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Abstract

The expanding field of bacterial genomics has revolutionized our understanding of microbial diversity, biology and phylogeny.

For most species, DNA extracted from culture material is used as the template for genome sequencing; however, the

majority of microbes are actually uncultivable, and others, such as obligate intracellular bacteria, require laborious tissue

culture to yield sufficient genomic material for sequencing. Chlamydiae are one such group of obligate intracellular microbes

whose characterization has been hampered by this requirement. To circumvent these challenges, researchers have

developed culture-independent sample preparation methods that can be applied to the sample directly or to genomic

material extracted from the sample. These methods, which encompass both targeted [immunomagnetic separation-multiple

displacement amplification (IMS-MDA) and sequence capture] and non-targeted approaches (host methylated DNA depletion-

microbial DNA enrichment and cell-sorting-MDA), have been applied to a range of clinical and environmental samples to

generate whole genomes of novel chlamydial species and strains. This review aims to provide an overview of the application,

advantages and limitations of these targeted and non-targeted approaches in the chlamydial context. The methods discussed

also have broad application to other obligate intracellular bacteria or clinical and environmental samples.

INTRODUCTION

From the cultivable minority to metagenomes to
microbial genomes

Microbial community profiling and ecology analysis has
proven to be a useful tool for discovering diverse, novel
microbial taxa in the far reaches of our biosphere. While ini-
tial microbial diversity studies involved culture-dependent
methods [1], the development and use of rRNA-based
molecular methods [2, 3] led to the understanding that cul-
tivable bacteria only represent ~1% of the number of bacte-
rial species in a given sample [4–6]. As such, microbial
profiling tools quickly switched to culture-independent
molecular methods, commonly using conserved regions of
the 16S rRNA gene to characterize microbial diversity in
environments such as soil, sediment and water, as well as
human gut, skin and oral microbiomes [4–9]. In more
recent years, there has been another shift toward deep meta-
genomic sequencing, in which the entire DNA extract is
subject to shotgun sequencing [10–12], and single-cell geno-
mics, whereby the genome of a single bacterium is
sequenced exclusive of the background of its community
[13–18]. Both methods allow for the characterization of dis-
tinct microbial genomes.

Besides a greater understanding of microbial diversity, the
introduction and subsequent extensive use of microbial
genomics has implications for food safety [19], antimicro-
bial resistance [20], drug development [21] and disease
epidemiology [22, 23]. Microbial genomics is an ever-
expanding field, yet particular groups of bacteria are still
challenging to sequence, such as obligate intracellular bac-
teria that require labour-intensive tissue culture and semi-
purification away from the host cells. Helping to address
these challenges are novel depletion or enrichment meth-
ods that target certain components of the sample [24–28],
and are described in this review with reference to
Chlamydiae.

Members of the phylum Chlamydiae are globally significant,
widely distributed human and animal pathogens. Chla-

mydia trachomatis remains the cause of the most common
bacterial sexually transmitted infection worldwide, as well
as the leading cause of preventable blindness [29]. Several
more distantly related taxa such as Waddlia chondrophila

have emerged as species of human and veterinary impor-
tance [30]. Furthermore, the extent to which chlamydiae
inhabit various ecological niches is still being unravelled
[31, 32].
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Genomics studies are proving key to the ongoing characteri-
zation of chlamydial diversity and pathogenicity, yet the
obligate host-association and low abundance of chlamydiae
in many environmental and clinical samples has presented a
challenge for such studies. This review focuses on methods
that may be applied to overcome some of these challenges.

THE IMPORTANCE OF CHLAMYDIAL

GENOMICS STUDIES FOR UNDERSTANDING

CHLAMYDIAL BIOLOGY

Chlamydiae are obligate intracellular bacteria, characterized
by a specialized biphasic life cycle that alternates between an
infectious elementary body (EB) and vegetative reticulate
body (RB) that requires growth within the cytoplasm of the
host cell [33]. This requirement has hindered attempts to
understand the biology of chlamydial species and thus
served as a significant barrier for the characterization of
novel chlamydial pathogens. The application of genome
sequencing to chlamydiae revolutionized our understanding
of chlamydial biology, especially because genetic manipula-
tion systems were lacking, and are still in their infancy [34,
35], transforming the way that we think about these import-
ant intracellular pathogens.

