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Abstract

Objective—The circadian hormone melatonin has wide-reaching effects on human physiology. 

In adolescents, the impact of nighttime light exposure and other modifiable behavioral factors on 

melatonin levels is poorly understood.

Design—We cross-sectionally examined the influence of nighttime behaviors on melatonin levels 

in 100 adolescents (average age: 15.7; 55 female, 45 male), who completed a self-administered 

questionnaire and provided a first morning urine sample to assay for urinary 6-sulfatoxymelatonin 

(aMT6s) levels. We used mixed-effects regression models to test for differences in aMT6s levels 

by categories of covariates.

Results—Self-reported sleep duration, ambient light levels during sleep, and use of electronics 

after turning off lights did not significantly predict aMT6s levels. Compared to those who reported 

weekend bedtimes before 11pm, urinary aMT6s levels were significantly lower among participants 

reporting weekend bedtimes after midnight (52.5 vs. 38.0 ng/mg creatinine, Ptrend=0.007). Sleep 

interruption also appeared to be significantly associated with lower urinary aMT6s levels, but only 

if lights were turned on during sleep interruption (43.0 ng/mg creatinine for participants with sleep 

interruption but not turning lights on, vs. 24.6 ng/mg creatinine for participants reporting that they 

turned on the light when their sleep was interrupted Pdifference=0.032).

Conclusions—Our study suggests that self-reported sleep-related behaviors have little to no 

effect on adolescent circadian systems, though larger studies are needed to confirm our findings.
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INTRODUCTION

National-level data indicate that sleep problems are endemic among US teenagers1. The 

circadian system undergoes rapid changes in puberty that may predispose adolescents to fall 

asleep and wake up at later times than adults2,3. Often, this developing physiology conflicts 

with early school start times: in a national survey, nearly half of adolescent respondents 

reported that they slept less than the recommended 8 hours on weeknights1. Sleep 

deprivation is associated with a number of adverse outcomes in youths, including 

impairments in mood and behavior4, poor academic performance5, and possibly obesity6. In 

adults, disruption of the circadian sleep cycle has been associated with an increased risk of 

cancer7.

While some evidence suggests that delaying school start times even a small amount may 

decrease fatigue and improve mood8, implementing changes to school schedules is not 

generally a feasible option for most school districts. As a result, more research is needed to 

quantify the impact of modifiable factors – such as nighttime light exposure – on adolescent 

health.

The effects of sleep on health may be mediated through the circadian hormone melatonin, 

which has wide-reaching effects on human physiology and is an emerging biomarker for 

adult chronic diseases. Melatonin secretion in humans exhibits diurnal variation: levels are 

lowest during the day, and peak overnight during sleep9. Melatonin release from the pineal 

gland may also be suppressed by exogenous factors, particularly natural and artificial light10. 

In studies of adults, significant inverse associations between exposure to light at night – 

often resulting from nightshift work – and melatonin levels have been documented11. 

However, the relationships between similar exposures and melatonin levels in younger 

populations have not been widely studied.

In the present analysis, we cross-sectionally examined associations between nighttime 

behaviors and urinary markers of melatonin levels in adolescents. All participants provided 

self-reported information about sleep-related factors, as well as a first-morning urine sample 

was assayed to quantify melatonin levels on a mid-week night during the school year.

SUBJECTS & METHODS

Study population and Procedures

Between the months of April and May 2011, students in grades 9–12 at a suburban New 

York high school were recruited for participation via flyers and in-classroom presentations 

by one of the investigators (C.H). All students willing to answer a short questionnaire and 

provide a first-morning urine sample on designated study date were eligible for inclusion. 

Written consent was obtained from all participants, and from the parent or guardian of each 
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participant. All procedures were conducted with approval of the Ossining High School 

Institutional Review Board.

Instrumentation

Participants were given two days in late May 2011 to complete a paper questionnaire aimed 

at assessing nighttime habits, light exposure and sleep duration. In addition to assessing 

demographic and lifestyle characteristics, questionnaire items queried: 1) Time at which 

participants turned off the light to go to sleep and time at which they woke up on each day of 

a usual week; 2) Number of hours usually spent looking at an electronic device (e.g. a laptop 

or desktop computer, a television) after lights are turned off to go to sleep; 3) Use of sleep 

aids, and type; 4) Whether a light or television was turned on in, or near, the bedroom while 

sleeping; 5) Average number of times per night, if any, that their sleep was interrupted; 6) If 

sleep was interrupted, participants were asked to indicate whether they turned a light on, and 

intensity (bright or dim) and duration (<5, 5–10, or ≥10 minutes) of light exposure; 7) 

Average sleep duration (in hours) for weekdays and weekend night, separately; 8) Level of 

ambient light present in the bedroom during sleep on weekdays, weekends, and night prior 

to urine collection.

Ambient light levels were classified according to the numerical scale established by Davis et 

al.12: 1) Subject wears a mask to keep out the light; 2) Subject cannot see his/her hand in 

front of his/her face; 3) Subject can see to the end of the bed; 4) Subject can see across the 

room; 5) Subject can barely read; and 6) Subject can read comfortably.

