adja-
cent to each other in a sequential manner to form a
complex promoter for secondary palate development in
eutherian mammals. None of the insertions exhibit pro-
moter activity on their own but instead work
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cooperatively to regulate wnt5 expression (Nishihara
et al. 2016). Chuong et al. (2017) provides a more
detailed review of TE-driven regulatory networks.

Co-option of LTRs is inversely proportional to the
age of the element subfamily; younger elements are
more likely to be co-opted, a trend that contrasts with
the co-option rate of other TEs (Franke et al. 2017).
LTRs can serve as gene-remodeling platforms where
the promoters and initial exons of a gene are derived
from an LTR. LTR-derived promoters and 5’ exons
are incorporated into 842 protein coding and IncRNA
genes expressed during the transition from oocyte to
zygote in rodents (Franke et al. 2017). In mice an
MT-C LTR insertion into a DICER intron has trun-
cated the first 6 exons, provided an alternative pro-
moter and novel first exon. This DICER isoform has
acquired oocyte-specific expression and is essential
for fertility (Flemr et al. 2013).

TEs may promote adaptability

TEs can alter gene expression, disrupt coding genes,
transduce exons, or promote recombination allowing
for dramatic and rapid restructuring of the genome
that may exceed the changes offered by point muta-
tions. These changes may allow populations to more
fully explore a fitness landscape in a shorter period of
time; increasing the “adaptability” of the population
(Casacuberta and Gonzalez 2013). The role of TEs in
promoting adaptability has been explored theoretical-
ly (Werren 2011), in the laboratory (Stoebel and
Dorman 2010), observed in the wild (Schrader et al.
2014), and has become a critical framework to un-
derstand invasion genetics (Stapley et al. 2015), but
has yet to be demonstrated in a mammalia. Two
hypotheses regarding the role of TEs in promoting
adaptability are directly associated with mammals;
the stress-response (McClintock 1984) and TE Thrust
hypotheses (Oliver and Greene 2011). A variant of
the stress-response hypothesis, the epi-transposon
hypothesis (Zeh et al. 2009), posits that during times
of environmental stress epigenetic suppression of
TEs is relaxed allowing for burst of TE activity.
The increased rates of TE activity allow populations
to explore the fitness landscape. The epi-transposon
hypothesis has been explored more completely in
plant studies (for examples see Ito et al. 2016;
Nozawa et al. 2017) than in vertebrates. Despite these
limitations general observations in the human
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genome, including increases in TE expression due to
chemical exposure, approximating environmental
stress (Kale et al. 2005), and the association of TEs
in stress related gene regions (van de Lagemaat et al.
2003), tend to support tenets of the epi-transposons
hypothesis. The TE-Thrust hypothesis proposes that
lineages with TE activity are more fecund than those
without, and is based on the observation that TE
accumulation tends to be associated with novel ge-
netic change. Like the epi-transposon hypothesis, it is
difficult to directly test the TE-Thrust hypothesis.
Instead, correlations between TE activity with major
evolutionary innovations in mammalian lineages rep-
resent the best supporting evidence (Brandt et al.
2005; Lowe and Haussler 2012; Mikkelsen et al.
2007; Pace and Feschotte 2007; Platt II et al. 2014;
Suh et al. 2014). However, given that TE activity is
more likely to lead to declines in fitness reductions
rather than increases in fitness, a rigorous test of the
assumption that TE activity leads to as an example,
increased diversification rates, to be tested within a
phylogenetic context.

Impacts of deleterious TEs insertions on mammalian
genomes

Around 10% of all de novo mutations in lab mice are the
result of TE insertions (Maksakova et al. 2006). In fact,
the mutagenic power of TEs is so great that transposons
are often used to identify gene function in model organ-
isms including humans and mice (Dupuy et al. 2005).
The deleterious effects of TE activity can result in
reduced fitness in populations. Below we discuss the
evidence of and known deleterious effects of TEs in
mammals, most of which is derived from studies in
human and mouse models.