A key example of such insight has been the discovery through
genomics that chlamydiae encode complete recombination
enzyme pathways facilitating homologous recombination
between strains despite a purported bottleneck associated
with their growth restriction to an intracellular vacuole [36–
41]. Indeed, subsequent large-scale comparative genomics
studies of cultured strains revealed extensive recombination
between strains of C. trachomatis, including loci (i.e. ompA
gene) that formed the foundation of decades of sero- and gen-
otyping work on this important human pathogen [42, 43].
Another clinically relevant dogma smashed through geno-
mics involves resolution of the ‘peptidoglycan anomaly’, in
which chlamydial species, despite being sensitive to beta-lac-
tam antibiotics, were thought to lack peptidoglycan. Genome
and transcriptome sequencing respectively revealed the pres-
ence of genes encoding the entire pathway for peptidoglycan
biosynthesis and assembly [36, 44, 45], and developmental-
stage-dependent expression with peptidoglycan genes upreg-
ulated during the transition phase between EBs and RBs [45].

These are just two examples of the added value of genomics
studies to complement biochemical, cell biological and epi-
demiological characterization of these intriguing bacteria,
and provide further context for the need for development
and use of culture-independent methods.

Chlamydial genomes without culture

Given the value of whole genomes for phylogenetic, epide-
miological and biological studies, there is intensified interest
in obtaining chlamydial genomes from both clinical and
environmental samples. For intracellular bacteria such as
Chlamydia, in vitro culture is usually required to obtain suf-
ficient material for whole genome sequencing (WGS). Due
to the laborious nature of cultivating chlamydiae in host

cells, the often low numbers of pathogens or presence of
inhibitors in clinical samples, the propensity for bacteria to
mutate after several passages [46, 47], and the fact many
samples are collected into lysis buffer rather than transport
media, culture-independent genomic approaches are an
attractive alternative gaining recognition and use through-
out the chlamydial field.

To overcome the challenges associated with chlamydial cul-
ture, groups within the Chlamydia field have recently devel-
oped several culture-independent genome sequencing
methods of sample processing that yield sufficient DNA for
WGS, providing unprecedented ability to assemble whole
genomes directly from complex or challenging samples
(Table 1). These methods can be applied to routine diagnostic
samples, and their application not only drastically reduces
processing time and cost, but allows for higher throughput
and hence greater resolution of phylogenetic analysis.

Deep sequencing of metagenomes is another invaluable tool
that is particularly useful for discovering new species within
their communities. This also addresses the requirement of
sequence data for formal proposal and classification of novel
chlamydial species, which has previously heavily relied on
in vitro culture. It is anticipated that the expanding use of
these culture-independent metagenomic approaches will
provide insight into the unique host–pathogen interactions
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exhibited by chlamydiae in novel infections for which no
culture system exists.

This review thus focuses on recent advances in the develop-
ment and use of culture-independent approaches for
sequencing chlamydial genomes or metagenome-assembled
genomes from clinical samples. We review recent studies
that have detailed these approaches, explain the molecular
basis and compare the utility of each method. We hope this
review will provide a starting point when deciding how best
to collect and process samples to yield well-covered chla-
mydial genomes.

CULTURE-INDEPENDENT APPROACHES FOR

CHLAMYDIAL GENOMICS AND

METAGENOMICS

Non-targeted metagenomic techniques

Non-targeted (meta)genome capture methods are a useful
tool for the isolation and amplification of microbial DNA
from mixed clinical samples when the target pathogen is
unknown and/or uncultivable. Three non-targeted genome
capture techniques have been used for culture-independent
sequencing of Chlamydiae (Table 1), as depicted in Fig. 1.