Time spent in bed in on weekends and weekdays was calculated as the difference between 

the hour at which participants reported getting into bed with the lights off and the hour at 

which they reported waking. Participants were also asked to provide the location of their 

current residence, duration of residence at that address, and whether artificial outdoor light 

was visible from their bedroom window.

Between June and July 2012, additional information about participants’ chronotype was 

collected via email. Respondents answered a single question from the Horne-Osterberg 

Morningness-Eveningness Questionnaire13, indicating whether they most closely identified 

as: 1) A definite “morning” type; 2) Rather more of a “morning” type than an “evening” 

type; 3) Rather more of an “evening” type than a “morning” type; or 4) A definite “evening” 

type. This item has previously been shown to correspond well to the overall questionnaire 

score14.

Urine Collection

On May 25, 2011, all participants collected first-morning urine samples in their homes using 

4.5mL tubes provided by the investigators. All samples were collected when participants 

arrived at school, between approximately 7:30 and 8:00 am, and were immediately placed 

on ice and transported within 6 hours to the Specialty Assay Research Core Lab (Boston, 

MA). Eleven random urine samples were split as blinded quality control and quality 

assurance for the laboratory analysis.
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Laboratory methods

Urinary melatonin (6-sulfatoxymelatonin, aMT6s) measurements were assayed using 

commercially available ELISA kits (ALPCO, Windham, NH). The Bühlmann 6-SMT 

ELISA is an immunoassay using an antibody-capture technique with a lower detection limit 

of 0.8 ng/ml for aMT6s. All aMT6s assays are creatinine-standardized to account for 

differences arising from variations in urine concentrations. Urine creatinine was measured 

using the COBAS Integra 400 (Roche Diagnostics, Indianapolis, IN. To assess 

reproducibility of the laboratory methods, masked split specimens included within each 

batch (10% of the total samples) were used to calculate the coefficient of variation within 

batches; for urinary aMT6s the average within-batch CV among the samples was 3.3% and 

for creatinine, 1.4%.

Statistical methods

No study participants were missing aMT6s levels, and none of the aMT6s values were 

identified as outliers based on the generalized extreme studentized deviate many-outlier 

detection approach,15 leaving a total of 100 students available for our analyses.

All statistical analyses were performed with SAS software (SAS Institute, Cary, NC). 

Fisher’s exact tests were used to examine univariate relationships between chronotype and 

reported sleep habits. Continuous variables in Table 1 are presented as means (standard 

deviation, SD). To test for differences in aMT6s levels by categories of covariates, we used 

mixed-effects regression models to obtain geometric mean aMT6s levels and 95% 

confidence intervals (95% CI). Main models were adjusted for age (years, continuous), sex, 

body mass index (k/m2, continuous), alcohol consumption (any v. none), physical exercise 

(<4 hours per week v. 4+ hours per week), and ethnicity (white/Caucasian v. other). Further 

adjustment for sleep duration did not materially change results, and this covariate was not 

retained in final models. When the underlying variable was continuous, such as age or BMI, 

P-values are reported for the linear trend test. For categorical variables, we estimated P for 

trend by modeling categories ordinally, or by modeling the medians of the categories 

continuously. In secondary analyses, we also calculated P for differences between extreme 

categories. We present them only for light exposure during sleep interruption (levels among 

those whose sleep was never interrupted v. levels among those who reported turning a light 

on when their sleep was interrupted), as this was the only variable where we observed 

significant differences. All P-values were based on two-sided tests and were considered 

statistically significant if ≤ 0.05. Complete case approach was used for all analyses.

In sensitivity analyses, we excluded smokers, those who reported using sleep aids and 

female participants reporting the use of oral contraceptives. Because their exclusion did not 

alter our findings, we retained these individuals in our main analyses. In secondary analyses 

exploring the association between light outside the bedroom window and urinary melatonin 

levels, we excluded the two students who reported having lived at their current residence for 

8 months or fewer.
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RESULTS

Study population

Characteristics of the study participants are shown in Table 1. 55 participants (55%) were 

female and 44 (44%) were male. One participant did not report sex; this individual was 

retained in all analyses not stratified by sex. Ages of participants ranged from 14 to 18 years, 

with a mean age of 15.7 (SD=1.2). BMI ranged from 15.4 to 37.1 kg/m2, with a mean of 

21.6 (SD=3.5). Students predominantly identified as Caucasian (67.8%).

Sleep habits

Both self-reported sleep duration and calculated time spent in bed with the lights off were 

longer on the weekends than the weekdays. On weekdays, average self-reported sleep 

duration was 6.9 hours (SD=1.03), while average time spent in bed was 7.7 hours 

(SD=0.86). The Spearman correlation between these two measures was 0.45 (P<0.001). 

During the weekend, average self-reported sleep duration was 8.6 hours (SD=1.42), and 

average time spent in bed was 9.2 hours (SD=1.4). These two measures were also 

significantly correlated, with a Spearman correlation coefficient of 0.43 (P <0.001).

The finding that time spent in bed was longer than the self-reported sleep duration indicated 

that participants had at least some amount of time between turning off the lights and falling 

asleep. On weekdays, 21% of participants reported using electronics for more than one hour 

after turning the lights out and before going to sleep, compared to 49% on the weekends. 