Selection drives TE distribution

One difficulty in identifying deleterious insertions is
that they are often lethal or only slightly deleterious
and present no obvious phenotypes. As a result, our
knowledge of deleterious TE insertions is more lim-
ited than one might expect given the frequency with
which deleterious TE insertions are expected to arise.
Rather than directly observing the deleterious effects
at the morphological level, the deleterious nature of

TE insertions can be inferred from biases in their
distribution across the genome.

Surveys of the human genome show that TE inser-
tions are not randomly distributed. Younger
retrotransposon insertions are biased toward AT rich
regions reflecting their target-site preference
(Medstrand et al. 2002). As Alu elements age, their
density in GC rich regions increases relative to L1
(Jurka et al. 2004). In vertebrates, GC rich regions are
typically associated with high gene density compared to
the relatively gene poor AT rich regions. Accumulation
of elements in GC rich regions likely reflects selection
against inter-TE recombination, the only mechanism
thought to remove TEs, since such events are more
likely to disrupt coding regions than to salvage them
(Abrusan and Krambeck 2006; for an alternative
explanation see Kvikstad and Makova 2010;
Medstrand et al. 2002). If young insertions are neutral
or slightly deleterious, selection should remove the
slightly deleterious insertions. Under this assumption,
older elements are more likely to be neutral than their
younger counterparts. Because of GC-biased accumula-
tion, TEs are found in introns of almost 90% of human
and mouse genes. Intronic TE insertions tend to be
located more than 150 bp away from the closest exons
and in the opposite orientation of the gene (Burns and
Boeke 2012). These positional biases reflect selection
against insertions that disrupt splice sites and/or gener-
ate anti-sense exonic transcripts via read-through tran-
scription from promoters in the TE insertion. Interest-
ingly, most known mutagenic insertions found in introns
violate these patterns (Zhang et al. 2011).

TE contribution to mutational meltdown

While some levels of TE activity may promote adapta-
tion (discussed above), it is possible that excess TE
activity can contribute to mutational meltdown of pop-
ulations. Mutational meltdown is a positive feedback
loop where deleterious mutations accumulate in popula-
tions leading to decreased fitness and reduced popula-
tion sizes which are more prone to the accumulation of
additional deleterious mutations via drift. Mutational
meltdown is difficult to observe directly because it is a
feed-forward loop that results in extinction. As a result,
the literature on mutational meltdown is biased toward
theoretical work (Lynch et al. 1995) or experiments with
lab populations (Zeyl et al. 2001), and less is known
about the process in wild species with long generation
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times (Rowe and Beebee 2003). The best example of
mutational meltdown in mammals is from the Wrangel
Island mammoth genome. The single genome available
for this group shows an accumulation of gene deletions,
premature stop codons, and reduced heterozygosity
compared to other mammoth genomes from individuals
in larger populations (Rogers and Slatkin 2017). In
addition, the Wrangel Island mammoth has an excess
of retrogenes. Because retrogenes are a direct byproduct
of LINE activity, their presence indicates a burst of
retrotransposon activity just prior to extinction of the
Wrangle Island mammoth population (Rogers and
Slatkin 2017). This final burst of TE activity, beyond
creating retrogenes, could have contributed to the muta-
tional meltdown of the Wrangel Island mammoth pop-
ulation. Interestingly, this burst of TE activity is expect-
ed under the epi-transposon hypothesis (Zeh et al. 2009).

Somatic diseases

TE expression was previously thought to be limited to
the germ line but recent studies identified extensive TE
expression in somatic tissue. When occurring in the
germ line, lethal insertions are purged, but somatic stem
cell insertions are more tolerable and associated with
cancer, neuropathy, and the aging process.

