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Abstract

Introduction—Patients with Alzheimer’s disease (AD) show heterogeneity in profile of 

cognitive impairment. We aimed to identify cognitive subtypes in four large AD cohorts using a 

data-driven clustering approach.

Methods—We included probable AD dementia patients from the Amsterdam Dementia Cohort 

(n = 496), Alzheimer’s Disease Neuroimaging Initiative (n = 376), German Dementia Competence 

Network (n = 521), and University of California, San Francisco (n = 589). Neuropsychological 

data were clustered using nonnegative matrix factorization. We explored clinical and 

neurobiological characteristics of identified clusters.

Results—In each cohort, a two-clusters solution best fitted the data (cophenetic correlation 

>0.9): one cluster was memory-impaired and the other relatively memory spared. Pooled analyses 

showed that the memory-spared clusters (29%–52% of patients) were younger, more often 

apolipoprotein E (APOE) ε4 negative, and had more severe posterior atrophy compared with the 

memory-impaired clusters (all P < .05).

Conclusions—We could identify two robust cognitive clusters in four independent large cohorts 

with distinct clinical characteristics.
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1. Introduction

Alzheimer’s disease (AD) dementia is characterized by progressive cognitive impairment in 

multiple cognitive domains, for example, memory, language, visuospatial and executive 

functioning, and attention. Typically, AD is characterized by early and prominent memory 

loss [1]. A minority of patients has a prominent and relatively focal cognitive presentation, 

such as logopenic-variant primary progressive aphasia, posterior cortical atrophy, or a 

behavioral/dysexecutive subtype [2–5]. Atypical variants have been associated with specific 

demographic, genetic, and neuroimaging/biomarker findings that are distinct from those of 

typical amnestic patients (e.g., age at onset, apolipoprotein E [APOE] genotype, distribution 

of cortical atrophy, hypometabolism, tau deposition, cerebrospinal fluid (CSF) biomarker 

concentrations, and pathologic findings) [6–10]. However, even patients who do not display 

a defined subtype also show a considerable variation in patterns of cognitive impairment. 

Earlier studies demonstrated the potential to capture cognitive heterogeneity in AD using a 

data-driven clustering approach [11–14]. Studies differed in sample size, clinical diagnosis 

of included patients, available neuropsychological (NP) test results, available 

neurobiological characteristics to compare clusters with, and clustering technique. This has 

resulted in different numbers of clusters, with different cognitive and neurobiological 

characteristics. Although those studies were clearly suggestive of variability in underlying 
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pathologic mechanisms, it is difficult to generalize the findings, because they result from 

single studies that show considerable variability in patient population and methodological 

approaches.

In the present study, we aimed to identify cognitive subtypes and to study whether these 

subtypes could be replicated in three independent AD dementia cohorts. For the 

identification of cognitive AD subtypes, we used nonnegative matrix factorization (NMF) 

[15–18]. On the basis of the earlier descriptions of cognitive heterogeneity, we expected 

NMF to identify at least a cluster including patients with typical amnestic AD and one or 

more other clusters including patients with nonamnestic features [15–18].

2. Methods

2.1. Patients

We selected AD patients from four large cohorts: the Amsterdam Dementia Cohort (ADC), 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the German Dementia 

Competence Network (DCN), and the University of California, San Francisco Memory and 

Aging Center research cohort (UCSF). Patients were selected based on (1) clinical diagnosis 

of probable AD dementia, (2) availability of NP test results, and (3) Mini–Mental State 

Examination (MMSE) score >16/30 [19]. In the ADC and UCSF cohort, patients with focal 

presentations logopenic-variant primary progressive aphasia, posterior cortical atrophy, and 

the behavioral/dysexecutive subtype of probable AD dementia were included, whereas such 

subjects were explicitly excluded from participation in the ADNI and DCN studies.

From the ADC we selected 496 patients with probable AD [20]. Patients visited the 

outpatient memory clinic of the VU University Alzheimer Center between 2008 and 2013. 

Standard dementia screening included for most patients medical history and medication use, 

physical and neurologic examination, extensive NP evaluation, screening laboratory tests, 

APOE genotyping, magnetic resonance imaging (MRI), and lumbar puncture (LP). In the 

ADC, level of education was defined according to a rating scale ranging from 1 (low, 

primary school not finished) to 7 (high, university degree) [21]. All participants provided 

written informed consent to use their clinical data for research purposes. The local ethical 

committee approved the study.

From the ADNI database (adni.loni.usc.edu) we selected 376 probable AD patients. Patients 

were recruited from more than 50 sites across the US and Canada (www.adni-info.org). 