Other sources of ambient light at night reported by participants included light outside their 

bedroom window at night (45%), and 22.2% of participants reported that there was a TV or 

light on inside or near their bedroom while they slept. Asked to rate the brightness level in 

their rooms during the weekday and weekend nights, the largest proportion of students 

reported that they “could see to the end of the bed” (38.0% and 38.4%, respectively).

25 participants (25.3%) reported having their sleep interrupted up to 4 times a night. Among 

this subset, 4 participants – all females – reported turning on a light when their sleep got 

interrupted. Of those who reporting turning on a light when sleep was interrupted, 1 reported 

that the light was dim, while 3 reported turning on a bright light.

Most students in our sample identified as evening types, with 56 (70.8%) identifying as 

either “strong evening” or “more evening than morning” types. Chronotype was not 

significantly associated with self-reported sleep duration, time spent in bed, or wakeup times 

on weekdays or weekends. However, evening chronotypes reported significantly later 

bedtimes during the weekend than participants who identified as morning types (P=0.025).

Sleep habits and aMT6s levels

Table 2 shows age- and multivariate-adjusted geometric mean first morning urinary aMT6s 

(ng/mg creatinine) levels by participant characteristics. Age was not significantly associated 

with aMT6s levels in univariate or multivariate analyses (Ptrend=0.743, and 0.809, 

respectively). Similarly, sex, BMI, race, alcohol use, physical activity and use of sleep aids 

showed no significant associations with aMT6s levels, though participants who reported 
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alcohol use had non-significantly lower melatonin than those who did not (33.2 ng/mg 

creatinine v. 44.9 ng/mg creatinine, P=0.072). In age-adjusted analyses, older age at 

menarche was associated with higher aMT6s levels (Ptrend=0.002); multivariate adjustment 

did not alter this association (Ptrend=0.001). Similarly time since menarche was also 

inversely associated with aMT6s levels in both univariate (Ptrend=0.017) and multivariate 

analyses (Ptrend=0.024). Though based on small numbers of users, oral contraceptive use 

appeared to be associated with higher aMT6s (43.6 ng/mg creatinine v. 65.6 ng/mg 

creatinine, P=0.032).

In multivariate analyses, few self-reported behaviors or light exposures at night significantly 

predicted circulating aMT6s levels (Table 3). Self-reported exposure to ambient light at 

night in the bedroom did not appear to significantly affect nightly melatonin levels. AMT6s 

levels did not meaningfully vary by self-reported exposure to light at night outside the 

bedroom window, electronic use after lights out, whether or not light or a TV was on during 

sleep, or brightness levels in the bedroom at night on weekdays, weekends, or the night 

before the collection.

No significant trend between aMT6s levels and reported bedtime on the weeknights was 

observed (Ptrend=0.317), though later reported bedtimes on the weekend were significantly 

inversely associated with aMT6s levels (38.0 ng/mg creatinine for bedtimes after midnight v. 

52.5 ng/mg creatinine for bedtimes before 11pm, Ptrend=0.007). Lastly, neither self-reported 

sleep duration nor time spent in bed on either weekdays or weekends appeared to be a 

significant predictor of aMT6 levels.

We also explored associations between aMT6s levels and self-reported light exposure during 

sleep interruption. Borderline significantly lower aMT6s levels were found among the four 

participants who turned the light on if their sleep got interrupted at night (24.6 ng/mg 

creatinine, 95% CI: 14.9, 40.5) when compared to adolescents with interrupted sleep who 

did not turn the light on (43.1 ng/mg creatinine, 95% CI: 33.5, 55.6, Pdifference=0.050) and 

significantly lower levels were observed when compared to those who had their sleep never 

interrupted (43.0 ng/mg creatinine, 95% CI: 37.8, 48.9, Pdifference=0.032). No significant 

differences were observed comparing participants with interrupted sleep who did not turn 

the light on compared to those whose sleep was not interrupted (Pdifference=0.981).

Self-reported chronotype was not associated with aMT6s levels (Ptrend=0.157), though there 

was some association of a non-linear relationship. aMT6s levels were highest among those 

who self-identified as “definite” morning or evening types, and lower among those who 

reported being “more” of a morning or evening type.

DISCUSSION

This study is among the first to examine relationships between adolescent sleep patterns and 

behaviors and urinary measures of melatonin. In our sample of high school students, we 

found that few aspects of adolescent sleep behavior and self-reported nocturnal light 

exposure were associated with urinary aMT6s levels.

Hersh et al. Page 6

Hormones (Athens). Author manuscript; available in PMC 2018 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Though exposure to light at night is known to suppress melatonin secretion, no associations 

between any self-reported measure of ambient light in or around the bedroom and aMT6s 

levels were observed in the present study. While laboratory studies have demonstrated the 

ability of light at night to suppress melatonin levels, the intensity of residential light may be 

orders of magnitude less intense than light used in experimental studies, and insufficient to 

quantifiably affect melatonin secretion16. The effect of ambient light on melatonin is likely 

further reduced during sleep, when eyelids are closed, as mean light transmittance across the 

human eyelid has been reported to be as low as 1%17. While high-intensity light exposure 

delivered across the eyelids by an over-eye mask has been shown to suppress serum 

melatonin levels and delay dim light melatonin onset (DLMO) in young adults18, these 

experimental conditions are not representative of the light exposures experienced by our 

study participants.