Multiple displacement amplification

A common method used in both targeted and non-targeted
approaches is the use of multiple displacement amplification
(MDA), which allows for isothermal, strand-displacing
whole genome amplification (WGA) from clinical samples
[24, 48, 49] and single cells [15, 17] (Table 1, Fig. 1). The
method effectively increases the yield of total or target DNA
so that it is sufficient for WGS. Andersson et al. reported a
single C. trachomatis genome from a discarded diagnostic
clinical swab (Ct value 25) subject to MDA [50] (Table 1).
This yielded low coverage depth over 85% of the chlamydial
chromosome, high coverage of the plasmid, high coverage
of several vaginal bacterial species and an over-abundance
of human reads. The coverage was only sufficient to call
SNPs across 8% of the chromosome, highlighting a pitfall
of sequencing directly from complex clinical samples. The
study emphasized the usefulness of WGA for metagenome
sequencing and analysis, and to address these issues, MDA
has been coupled with depletion methods, described below
for both targeted and non-targeted approaches.

Depletion-enrichment

A new depletion-enrichment approach has gained popular-
ity in circumstances where the pathogen is either (a)
unknown, (b) uncultivable, (c) in low abundance and/or (d)
potentially novel. This method, although more expensive
than the targeted methods outlined below (Table 1), yields
the most information with regard to the entire metagenomic
content at the site of infection.

The method relies on separation of non-methylated (i.e.
microbial) DNA from methylated (i.e. eukaryotic host)
DNA [27], which is then further purified prior to WGA by
MDA, thereby enriching complex specimens for prokaryotic

DNA (Fig. 1). This approach was used to characterize the
genome of a plant pathogen, Ca. Liberibacter asiaticus [51],
and subsequently the genomes of fish pathogens from sea
bream [52–54] (Table 1). One drawback is that sequencing
results are heavily dependent on the level and proportions
of chlamydial/bacterial DNA in the sample material, and
other abundant bacteria may hence mask full genome char-
acterization of the chlamydial species [52, 55]. In some
cases, bacterial DNA was further enriched by microdissec-
tion of cysts from the gill tissue [52, 53], increasing the spec-
ificity of enrichment and subsequent sequencing.

In the chlamydial field, this depletion-enrichment approach
has led to a number of advances in our understanding of
chlamydial biology. This metagenomic approach allows for
investigation of biological characteristics in cases where no
in vitro culture system has been established, which is the
case for a number of Chlamydia-related bacteria (CRB) spe-
cies. Culture-independent genomic methods allowed the
first gill-associated CRB to be sequenced and characterized
[56], revealing conservation of the chlamydial type three
secretion system in early-divergent chlamydiae. This
approach also offers insights into chlamydial diversity: two
novel Chlamydia species were recently discovered in the
choana of captive snakes using this method [55, 57]
(Table 1). Interestingly, despite near-full length 16S rRNA
gene sequence similarity suggesting most of the novel geno-
types were C. pneumoniae strains, WGS showed that in fact
two of the sequences represented novel species, demonstrat-
ing the value of WGS to further explore, characterize and
classify the ever-expanding diversity of the Chlamydiales.

Cell-sorting MDA

A third non-targeted metagenome approach for chlamydial
genomics is the use of cell-sorting of cryopreserved samples
to obtain single cells, differentiated on the basis of fluores-
cence, size and granularity (Fig. 1) [58, 59]. The DNA from a
single cell or pool is then enriched using MDA or other
WGA methods [60], to obtain a higher yield of DNA from a
single genome. After single cells or pools of cells are obtained
by flow cytometry, they are screened using 16S rRNA PCR,
or another target gene, to identify the cell or pool of interest.
Alternatively, fluorescently labelled antibodies or probes can
be used to increase the specificity of sorting.