TE insertions have been associated with more than
100 diseases (Chénais 2013; Hancks and Kazazian
2016) including several forms of cancer. TE-induced
cancer can arise by altering tumor suppressor genes or
proto-oncogenes (Morse et al. 1988). In each case,
disruption of one allele by a TE usually needs to coin-
cide with a loss-of-function mutation at the other allele
before tumorigenesis, so the prevalence of TE-induced
tumorigenesis is unknown (Burns and Boeke 2012).
Still, examples of TE-driven tumorigenesis exist. For
example, an L1 element insertion into the APC tumor
suppressor gene initiates colorectal cancer (Scott et al.
2016). Splice variants of Rec and Np9 from the env gene
in HERV-Ks bind and suppress the promyelocytic leu-
kemia zinc finger protein which is a transcriptional
repressor of the oncogene c-myc (Denne et al. 2007).
Changes in genome structure including chromosomal
translocations, recombination between, and duplications
driven by Alu insertions have all been associated with
several forms of leukemia (Jeffs et al. 1998; O'Neil et al.
2007, Strout et al. 1998).

Neural tissues contain unexpected levels of TE expres-
sion. More than 2200 somatic TE insertions were
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identified in just three individuals, a large number of
which tended to be within or in close proximity to
protein-coding genes (Baillie et al. 2011). It has been
estimated that 1 in every 300 neuronal genomes contains
a novel L1 insertion (Evrony et al. 2016), which means
that the typical mammal brain may contain millions,
possibly billions of novel TE insertions. These and other
observations seem to imply that some level of TE expres-
sion is necessary for normal neuronal development, yet
progenitor cells are vulnerable to accumulating deleteri-
ous mutations (Li et al. 2012; Reilly et al. 2013). Since
TEs are going to insert into open, euchromatin sites, they
are likely to insert near, or potentially into, transcribed
genes associated with neural function (reviewed in
Nekrutenko and Li 2001). Environmental stimuli ranging
from exposure to light (deHaro et al. 2014), heavy metals
(Kale et al. 2005), aromatic hydrocarbons (Stribinskis and
Ramos 2006), even physical exercise (Muotri et al. 2009),
can potentially increase L1 expression beyond the already
elevated levels in neural tissues. As a result, neural tissues
show increased accumulation of TE insertions in genes
associated with stress, including alcoholism and post-
traumatic stress disorder (Reilly et al. 2013). In humans,
Alu elements retrotransposed into the mitochondrial,
TOMMA40 gene 16 times leading to a serious of confor-
mational changes and/or truncated proteins that are less
than fully functional (Larsen et al. 2017). Mitochondrial
dysfunction in neural cells likely leads to increased oxi-
dative stress and subsequent inflammatory response imi-
tating a feedforward loop that leads to reduced neural
function and disease (Swerdlow and Khan 2004).

Mammalian protection against TEs

Because TEs are capable of compromising genome
integrity, disrupting gene function, and inducing disease
states the genome has evolved several, semi-redundant
defensive systems to limit TE activity. These systems
range from transcriptional silencing to transcript
editing. Below we present three defense mechanisms
in mammalian genomes and discuss how they have
shaped mammalian genome evolution.

KRAB/KAP1 histone modification
Retrotransposons are transcriptionally silenced in early

embryos by histone modification and DNA methyla-
tion, although the initiators of this process have, until
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recently, been unknown. Kriipell-associated box
(KRAB) domain-containing zinc finger proteins
(KRAB-ZFPs) have sequence-specific DNA binding
ability via C-terminal zinc fingers (Urrutia 2003) that
are used to recognize retrotransposons in early embryos
(Rowe et al. 2010). After recognition, KRAB-ZFPs
recruit KRAB-associated protein 1 (KAP1), which in
turn can bind to any one of a series of epigenetic regu-
lators, including, histone methyltransferases (ESET),
heterochromatin protein 1 (HP1), nucleosome remodel-
ing and deactylation (NuRD) complex, and DNMT3A
and DNMT3B which methylates DNA (Ecco et al.
2017; Feschotte and Gilbert 2012). Knocking out
KAPI in early mouse embryos leads to an upregulation
of ERV retrotransposons (Rowe et al. 2010).

