Skip to main content
. 2018 Mar 4;2018:5137904. doi: 10.1155/2018/5137904

Table 1.

The performance summary of breast ultrasound CAD system.

Reference Dataset Features Classifiers Performance
[14] 88 benign
90 malignant
Textural features
+
morphologic features
ANN (BPNN) Accuracy: 95.86%
Sensitivity: 95.14%
Specificity: 96.58%

[15] 70 benign
50 malignant
Textural features
+
morphologic features
SVM Accuracy: 95.83%
Sensitivity: 96%
Specificity: 95.71%

[16] 4254 benign
3154 malignant
GoogLeNet Accuracy: 91.23%
Sensitivity: 84.29%
Specificity: 96.07%

[17] 135 benign
92 malignant
Boltzmann
machine
Accuracy: 93.4%
Sensitivity: 88.6%
Specificity: 97.1%

[18] 275 benign
245 malignant
Stacked denoising
Autoencoder
(SDAE)
Accuracy: 82.4%
Sensitivity: 78.7%
Specificity: 85.7%

[19] 100 benign
100 malignant
Deep polynomial network SVM Accuracy: 92.40%
Sensitivity: 92.67%
Specificity: 91.36%