Cell-sorting MDA (i.e. single-cell genomics) recently enabled
characterization of three novel chlamydial genomes from
water samples from British Columbia and sediment samples
from the North Sea, which revealed a near-complete chla-
mydial flagellar system [58]. This method offers an advantage
over the above depletion-enrichment method in that only the
genome of a single species is amplified, rather than the entire
microbiome. However, this method has thus far only been
applied to liquid samples (i.e. water column samples) in the
chlamydial field, and the application to any other sample type
(such as a swab) requires minimal treatment into aquatic sus-
pension prior to cryopreservation (Table 1). Despite the
observation that genomes recovered by this method are
commonly incomplete or highly fragmented [58, 61], the
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Fig. 1. Schematic depiction of culture-independent genome sequencing methods for chlamydiae. (a) Non-targeted approaches for

(meta)genome sequencing: (i) MDA, (ii) depletion-enrichment, (iii) cell-sorting-MDA. (b) Targeted genome-sequencing approaches: (i)

IMS-MDA, (ii) sequence capture, (iii) multiplexed microdroplet PCR. Refer to Table 1 and Fig. 2 for suitable applications of each method.
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information gained regarding metabolic adaptations is
invaluable when cultivation is a challenge.

Targeted capture methods

Targeted capture methods rely on prior knowledge of the
target bacteria, e.g. a reference genome or well-tested anti-
body (Table 1). Two targeted techniques have been used for
culture-independent genome sequencing of Chlamydiae,
and both ‘capture’ either the genomic DNA or intact cells of
the desired microbial species using species-specific molecu-
lar targets (Fig. 1).

Immunomagnetic separation – multiple displacement

amplification

Building on previous assays employing immunomagnetic
separation (IMS) for diagnostic purposes such as Listeria
detection in food sources [62], and C. trachomatis in urine
samples [63], chlamydial IMS-MDA uses primary mouse
IgG antibodies directed at the chlamydial lipopolysaccha-
ride (LPS), an antigen found on the chlamydial cell surface.
A secondary IgG conjugated to magnetic beads then binds
intact chlamydial EBs (Fig. 1) [64–66]. Host DNA is
removed by DNase treatment prior to DNA extraction from
the bound EBs, MDA and sequencing.

The IMS approach alone was found to be highly specific for
C. trachomatis, with only contaminating reads from human
DNA, rather than other microbial DNA seen in non-tar-
geted approaches. However, results were further enhanced
by the addition of the MDA step: Seth-Smith et al. noted
that clinical swabs for C. trachomatis rarely carry sufficient
quantities of target bacterial DNA for genome sequencing,
and MDA had previously been successfully used to obtain
complete bacterial genome coverage from mixed samples
[50, 67, 68], despite very low starting concentrations of tar-
get DNA material required for sequencing [65].

Putman et al. then applied the IMS-MDA method to ten
C. trachomatis-positive endo-cervical swabs. While lower
inclusion-forming units (IFU) loosely correlated with more
unsolved bases, the authors showed this method was highly
sensitive, with whole genomes obtained from samples con-
taining as little as 4 IFU per swab prior to enrichment
(Table 1) [64]. This study had two main findings that may
have been overlooked had these samples been prepared and
sequenced according to traditional methods (culture fol-
lowed by EB purification). In one sample, unresolved bases
reflected a within-host clonal population, and in another,
clonal variation at two nucleotide positions separated by
150 000 bp suggested active recombination in response to
selective pressures not present in vitro (based on culture
and sequencing of the same sample).

Sequence capture

C. trachomatis has also been the subject of another culture-
independent approach which uses biotinylated RNA probes
(‘baits’) to hybridize chlamydial DNA away from a complex
DNA mixture to ‘capture’ the chlamydial DNA (Fig. 1) [69];
this method has successfully yielded viral genomes from
mixed samples [70]. The 120-mer custom commercially

synthesized RNA bait sets are designed to span the entire
chromosome and hybridization occurs after library prepara-
tion. Like IMS-MDA, this method uses magnetic separation,
in this instance using streptavidin-coated beads to separate
the hybridized DNA, prior to genome sequencing. This
method has been applied to DNA extracted from both swab
and urine samples, with a higher sensitivity obtained with
urine samples, potentially due to lower background DNA
(Table 1). Over 95% of the length of the chromosome was
covered by as little as ~1% of the reads in samples with as lit-
tle as 1�104 chlamydial genome copies. It is worth noting
that in this case clinical samples required sequencing twice to
obtain the same coverage as cultured samples [69], and this is
highly dependent on the sequencing platform and degree of
multiplexing. More recently, the phylogenomic relationships
between globally diverse C. trachomatis strains were resolved
by genome sequencing following culture, IMS-MDA and
sequence capture [71].