Sequence editing with APOBECs

The APOBEC family of cytidine deaminases act by
editing reverse (cDNA) transcripts (Friedli and Trono
2015; Mangeat et al. 2003). The enzymes mediate the
deamination of cytosine to uracil, causing either direct
destruction or debilitating levels of hypermutation in the
TE cDNA (Harris et al. 2003). APOBECs arose in early
vertebrates, but at least two subfamilies of APOBECs
(APOBEC3 and APOBECI) arose through gene dupli-
cations in early mammals, and APOBECS3 is only pres-
ent in placental mammals (Conticello 2008; Conticello
et al. 2004; Rogozin et al. 2007). The family member
APOBEC3G was first noticed to edit viral cDNA from
HIV lacking the vif gene and murine leukemia virus
(Bishop et al. 2004). ERVs are structurally like these
retroviruses and are also in fact edited by APOBECs. It
was first hypothesized that non-LTR retroelements
would not be affected by APOBECs because
APOBEC3G is restricted to the cytoplasm and non-
LTR reverse transcription occurs in the nucleus. How-
ever, it was later discovered that several APOBEC3s are
expressed in the nucleus and the family inhibits a broad
range of both LTR and non-LTR retroelements (Bogerd
et al. 2006; Friedli and Trono 2015; Kinomoto et al.
2007; Richardson et al. 2014; Schumann 2007).

PIWI proteins and piRNAs

The typical mammalian genome encodes four PIWI
proteins: PIWIL1 (MIWI), PIWIL2 (MILI), PIWIL3,
and PIWIL4 (MIWI2). Their partners, piRNAs, are the
most abundant small RNA in testis and range from

approximately 24 to 32 bases. piRNAs have few
distinguishing characteristics except for a uridine bias
in the first position of sense-oriented sequences. PTWI
proteins and the associated piRNAs are predominately
expressed in the germ line and are required for sper-
matogenesis (Aravin et al. 2006; Carmell et al. 2007,
Kuramochi-Miyagawa et al. 2004; Lau et al. 2006).

PIWIs silence TEs through two pathways, direct
cleavage of TE transcripts and de novo methylation of
TE loci, both of which are dependent on the “ping-pong”
cycle where PIWIs use piRNAs as guides to TE tran-
scripts. Briefly, sense primary piRNAs direct PIWIL?2 to
complementary anti-sense TE-derived transcripts. These
transcripts are cleaved to generate anti-sense secondary
piRNAs and these secondary piRNA are incorporated
into a PIWIL4 or PIWIL2 complex which is guided to a
sense TE transcript, and the cycle is repeated creating a
feed forward loop that increases the number of piRNA
guides and reduces the abundance of TE mRNAs. During
testis development, genome-wide methylation marks are
erased and reset in primordial germ cells. As a result, TEs
are released from epigenetic silencing and their expres-
sion increases (Molaro et al. 2014). During this time,
PIWILA is thought to mark TE loci for downstream de
novo methylation by methyltransferases DNMT3L and
DNMT3A (Aravin et al. 2008; Molaro et al. 2014);
however, this exact mechanism is unknown. Knocking
out PIWIL4 and PIWIL2 lead to upregulation of
retrotransposon in the male germ line, an arrest of game-
togenesis, and complete sterility in male mice, likely due
to unrestricted retrotransposon mobilization (Aravin et al.
2007; Carmell et al. 2007).

As a primary defense mechanism against TE prolifera-
tion, PIWI processing likely affects TE composition in
mammalian genomes (Vandewege et al. 2016). When
comparing TE expression and piRNA processing in mam-
mals with different active TE families, a strong positive
relationship between piRNA and TE transcript abundance
was present; more piRNAs were derived from highly
expressed TEs. The relationships between TE transcription
and piRNA quantity, however, did not correlate with
“efficiency” in targeting. Young SINE expression in the
dog and horse genomes is comparable, yet young SINEs
accumulate at a much greater rate in the dog than the horse
genome. SINE transcripts in the horse are targeted,
cleaved, and/or methylated allowing for high SINE expres-
sion but limited accumulation when compared to dogs.
This reduced efficiency of PIWI processing in the dog
genome has resulted in 166,148 SINEC Cfa SINE
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msertions versus 53,092 ERE1 in the horse over a rela-
tively similar amount of time and despite similar SINE
transcription levels (Vandewege et al. 2016). SINE accu-
mulation is so rapid in the dog that ~ 10,000 bimorphic loci
in the domestic dog population (Wang and Kirkness 2005).