Use of electronic devices after turning off the lights was not found to be a significant 

predictor of aMT6s levels. Melatonin is suppressed by specific wavelengths of blue light, 

especially in the 46–477 nm range19; many electronic devices also emit light in this range of 

the spectrum. Evidence in young adults suggests that devices with light emitting diode 

(LED) displays are stronger suppressors of melatonin than those that emit white light20,21, 

and that significant suppression may occur only after long durations of use22. In one small 

experimental study, nighttime exposure to light from a computer monitor was not associated 

with significantly decreased levels of salivary melatonin in college students23. Our results 

are significant given the prevalence of nighttime electronic use among adolescents; in a 

recent national survey, the proportions of 13–18 year old respondents who reported regularly 

using a cellphone or a computer in the hour before trying to go to sleep were 72% and 60%, 

respectively24.

Interestingly, participants in our study who reported the latest weekend bedtimes were found 

to have the lowest midweek melatonin levels. Compared to adults, adolescents are likely to 

have a delayed circadian phase, even in the absence of social pressures2,25,26, and these 

phase delays may manifest as a later DLMO2,27. We hypothesize that falling asleep later on 

the weekends may be an indicator of delayed circadian phase. Because all students in our 

students in our study began school at the same time (7:45am) on the day of urine collection, 

it is reasonable to assume that participants had a similar wake-up time. Among students with 

a delayed circadian phase, the time from DLMO to this fixed wake-up time was shorter, and 

as such, their first morning urine sample reflected an incomplete overnight secretion of 

melatonin. Therefore, low melatonin levels may be identifying a group of students whose 

circadian tendencies are most in conflict with school start times. However, the lack of an 

association between weekend bedtimes and self-reported chronotype makes this finding 

difficult to interpret.

Our suggestive finding that exposure to light during sleep interruption is associated with 

lower aMT6s levels is given some support by evidence demonstrating that exposure to light 

at night suppresses the secretion of melatonin by the pineal gland9,28,29. However, 

experimental study protocols, generally involve continuous exposure to light for several 

hours during normal sleep hours at relatively high intensities of light9,10. In contrast, only 

one participant in our study reported leaving lights on for 10 or more minutes during sleep 
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interruption. Given that light interruption in our study was brief, and that the primary reason 

for sleep interruption may have been to urinate, which could have lowered first-morning 

urinary melatonin measures, these results must be interpreted with caution. Further, the 

small number of participants who reported exposure to light during sleep interruption must 

be considered.

Though aMT6s levels and BMI have been found to be correlated in adults11, we could not 

confirm this association in our adolescent population, consistent with a recent study in 

adolescent Korean girls30. Additionally, we observed a non-significant decrease in aMT6s 

levels among participants who reported alcohol use: alcohol consumption has been 

correlated with decreased melatonin levels in some31,32, though not all11,33, studies of 

adults. In multivariate analyses, higher melatonin levels were observed among girls who 

reported a later age at menarche. While age at menarche was not associated with aMT6s 

levels in adult women11 Crowley et al.34 recently reported that advancing Tanner stage was 

associated with decreases in overnight melatonin secretion among adolescents. Since 

menarche can be used as a pubertal marker35, our results appear consistent with these prior 

findings, as girls in our study who experienced menarche earlier may have been more 

pubertally advanced than girls with more recent menarche. Our finding that time since 

menarche was inversely associated with aMT6s levels also supports this hypothesis. Lastly, 

in multivariate analyses, we found that girls had non-significantly higher aMT6s levels 

compared to boys. Higher melatonin secretion in adolescent girls was reported by Crowley 

et al.34, though other studies of melatonin in adolescents did not find significant sex 

differences36–38.

This study has several strengths. First, our sample size is larger than most other studies of 

melatonin in adolescents, and is the first to observe lifestyle correlates of urinary aMT6s 

levels in an adolescent population. Previous work has shown that single measurements of 

aMT6s in first-morning urine are highly correlated to peak and total plasma melatonin 

levels37, and that aMT6s levels from samples collected in the field and the laboratory were 

in close agreement39. Therefore, our measurements of aMT6s in first-morning urine provide 

an adequate representation of nocturnal melatonin levels, as well as a non-intrusive method 

of sample collection that is acceptable to adolescent participants.

The main limitation of our study is its cross-sectional nature. In adults, levels of urinary 

aMT6s have been shown to have high reproducibility over long periods40, though it remains 

unclear whether a single measurement of melatonin in adolescents is an adequate 

representation of long-term levels. Some evidence suggests that melatonin levels decline 

throughout childhood and puberty34,41,42, though other evidence suggests that urinary 

aMT6s secretion may remain constant after the onset of puberty36. Griefahn et al.37 reported 

that despite huge between-subject variability, within-subject levels of urinary excretion of 

melatonin metabolite remained constant from ages 3 to 18. An additional limitation of our 

study was that it relied on self-reported light levels, and not objective, standardized measures 

of ambient light. However, these light levels are more indicative of the levels that 

adolescents are habitually exposed to, in contrast to the light stimuli used in many 

experimental protocols.
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This is the first study to date to present correlations between sleep patterns and behaviors 

and urinary melatonin levels in an adolescent population. Our results suggest that the 

nighttime behaviors of adolescents by and large do not impact urinary melatonin levels. 