Sequence capture has also been applied to the culture-inde-
pendent genomic analyses of veterinary chlamydiae in clini-
cal specimens. Chlamydia pecorum genomic studies using
the probe–bait hybridization method have revealed that, as
previously suspected, livestock and koalas may be colonized
with more than one strain of C. pecorum at the same ana-
tomical site. These whole chlamydial genomes, obtained
from dry koala ocular and urogenital swabs and bovine
joints and ocular swabs, could be separated from each other
based on abundance, and were phylogenetically distinct,
separated by over 6 000 SNPs [72, 73]. The presence of
‘minor strains’ in clades dominated by Australian livestock
supports ongoing exposure and potential cross-transmission
of livestock strains into koalas from sheep and cattle.

While these methods have proven valuable for analysis of
clinical specimens, this approach has also been used advan-
tageously to analyse chlamydial isolates (a) following
just a few passages of chlamydial cell culture [74] and (b)
that were no longer culture viable [75]. These again yielded
full coverage of the target genome despite some read sets
only containing 12% chlamydial reads [74]. While the
methods used in these examples were not strictly culture-
independent, processing time was reduced substantially by
extracting DNA directly from culture material rather than
carrying out EB purification from host cells [76].

Multiplexed microdroplet PCR

A final targeted approach that has so far only been used to
amplify a 100 kb region of the C. trachomatis genome is
multiplexed microdroplet PCR, which uses 500 primer
pairs to generate overlapping 1–1.3 kbp amplicons span-
ning the selected region [77] (Table 1). A primer micro-
droplet library is prepared separate to the DNA and PCR
component droplets. The two are then emulsified prior to
PCR amplification (Fig. 1) [78]. Like IMS-MDA and bait–
probe hybridization, this method is heavily dependent on a
reference genome from which to design primer targets. It
also requires very specific downstream bioinformatics
methods which the authors developed to address this [77].
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The microdroplet PCR sequencing approach is a culture-
independent sequencing method intermediate between
multi-gene sequencing and WGS that could be scaled up to

cover a complete genome. Its development has been shown
to be valuable for C. trachomatis phylogenetic and epide-
miological studies, and the method is capable of

Fig. 2. Application of culture-independent genome sequencing methods to chlamydiae. Decision tree for choosing culture-independent

genome sequencing method for chlamydiae. Green boxes denote primary criteria for method selection, with downstream key decision

points boxed in orange and sample stage application boxed in grey. Non-targeted approaches are boxed in red and targeted

approaches in blue. Refer to Fig. 1 for an overview of each method.
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discriminating between strains in a sample [77]. Impor-
tantly, the approach successfully yields sequences from dis-
carded clinical samples (swabs and urine), although areas
of recombination were hard to resolve.

Method selection

This review has summarized the key culture-independent
approaches for chlamydial genome and metagenome
sequencing. As outlined in Table 1 and Fig. 1, each approach
has varying technical requirements for (a) isolation of micro-
bial or chlamydial cells or DNA from mixed samples and/or
(b) enrichment of the microbial or chlamydial DNA in prepa-
ration for sequencing and analysis. We also present simple
selection criteria for choosing the appropriate DNA prepara-
tion method and culture-independent genomic approach for
your samples and research questions (Fig. 2).