The genomic arms race with TEs

TEs and genomic defenses systems are engaged in an arms
race that mirrors the relationship between pathogens and
the immune system. The genome must constantly develop
strategies to fight transposition, which pressures TEs to
evolve to escape repression. For example, by resembling
regulatory sequences, some LTRs likely escape methyla-
tion in embryonic stem cells (Gerdes et al. 2016). With the
exception of birds, there are hundreds of KRAB-ZFPs
encoded by most vertebrate genomes (Emerson and
Thomas 2009; Liu et al. 2014). KRAB-ZFPs experience
rapid evolutionary changes in zinc finger structure, se-
quence, and expression, and splicing patterns (Nowick
et al. 2010) and tandem duplication events drive the rapid
expansion of the KRAB-ZFP gene families. Further, there
is a positive correlation between the number and age
KRAB-ZFPs and genomes ERV content (Thomas and
Schneider 2011). Selection is also a strong driver of evo-
lution in APOBEC sequences (Sawyer et al. 2004).
APOBEC3G has been under strong positive selection in
primates, and additional members of the APOBEC family
display strong signals of positive selection in humans
(Sawyer et al. 2004). Primate genomes encode the most
APOBECs, and the expansion of this family during pri-
mate evolution coincides with a decrease in TE activity
(Schumann 2007). The PIWIs are fundamentally different
from APOBECs and KRAB-ZFPs, where selection is a
strong driver of their evolution. The sequences and struc-
ture of PIWI proteins are well conserved, but the targeting
mechanism, the piRNAs are directly processed from active
TEs allowing the inhering targeting and silencing of the
newest and most expressed TEs (Molaro et al. 2014;
Vandewege et al. 2016).

The genomic TE defense system is overall adaptive
and redundant given there are defenses at every stage of
the TE replication cycle. TEs are silenced via KRAB-
ZFPs during embryogenesis and PIWI proteins methyl-
ate and silence young TEs during testis development.
Elements that escape methylation and become
expressed are cleaved in the cytoplasm by additional
PIWI proteins. And if a TE mRNA is not cleaved,
APOBEC:s edit the transcript so that the new insertion
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is no longer functional. These pathways, and others just
being described (Martinez et al. 2017; Schorn et al.
2017), work together to prevent full-length autonomous
elements from propagating in mammalian genomes.

Conclusion

One third to one half of the typical mammalian genome is
derived from TEs, primarily non-LTR retrotransposons.
Because of their abundance, TEs can have significant
impacts on mammalian genome evolution. Active
(retro)transposition can provide opportunities for expati-
ation events, build novel regulatory networks, and even
increase the adaptive potential of a population. Despite
these benefits, many insertions with any phenotypic im-
pact are neutral or deleterious. Highly deleterious inser-
tions will be rapidly purged from the gene pool; however,
somatic insertions can arise presenting as any number of
cancers or neurological diseases. To mitigate the potential
deleterious effects of TE activity, several redundant de-
fense mechanisms have evolved to limit TE expression.

Our knowledge of mammalian genomics is relatively
advanced compared to other vertebrates, yet we are still
at a point where most of our results are derived from a
handful of model taxa. At this point, broad conclusions
may reflect clade-specific phenomena rather than gen-
eralize to the entire class of mammals. As new sampling
methods and sequencing technologies are developed, it
will become possible to explore genomes of non-model,
mammalian tax at the population level to truly under-
stand the role of TEs in mammalian evolution.
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