Standard workup included medical history, physical and neurologic examination, extensive 

NP evaluation, screening laboratory tests, APOE genotyping, neuroimaging including MRI, 

and LP. For the present study, we used data of screening and baseline visits acquired for 

ADNI-1 or ADNI-2 between 2005 and 2013. All patients gave written informed consent at 

screening.

From the DCN cohort database (http://www.kompetenznetz-demenzen.de) we selected 521 

probable AD patients [22]. The DCN is a collaboration of 14 specialized German memory 

clinics from university hospitals. All patients were offered a uniform dementia screening at 

first visit between 2003 and 2007, including medical history, physical and neurologic 
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examination, extensive NP evaluation, screening laboratory tests, MRI scan, and LP. The 

DCN study protocol was approved by the institutional review boards of all participating 

study centers [22]. All patients, or their legal guardians, provided written informed consent.

From the UCSF research cohort we selected 589 probable AD patients [23]. Patients were 

either seen in the outpatient memory clinic or for a research assessment in the UCSF 

Alzheimer’s Disease Research Center. All patients were assessed at first visit between 1998 

and 2013. Standardized dementia screening included medical history, physical and 

neurologic examination, NP evaluation, screening laboratory tests, APOE genotyping, and 

neuroimaging including MRI. A core screening NP battery was performed in both the 

clinical and research settings. All patients and informants provided written informed 

consent. Surrogate consent was accepted when patients lacked capacity to provide consent 

themselves. The local medical ethical committee approved the study.

2.2. NP tests

NP data included tests covering the major cognitive domains in each cohort, but the exact 

composition of NP test batteries differed across cohorts. NP tests included for analysis in 

this study are shown in Supplementary Table 1. The number of missing NP values differed 

across cohorts and within NP test batteries (on average 20% in ADC, 27% in ADNI, 1% in 

DCN, and 12% in UCSF). Main reasons for missingness are practical reasons unrelated to 

the data (random). In part of the cases, however, tests could not be finished because of 

cognitive impairment, whereas scoring differed across cohorts and between tests (i.e., 

assignment of missing value or minimum score). The clustering technique NMF does not 

allow for missing data or negative values. To reduce selection bias, we did not select patients 

based on completeness of data sets, but we completed the data sets using a multiple 

imputation approach that is commonly used as a reliable method to estimate missing data.

We imputed missing NP data using R package Multivariate Imputation by Chained 

Equations (MICE, version 2.25) [24,25]. MICE estimates missing NP values by predicting 

these values from the relationships with other NP variables. We also included predictors age, 

gender, MMSE, and when available education, duration of complaints, Alzheimer’s Disease 

Assessment Scale–Cognitive subscale, Cambridge Cognitive Examination, or Cognitive 

Dementia Rating sum of boxes in the imputation model. We ran MICE 50 times per cohort, 

resulting in 50 imputed data sets for each cohort. For further analyses, we included pooled 

measures over the 50 derived imputed data sets per cohort [26,27]. We inverted values when 

appropriate, so that for all tests lower scores reflect worse cognitive impairment. Next, the 

imputed NP data were normalized and scaled to include only positive values (0–1).

2.3. MRI characteristics

MRI characteristics were available for patients from the ADC, ADNI, and DCN cohorts.

For the ADC cohort, imaging data were obtained on a 1.5T or 3T scanner. Visual ratings of 

medial temporal lobe atrophy (range 0–4 [28]), posterior atrophy (range 0–3 [29]), and white 

matter hyperintensities (WMHs; range 0–3 [30]) were performed by an experienced 

neuroradiologist. For ADNI, a structural MRI 1.5T scan was performed on screening or 

baseline visit [31]. Image processing has been done with cortical reconstruction and 
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volumetric segmentations using FreeSurfer 4.3 (surfer.nmr.mgh.harvard.edu/) [32]. 

Hippocampal and WMH volumes were downloaded from the ADNI website 

(ida.loni.usc.edu/) [33]. For the DCN cohort, MRI data were obtained from multiple 1.5T 

scanners with standardized MRI acquisition guidelines across centers [22,34]. Posterior 

atrophy and WMH were scored by experienced neuroradiologists using a visual rating scale 

in which higher scores reflect more severe abnormalities (range 0–3). Furthermore, 

hippocampal volumes were measured using the Functional MRI of the Brain (FMRIB) 

Integrated Registration and Segmentation Tool from the FMRIB Software Library package 

of tools [35,36]. For all atrophy measurements, we included the mean of left and right 

hemisphere.