Given the prevalence of sleep deprivation among adolescents, and the gravity of its 

consequences, more research is needed to elucidate the pathways through which such sleep-

related factors may impact physiology.

Acknowledgments

Funding provided by NIH/NCI (T32 CA0090001, R25 CA098566)

References

1. National Sleep Foundation. Teens and Sleep. 2006. at <http://www.sleepfoundation.org/article/
sleep-america-polls/2006-teens-and-sleep>

2. Crowley SJ, Acebo C, Fallone G, Carskadon MA. Estimating dim light melatonin onset (DLMO) 
phase in adolescents using summer or school-year sleep/wake schedules. Sleep. 2006; 29:1632–
1641. [PubMed: 17252895] 

3. Hagenauer MH, Perryman JI, Lee TM, Carskadon MA. Adolescent changes in the homeostatic and 
circadian regulation of sleep. Dev Neurosci. 2009; 31:276–284. [PubMed: 19546564] 

4. Smaldone A, Honig JC, Byrne MW. Sleepless in America: inadequate sleep and relationships to 
health and well-being of our nation’s children. Pediatrics. 2007; 119(Suppl 1):S29–37. [PubMed: 
17272582] 

5. Wolfson AR, Carskadon MA. Sleep schedules and daytime functioning in adolescents. Child Dev. 
1998; 69:875–887. [PubMed: 9768476] 

6. Chen X, Beydoun MA, Wang Y. Is sleep duration associated with childhood obesity? A systematic 
review and meta-analysis. Obesity (Silver Spring). 2008; 16:265–274. [PubMed: 18239632] 

7. Schernhammer ES, Berrino F, Krogh V, Secreto G, Micheli A, Venturelli E, et al. Urinary 6-
sulfatoxymelatonin levels and risk of breast cancer in postmenopausal women. J Natl. Cancer Inst. 
2008; 100:898–905. [PubMed: 18544743] 

8. Owens JA, Belon K, Moss P. Impact of delaying school start time on adolescent sleep, mood, and 
behavior. Arch Pediatr Adolesc Med. 2010; 164:608–614. [PubMed: 20603459] 

9. Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler C. Sensitivity of the human circadian 
pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol (Lond). 2000; 
526(Pt 3):695–702. [PubMed: 10922269] 

10. Gooley JJ, Chamberlain K, Smith KA, Khalsa SB, Rajaratnam SM, Van Reen E, et al. Exposure to 
room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. 
J Clin Endocrinol Metab. 2011; 96:E463–472. [PubMed: 21193540] 

11. Schernhammer ES, Kroenke CH, Dowsett M, Folkerd E, Hankinson SE. Urinary 6-
sulfatoxymelatonin levels and their correlations with lifestyle factors and steroid hormone levels. J 
Pineal Res. 2006; 40:116–24. [PubMed: 16441548] 

12. Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer. J Natl 
Cancer Inst. 2001; 93:1557–1562. [PubMed: 11604479] 

13. Horne JA, Ostberg OA. Self-assessment questionnaire to determine morningness-eveningness in 
human circadian rhythms. Int J Chronobiol. 1976; 4:97–110. [PubMed: 1027738] 

14. Megdal SP, Kroenke CH, Laden F, Pukkala E, Schernhammer ES. Night work and breast cancer 
risk: a systematic review and meta-analysis. Eur J Cancer. 2005; 41:2023–2032. [PubMed: 
16084719] 

15. Rosner B. Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics. 
1983; 25:165–172.

16. Rea MS, Figueiro MG, Bierman A, Bullough JD. Circadian light. J Circadian Rhythms. 2010; 8:2. 
[PubMed: 20377841] 

Hersh et al. Page 9

Hormones (Athens). Author manuscript; available in PMC 2018 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sleepfoundation.org/article/sleep-america-polls/2006-teens-and-sleep
http://www.sleepfoundation.org/article/sleep-america-polls/2006-teens-and-sleep


17. Bierman A, Figueiro MG, Rea MS. Measuring and predicting eyelid spectral transmittance. J 
Biomed Opt. 2011; 16:067011. [PubMed: 21721832] 

18. Figueiro MG, Rea MS. Preliminary evidence that light through the eyelids can suppress melatonin 
and phase shift dim light melatonin onset. BMC Res Notes. 2012; 5:221. [PubMed: 22564396] 

19. Brainard GC, Sliney D, Hanifin JP, Glickman G, Byrne B, Greeson JM, et al. Sensitivity of the 
human circadian system to short-wavelength (420-nm) light. J Biol Rhythms. 2008; 23:379–386. 
[PubMed: 18838601] 

