Table 1.
Reference | Dataset | Features | Classifiers | Performance |
---|---|---|---|---|
[14] | 88 benign 90 malignant |
Textural features + morphologic features |
ANN (BPNN) | Accuracy: 95.86% Sensitivity: 95.14% Specificity: 96.58% |
| ||||
[15] | 70 benign 50 malignant |
Textural features + morphologic features |
SVM | Accuracy: 95.83% Sensitivity: 96% Specificity: 95.71% |
| ||||
[16] | 4254 benign 3154 malignant |
GoogLeNet | Accuracy: 91.23% Sensitivity: 84.29% Specificity: 96.07% |
|
| ||||
[17] | 135 benign 92 malignant |
Boltzmann machine |
Accuracy: 93.4% Sensitivity: 88.6% Specificity: 97.1% |
|
| ||||
[18] | 275 benign 245 malignant |
Stacked denoising Autoencoder (SDAE) |
Accuracy: 82.4% Sensitivity: 78.7% Specificity: 85.7% |
|
| ||||
[19] | 100 benign 100 malignant |
Deep polynomial network | SVM | Accuracy: 92.40% Sensitivity: 92.67% Specificity: 91.36% |