2.4. APOE ε4 genotype

APOE ε4 genotype was available in the ADC (n = 448; 90%), ADNI (n = 196; 52%), DCN 

(n = 397; 76%), and UCSF (n = 175; 30%) cohorts. We dichotomized APOE ε4 genotype 

according to the presence or absence of one or more APOE ε4 alleles. APOE genotype was 

assessed using the Light-Cycler APOE mutation detection method (Roche Diagnostics 

GmbH, Mannheim, Germany) in the ADC. For ADNI, APOE alleles were genotyped using 

DNA extracted by Cogenics. For the DCN, APOE genotype was assessed using Qiagen 

blood isolation kit (Qiagen, Hilden, Germany). For UCSF, APOE genotype was conducted 

using a TaqMan Allelic Discrimination Assay on an ABI7900HT Fast Real-Time 

polymerase chain reaction system (Applied Biosystems, Foster City, CA, USA).

2.5. AD biomarkers

CSF markers amyloid β1–42 (Aβ1–42) and total tau (tau) were available for the ADC (n = 

389; 79%), ADNI (n = 102; 27%), and DCN (n = 193; 37%). CSF biomarkers were assessed 

using Sandwich enzyme-linked immunosorbent assays (Fujirebio, Gent, Belgium) in the 

ADC and DCN [37], and Multiplex xMAP Luminex platform (Luminex Corp, Austin, TX) 

with Fujirebio immunoassay kit–based reagents (INNO-BIA Alzbio3; Fujirebio, Ghent, 

Belgium) in ADNI. CSF biomarkers were considered positive for AD when the tau/Aβ1–42 

ratio was >0.52 in the ADC and DCN cohorts [38] and when >0.39 in the ADNI cohort [39]. 

Pittsburgh compound B positron emission tomography visual reading results (i.e., positive or 

negative) were available for the UCSF cohort (n = 52; 9%).

2.6. Statistical analysis

For statistical analyses, we used RStudio for Mac version 3.2.2 (Integrated Development for 

R. RStudio, Inc, Boston, MA, http://www.rstudio.com). Clustering was performed with the 

R package NMF (version 0.20.6) [40]. Clustering is a data-driven method to divide a 

heterogeneous set of objects (patients) in subgroups that are more homogeneous in terms of 

characteristics provided as input for the clustering (NP test results). NMF is a dual-

clustering approach, meaning that clustering includes two parallel steps (illustrated in Fig. 

1). First, NP test results are grouped together into NP profiles (“components”), and NP tests 

that determine these components can be identified by their component loading. Second, 

patients are grouped together based on the fit of their NP profile to the NP summary 

component. The optimal number of clusters is based on the most consistent assignment of 

patients to the identified cognitive profiles in the multiple runs of NMF. The stability of the 

Scheltens et al. Page 5

Alzheimers Dement. Author manuscript; available in PMC 2018 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://surfer.nmr.mgh.harvard.edu/
http://www.rstudio.com


cluster solution is assessed with the cophenetic correlation coefficient that measures how 

consistently tests and subjects are assigned to a given component, ranging between 0 and 1 

(i.e., no stability to stable cluster solution). For each cohort, we determined the optimal 

number of clusters based on the highest cophenetic correlation coefficient for two to nine 

cluster solutions [15]. We used the “nonsmooth” NMF algorithm that introduces an 

intermediate smoothing matrix to enhance sparsity of the clusters [41].

Characterization of identified clusters in terms of NP profile was based on the most strongly 

loading NP tests [17]. For characterization of identified clusters in terms of demographic, 

clinical, and neurobiological characteristics, we analyzed age, sex, education, disease 

duration reported by the patient, MMSE, APOE ε4 genotype, CSF biomarkers, MRI 

atrophy, and WMH measurements using χ2, t tests, or Kruskal-Wallis tests, where 

appropriate. These analyses were performed for each cohort separately. In addition, for each 

cluster we pooled the patient characteristics over the cohorts to compare them for the total 

sample. To this end we Z-transformed variables with different scales (i.e., education, CSF 

biomarkers, and MRI biomarkers) before pooling. When atrophy of the hippocampus and 

the posterior cortex was measured using a visual rating scale in which higher scores reflect 

more severe atrophy, the normalized scores were inverted so that higher scores reflect less 

atrophy in all cohorts and the pooled sample.

3. Results

3.1. Cohort characteristics

Characteristics of all cohorts are summarized in Table 1. On average, patients were 71 ± 9 

years old, with the ADC being the youngest cohort. Fifty-four percent of patients were 

female, ranging from 44% (ADNI) to 60% (DCN). Patients were mildly to moderately 

demented, with an average MMSE score varying between cohorts from 22 to 24. Roughly 

two-thirds of patients were APOE ε4 carrier, ranging from 57% (UCSF) to 67% (ADC).