20. Cajochen C, Frey S, Anders D, Spaeti J, Bues M, Pross A, et al. Evening exposure to a light-
emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive 
performance. J Appl Physiol. 2011; 110:1432–1438. [PubMed: 21415172] 

21. West KE, Jablonski MR, Warfield B, Cecil KS, James M, Ayers MA, et al. Blue light from light-
emitting diodes elicits a dose-dependent suppression of melatonin in humans. J Appl Physiol. 
2011; 110:619–626. [PubMed: 21164152] 

22. Wood B, Rea MS, Plitnick B, Figueiro MG. Light level and duration of exposure determine the 
impact of self-luminous tablets on melatonin suppression. Appl Ergon. 2013; 44:237–240. 
[PubMed: 22850476] 

23. Figueiro MG, Wood B, Plitnick B, Rea MS. The impact of light from computer monitors on 
melatonin levels in college students. Neuro Endocrinol Lett. 2011; 32:158–163. [PubMed: 
21552190] 

24. National Sleep Foundation. Sleep in America Poll: Communications Technology in the Bedroom. 
2011. at <http://www.sleepfoundation.org/article/sleep-america-polls/2011-communications-
technology-use-and-sleep>

25. Carskadon MA, Vieira C, Acebo C. Association between puberty and delayed phase preference. 
Sleep. 1993; 16:258–262. [PubMed: 8506460] 

26. Carskadon MA, Acebo C, Jenni OG. Regulation of adolescent sleep: implications for behavior. 
Ann NY Acad Sci. 2004; 1021:276–291. [PubMed: 15251897] 

27. Burgess HJ, Eastman CI. The dim light melatonin onset following fixed and free sleep schedules. J 
Sleep Res. 2005; 14:229–237. [PubMed: 16120097] 

28. Bojkowski CJ, Arendt J. Factors influencing urinary 6-sulphatoxymelatonin, a major melatonin 
metabolite, in normal human subjects. Clin Endocrinol (Oxf). 1990; 33:435–444. [PubMed: 
2225488] 

29. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion 
in humans. Science. 1980; 210:1267–1269. [PubMed: 7434030] 

30. Lee J, Yoon J, Lee JA, Lee SY, Shin CH, Yang SW. Urinary 6-sulfatoxymelatonin level in girls and 
its relationship with obesity. Korean J Pediatr. 2012; 55:344–349. [PubMed: 23049592] 

31. Rupp TL, Acebo C, Carskadon MA. Evening alcohol suppresses salivary melatonin in young 
adults. Chronobiol Int. 2007; 24:463–470. [PubMed: 17612945] 

32. Stevens RG, Davis S, Mirick DK, Kheifets L, Kaune W. Alcohol consumption and urinary 
concentration of 6-sulfatoxymelatonin in healthy women. Epidemiology. 2000; 11:660–665. 
[PubMed: 11055626] 

33. Hartman TJ, Mahabir S, Baer DJ, Stevens RG, Albert PS, Dorgan JF, et al. Moderate Alcohol 
Consumption and 24-Hour Urinary Levels of Melatonin in Postmenopausal Women. J Clin 
Endocrinol Metabol. 2012; 97:E65–E68.

34. Crowley SJ, Acebo C, Carskadon MA. Human puberty: Salivary melatonin profiles in constant 
conditions. Developmental Psychobiology. 2012; 54:468–473. [PubMed: 21953482] 

35. Frey S, Balu S, Greusing S, Rothen N, Cajochen C. Consequences of the Timing of Menarche on 
Female Adolescent Sleep Phase Preference. PLoS ONE. 2009; 4:e5217. [PubMed: 19384418] 

36. Cavallo A, Dolan LM. 6-Hydroxymelatonin sulfate excretion in human puberty. J Pineal Res. 
1996; 21:225–230. [PubMed: 8989721] 

37. Griefahn B, Bröde P, Blaszkewicz M, Remer T. Melatonin production during childhood and 
adolescence: a longitudinal study on the excretion of urinary 6-hydroxymelatonin sulfate. J Pineal 
Res. 2003; 34:26–31. [PubMed: 12485368] 

38. Salti R, Galluzzi F, Bindi G, Perfetto F, Tarquini R, Halberg F, et al. Nocturnal melatonin patterns 
in children. J Clin Endocrinol Metab. 2000; 85:2137–2144. [PubMed: 10852442] 

Hersh et al. Page 10

Hormones (Athens). Author manuscript; available in PMC 2018 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sleepfoundation.org/article/sleep-america-polls/2011-communications-technology-use-and-sleep
http://www.sleepfoundation.org/article/sleep-america-polls/2011-communications-technology-use-and-sleep


39. Cook MR, Graham C, Kavet R, Stevens RG, Davis S, Kheifets L. Morning urinary assessment of 
nocturnal melatonin secretion in older women. J Pineal Res. 2000; 28:41–47. [PubMed: 
10626600] 

40. Schernhammer ES, Rosner B, Willett WC, Laden F, Colditz GA, Hankinson SE. Epidemiology of 
urinary melatonin in women and its relation to other hormones and night work. Cancer Epidemiol 
Biomarkers Prev. 2004; 13:936–943. [PubMed: 15184249] 