Throughout this review, we have categorized these methods
as targeted and non-targeted approaches, which is deter-
mined primarily by whether the target bacterium is known
(Fig. 2). The non-targeted approaches are not exclusive to
samples for which the pathogen is known, but are more
expensive and of lower throughput than the targeted
approaches. Method selection is also dictated largely by the
sample type and the way it has been collected or stored and
if the bacterium of interest has a reference genome from
which to design species-specific capture tools (Fig. 2). This
makes the non-targeted methods ideal for pathogen discov-
ery, while the targeted methods are best suited to diagnos-
tics and epidemiology where lower cost, higher throughput
and high sensitivity are desirable (Table 1).

As an example, if we have a discarded diagnostic C. tracho-
matis-positive urogenital swab in lysis buffer, we could
apply MDA, depletion-enrichment, sequence capture or
multiplexed microdroplet PCR (Fig. 2). Of these, we would
probably opt for sequence capture, as we have a reference
genome from which to design baits (Fig. 1), and it is fairly
cheap, of high throughput, sensitive and specific (Table 1).
However, if the swab were collected and stored in appropri-
ate storage media to preserve viability of intact cells, we may
perform IMS-MDA instead (Fig. 1). On the other hand, if
we have a Chlamydiales-positive tissue sample but no spe-
cies-level identification or it represents a putative novel spe-
cies, we would either choose MDA or depletion-enrichment
(Fig. 2). In this case, depletion-enrichment, although slower
and more costly, would probably yield higher coverage of
the target genome (Table 1).

FINAL REMARKS AND FUTURE DIRECTIONS

Although chlamydial genomics has come a long way in only
20 years, there are several avenues yet to be explored. Our
knowledge is currently limited only by the sample types to
which culture-independent genome sequencing has been
applied in the chlamydial field to date (Table 1), and there
is scope for some methods to be applied more widely. It is
also important to note that no studies have directly tested
these methods on the same sample, and such a study would

clarify their advantages and limitations. Furthermore, the
depth of sequencing was not consistent between the studies
reviewed here, which is a factor that would affect sensitivity
and specificity (Table 1), and warrants further comparison.

To date, the targeted approaches described here have only
been applied to C. trachomatis, C. pecorum, C. psittaci and
C. pneumoniae. Reference genomes now exist for all Chla-
mydia species, so targeted approaches to enable high-
throughput sample processing and sequencing of other
species is plausible. As many CRB genomes are also now
sequenced and complemented by proteomic and transcrip-
tomic studies, these approaches could also be extended into
CRBs [79]. Importantly, these approaches are capable of
discerning two strains in the same sample, a feat that would
probably not be achieved if in vitro culture was undertaken
prior to sequencing. A limitation to this method is the bias
against detecting novel genes or extrachromosomal ele-
ments, as was the case for C. pecorum, for which the chla-
mydial plasmid sequence was only resolved due to the
sequence similarity between chromosomal and plasmid
genes captured using the RNA baits [80].

Non-targeted culture-independent genomic approaches will
be fundamental in identifying novel species in novel hosts
or environments and hence in further characterizing chla-
mydial diversity. Coverage uniformity appears to be a com-
mon limitation for MDA [13]. MDA could be combined
with other depletion or isolation methods, such as laser cap-
ture microdissection of inclusions from fixed tissue or cells,
although fixing samples can result in fragmented DNA,
which is not ideal for WGS. Single-cell genomics is very
much in its infancy in the Chlamydia field but holds great
promise as it is highly specific and sensitive (Table 1): it is
yet to be applied to swab, urine or tissue samples but this
could be developed in the future.

We did not delve into the downstream bioinformatics meth-
ods required to assemble and analyse genomes generated
from these culture-independent methods, as we feel this
would warrant a separate review. However, it is worth not-
ing that different approaches may require different bioinfor-
matics methods, of which there are a plethora.

Sequencing and characterization of chlamydial genomes has
revolutionized our knowledge of chlamydial biology, diver-
sity and evolution. The advent of chlamydial genomics was
stunted by the requirement for in vitro culture, but chla-
mydial culture-independent genome sequencing will con-
tribute more, diverse genomic data to our knowledge of this
unique, expanding phylum.
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