3.2. NMF clusters of cognitive subtypes

NMF is a dual-clustering approach; first, NP tests are grouped into components, and second 

patients are clustered based on the fit of their NP profiles to the profiles of the identified NP 

components, taking the load of each test to the component into account. NMF showed that 

within each cohort, the optimal number of clusters was two, as the solution with two clusters 

showed the strongest cophenetic correlation (>0.90).

Results of the clustering of tests are shown in Fig. 2. In the ADC, one NP component mainly 

included memory tests Rey Auditory Verbal Learning Test (RAVLT) immediate and delayed 

recall. The other component included mainly nonmemory tests Trail Making Test (TMT)-A 

and TMT-B, and fragmented letters. In the ADNI cohort, one NP component mainly 

included memory tests logical memory immediate and delayed recall, and RAVLT delayed 

recall. The other component mainly included nonmemory tests TMT-A and TMT-B. In the 

DCN cohort, one NP component included mainly memory tests logical memory immediate 

and delayed recall, word list immediate and delayed recall of the Consortium to Establish a 

Registry for Alzheimer’s Disease (CERAD), and CERAD figure recall. The other 
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component included mainly nonmemory tests TMT-A, TMT-B, clock drawing, and CERAD 

figure copy. In the UCSF cohort, one NP component included mainly memory tests figure 

recall and the California verbal learning test delayed recall. The other component included 

mainly nonmemory tests modified trails, design fluency, and stroop interference.

Patients were assigned to either of two clusters based on the fit of their NP test results to the 

memory or nonmemory component in each cohort (Fig. 3). Across all cohorts, the memory 

clusters included on average 60% of patients, ranging from 48% (ADNI) to 71% (ADC), and 

the nonmemory clusters included on average 40% of patients, ranging from 29% (ADC) to 

52% (ADNI).

3.3. Cluster characterization

We analyzed cluster characteristics in terms of demographic, clinical, and neurobiological 

characteristics. Associations for each cohort are shown in Table 2. In the ADC, patients in 

the nonmemory cluster were younger, had lower MMSE scores, and had more severe 

atrophy of the posterior cortex. In the ADNI cohort, nonmemory patients tended to be 

younger and less often APOE ε4 positive with relative hippocampal sparing, but these 

differences did not reach significance. In the DCN cohort, patients in the nonmemory cluster 

had more severe atrophy of the posterior cortex. In the UCSF cohort, the nonmemory cluster 

had lower MMSE scores and patients were less often APOE ε4 positive. There were no 

differences in WMHs (ADC, ADNI, DCN). When we analyzed pooled data, we found that 

across cohorts, patients in nonmemory clusters were younger, less educated, reported shorter 

disease duration, had lower MMSE scores, were less often APOE ε4 positive, had less 

severe hippocampal atrophy, and more severe atrophy of the posterior cortex than patients in 

memory clusters.

3.4. Validation of cognitive clusters after stratification for disease severity

We tested whether disease severity influenced the cluster solutions by repeating NMF 

analyses in each cohort after stratifying for disease severity according to the cohort median 

MMSE score value. Results appeared to be robust across severity subgroups, with a memory 

cluster and nonmemory cluster appearing in both the mild and the moderately demented 

patient strata (Supplementary Figs. 1–4). Cluster characteristics in terms of demographic and 

neurobiological characteristics remained largely the same (Supplementary Tables 2 and 3). 

Differences between the memory and nonmemory clusters were most pronounced in the 

mildly demented stratum.

3.5. Validation of cognitive clusters in AD biomarker confirmed patients

Availability of AD biomarkers is given in Tables 1 and 2. On the basis of the χ2 analyses, no 

differences were found between the memory and nonmemory clusters in terms of AD 

biomarker positivity (P > .05). Only for the ADC, enough data were available to repeat data-

driven NMF analyses in AD biomarker confirmed patients (n = 357 with CSF total tau/

Aβ1–42 > 0.52 [38]). Results appeared to be consistent with findings of the total cohorts, 

with a memory component mainly including RAVLT immediate and delayed recall, and a 

nonmemory component mainly including TMT-A, TMT-B, fragmented letters, and letter 

digit substitution test, shown in Supplementary Fig. 5. The memory cluster included 73% of 
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patients and the nonmemory cluster 27% (Supplementary Fig. 6). Consistent with 

characteristics of the total ADC, the nonmemory cluster of the biomarker confirmed subset 

was younger (64 ± 8 vs. 67 ± 8 years, P < .01), had lower MMSE scores (20.9 ± 3.1 vs. 22.7 

± 3.0, P < .001), and had more severe posterior atrophy (1.51 ± 0.82 vs. 1.13 ± 0.71, P < .05, 

rated according to a visual rating scale in which higher scores reflect more severe atrophy 

[29]) than the memory cluster. In addition, the nonmemory cluster was less often APOE ε4 

positive than the memory cluster (61% vs. 74%, P < .05). Results are provided in 

Supplementary Table 4.