41. Waldhauser F, Steger H. Changes in melatonin secretion with age and pubescence. J Neural 
Transm Suppl. 1986; 21:183–197. [PubMed: 3462330] 

42. Waldhauser F, Weiszenbacher G, Frisch H, Zeitlhuber U, Waldhauser M, Wurtman RJ. Fall in 
nocturnal serum melatonin during prepuberty and pubescence. Lancet. 1984; 1:362–365. 
[PubMed: 6141425] 

Hersh et al. Page 11

Hormones (Athens). Author manuscript; available in PMC 2018 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hersh et al. Page 12

Table 1

Characteristics of 100 study participants, overall and by gender*

Characteristic Overall Females Males

N (%) 100 (100.0) 55 (55.6) 44 (44.4)

Age, years 15.7 (1.2) 15.8 (1.3) 15.5 (1.0)

BMI, kg/m2 21.6 (3.5) 22.0 (4.0) 21.1 (2.8)

Melatonin level, ng/mL 72.3 71.4 71.2

Creatinine level, mg/dL 158.6 152.5 165.0

Age at first menstrual period, median (range)† N/A 12 (9–14) N/A

Caucasian (%) 67 (67.8) 33 (61.1) 33 (75.0)

Reported tobacco use 2 (2.0) 0 (0.0) 2 (4.8)

Reported alcohol use in past 30 days 18 (18.6) 11 (20.0) 7 (17.9)

Current OC Use† N/A 5 (9.3) N/A

Exercise 4 or more hours/week 67 (67.1) 35 (64.8) 32 (76.2)

Use of sleep aid in past 3 months 8 (8.0) 6 (10.9) 2 (4.6)

*
One individual did not provide data on gender but was retained in all analyses not stratified by sex

†
Females only
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Table 2

Age- and multivariate* adjusted geometric mean aMT6s levels (ng/mg) by selected characteristics

Age-adjusted Fully adjusted

Characteristic Category
Definition

N† Geometric mean
aMT6s, 95%
confidence

interval

Geometric mean
aMT6s, 95%
confidence

interval

Age, years** 14 20 43.3 (31.8, 60.0) 42.7 (30.3, 60.3)

15 27 40.0 (30.8–50.9) 44.9 (36.5, 55.2)

16 28 35.5 (30.0, 43.5) 34.3 (27.7, 43.4)

17 17 46.0 (38.2, 55.3) 50.0 (41.3, 60.6)

18 8 47.6 (31.2, 71.5) 46.4 (31.4, 68.4)

P for trend‡ 0.743 0.809

Gender Male 44 37.2 (30.2, 45.9) 39.3 (32.4, 47.8)

Female 55 43.8 (38.7, 49.7) 44.7 (39.1, 51.1)

P for difference 0.182 0.283

BMI, kg/m2 <20 39 43.9 (36.3, 53.0) 43.3 (35.4, 53.0)

20–25 48 38.1 (32.1, 45.1) 40.5 (35.2, 46.5)

>25 13 43.7 (32.7, 58.5) 42.7 (31.2, 58.4)

P for trend‡ 0.487 0.563

Ethnicity Caucasian 67 43.0 (37.0, 50.0) 42.9 (37.1, 49.7)

Non-Caucasian 32 36.9 (30.7, 44.4) 40.8 (34.6, 48.1)

P for difference 0.214 0.648

Age at menarche, years§ 9 1 39.8 (36.8, 43.1) -

10 4 20.4 (12.7, 33.0) 18.3 (12.2, 29.1)

11 7 32.5 (24.1, 43.6) 33.5 (25.0, 44.9)

12 16 51.3 (42.7, 61.6) 51.9 (43.7, 61.4)

13 18 50.7 (42.0, 61.2) 50.3 (41.6, 60.8)

14 7 50.9 (38.7, 66.9) 52.9 (38.0, 73.6)

P for trend‡ 0.002 0.001

Time since menarche, years**,§ 1 5 61.2 (36.9, 101.4) 58.9 (34.6, 100.3)

2 12 55.5 (42.0, 73.3) 58.1 (40.5, 83.4)

3 11 49.6 (39.7, 61.9) 50.7 (41.5, 61.9)

4 10 38.3 (30.4, 48.2) 39.8 (32.7, 48.4)

≥5 15 34.6 (26.2, 45.7) 32.5 (23.2, 45.5)

P for trend‡ 0.017 0.024

Oral contraceptive use§ Yes 5 65.0 (46.7, 90.5) 65.6 (46.7, 92.3)

No 50 43.1 (38.0, 49.0) 43.6 (38.2, 49.7)

P for difference 0.025 0.032

Tobacco use Yes 2 27.6 (19.3, 39.5) 51.7 (37.4, 71.5)

No 96 42.4 (37.87, 47.5) 42.2 (37.5, 47.4)
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Age-adjusted Fully adjusted

Characteristic Category
Definition

N† Geometric mean
aMT6s, 95%
confidence

interval

Geometric mean
aMT6s, 95%
confidence

interval

P for difference 0.026 0.266

Alcohol use, past 30 days Yes 18 33.4 (23.9, 46.7) 33.2 (24.0, 50.3)

No 70 44.7 (40.2, 49.8) 44.9 (40.1, 50.3)

P for difference 0.096 0.072

Physical activity, hours/week <4 30 43.7 (35.2, 54.2) 44.4 (35.1, 56.1)

≥4 67 40.5 (35.6, 46.1) 41.5 (36.5, 47.1)

P for difference 0.545 0.614

Use of sleep aids Yes 8 48.2 (33.3, 69.9) 50.4 (36.1, 70.4)

No 92 40.4 (35.7, 45.6) 41.7 (36.9, 47.1)

P for difference 0.366 0.290

*
Adjusted for: age, gender, ethnicity, BMI, smoking status (yes/no), alcohol consumption (yes/no), physical activity for 4 h/wk or more (yes/no)

†
Actual numbers of participants in analyses may vary due to missing covariates;

**
Not age-adjusted;

‡
Ptrend calculated by modeling variables continuously;

§
Females only
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Table 3

Multivariate-adjusted* geometric mean aMT6s (ng/mg creatinine), by category of light at night and sleep 

duration among 100 study participants

Characteristic Category Definition N† Geometric mean
aMT6s, 95%

confidence interval

Light outside bedroom window Yes 45 45.8 (39.1, 53.7)

No 54 39.6 (33.4, 46.9)

P for difference 0.228

Electronic use after lights out, weekdays <1 hour 79 43.9 (38.69, 49.7)

1–2 hours 18 34.7 (27.3, 44.1)

≥ 3 hours 3 55.3 (43.1, 70.8)

P for trend‡ 0.611

Electronic use after lights out, weekends <1 hour 51 45.6 (39.2, 53.0)

1–2 hours 41 39.7 (32.8, 48.1)

≥3 hours 8 36.8 (27.0, 50.1)

P for trend‡ 0.163

Sleep interrupted Never interrupted 73 43.0 (37.8, 48.9)

1–4 times/night without light on 21 43.1 (33.5, 55.6)

1–4 times/night with light on 4 24.6 (14.9,40.5)

P for difference (never vs. 1–4 times/night 
with light on)

0.032*

Light or TV on in or near bedroom overnight Yes 22 43.7 (37.4, 51.1)

No 78 41.9 (36.5, 48.1)

P for difference 0.647

Average self-reported sleep duration, weekdays <5 hours 3 73.4 (60.3, 89.3)

5–6 hours 28 35.5 (27.6, 45.5)

7–8 hours 66 44.1 (38.4, 50.7)

≥ 9 hours 2 30.8 (16.0, 59.5)

P for trend‡ 0.691

Average self-reported sleep duration, weekends <5 hours 3 40.9 (25.2, 66.6)

5–6 hours 7 23.4 (12.7, 43.1)

7–8 hours 28 44.3 (36.4, 53.9)

9–10 hours 49 45.2 (39.1, 52.2)

>10 hours 12 41.7 (31.5, 55.2)

P for trend‡ 0.121

Self-reported brightness level in bedroom, weekdays Level 1 (wearing a mask) 0 -

Level 2 (cannot see hands) 32 39.7 (31.5, 50.1)

Level 3 (can see to end of bed) 24 40.8 (33.4, 49.8)

Level 4 (can see across room) 38 44.5 (36.8, 53.7)

Level 5 (can barely read) 3 103.9 (68.8, 156.8)

Level 6 (can read comfortably) 3 31.3 (19.8, 49.7)
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Characteristic Category Definition N† Geometric mean
aMT6s, 95%

confidence interval

P for trend‡ 0.403

Self-reported brightness level in bedroom, night before collection Level 1 (wearing a mask) 0 -

Level 2 (cannot see hands) 30 39.0 (30.5, 49.9)

Level 3 (can see to end of bed) 21 40.0 (32.0, 50.1)

Level 4 (can see across room) 33 46.8 (39.3, 55.8)

Level 5 (can barely read) 3 73.5 (41.4, 130.5)

Level 6 (can read comfortably) 2 32.4 (26.1, 40.2)

P for trend‡ 0.096

Average reported bedtime, weekdays Before 11pm 56 44.6 (38.0, 52.3)

11pm to midnight 38 38.4 (31.8, 46.2)

After midnight 4 41.8 (25.8, 67.7)

P for trend‡ 0.317

Average reported bedtime, weekends Before 11pm 12 52.5 (42.4, 64.9)

11pm to midnight 24 48.8 (40.8, 58.4)

After midnight 61 38.0 (32.4, 44.5)

P for trend‡ 0.007

Chronotype Definite morning type 5 50.7 (40.5, 63.4)

More morning type than evening 18 32.4 (23.6, 44.4)

More evening type than morning 39 45.2 (38.8, 52.8)

Definite evening type 17 50.2 (38.7, 65.1)

P for trend‡ 0.157

*
Adjusted for: age, gender, ethnicity, BMI, alcohol consumption (yes/no), physical activity for 4 h/wk or more (yes/no)

†
Actual numbers of participants in analyses may vary due to missing covariates

‡
Ptrend calculated by modeling median of each category as continuous, or by modeling ordinal categories continuously
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