4. Discussion

Across four independent AD dementia cohorts, we robustly found two cognitive clusters 

using a data-driven dual-clustering approach. One cluster was characterized by more 

prominent memory impairment and the other cluster by more prominent impairment on 

nonmemory tests. These memory and nonmemory AD phenotypes were consistently found 

across cohorts, although these cohorts differed in their patient populations (e.g., age, disease 

severity, monocentre vs. multicentre, geographic location) and composition and 

extensiveness of NP test battery. Moreover, the clusters were associated with specific 

demographic, clinical, and neurobiological characteristics. These findings demonstrate the 

biological relevance of clinical heterogeneity in AD, as this may reflect variation in 

underlying disease mechanisms.

Of all included patients, 40% belonged to a nonmemory cluster. Compared with the memory 

clusters, nonmemory cluster patients were younger, less educated, more often APOE ε4 

negative, had more severe posterior atrophy, and relatively spared hippocampi. In addition, 

patients assigned to the nonmemory clusters reported shorter disease duration, but they had 

on average lower MMSE scores. Possibly, nonmemory clusters are associated with a more 

aggressive disease progression [42,43]. Future studies should address the question whether 

cognitive subtypes are related to the rate of decline, and hence suitable as a putative 

prognostic marker.

Among the suggested disease mechanisms causing heterogeneity is the influence of 

copathologies, for example, vascular pathology. However, we did not find differences in 

severity of ischemic vascular pathology (WMH). Of note, cognitive heterogeneity is most 

prominent in early onset AD patients, where AD pathology is often pure and copathologies 

are less present [44]. Biomarker support for AD pathology was not available for each patient 

but the available data showed no difference in AD biomarker positivity between clusters, 

suggesting that misdiagnosis is not a major driver of our findings. Variation in disease 

mechanisms could also be sought in the origin and spreading of neurofibrillary tangles 

(typically characterized by origin in the entorhinal cortex, progressing through the 

hippocampus to the association cortex and finally to the cortex [45]) because the medial 

temporal lobe was relatively spared and the posterior cortex most prominently affected in the 

nonmemory phenotype. This idea fits with the hypothesis that early onset APOE ε4 negative 

AD patients are predisposed to vulnerability of cerebral networks beyond the medial 

temporal lobe [45,46]. This hypothesis coincides with an autopsy study that identified an 

AD subtype with relatively less tangles in the hippocampus that was associated with younger 
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age at death, male sex, rapid disease progression, and more often focal cortical clinical 

syndromes [47]. However, this phenotype only tended to have less often an APOE ε4 

positive genotype (P = .067). Probably, the APOE ε4 allele is not the only AD risk factor 

that modifies clinical heterogeneity; the effect of genetic risk factors on clinical AD 

phenotype is still poorly understood. An increasing number of promising genes, however, 

are discovered to be associated with higher or reduced risks for developing AD and with 

certain neuropathologic pathways [48].

A limitation of our study is that we did not have postmortem pathologic confirmation of 

patients, so we cannot rule out the possibility of misdiagnosis. We think, however, that 

misdiagnoses will not have driven our results, as in all cohorts diagnoses were made 

according to the careful application of clinical criteria, and repeating analyses in the CSF 

biomarker confirmed that subset of the ADC gave similar results.

Furthermore, the present study could be biased because we excluded patients that were 

already severely demented (i.e., MMSE score <17) at diagnosis. We think that this selection 

bias could have resulted in underrepresentation of the nonmemory phenotype, because 

atypical AD variants are less easily recognized as AD (especially at younger age, when other 

causes for cognitive complaints such as depression or burnout are more common) and 

therefore probably more often associated with patients’ and doctors’ delay, and delay 

because of initial misdiagnoses. In addition, nonmemory patients reported shorter disease 

duration, whereas MMSE scores were already lower, possibly because of faster disease 

progression before diagnosis, suggesting higher risk for more severe dementia at the time of 

diagnosis.

It could be argued that the substantial differences between cohorts in patient population 

(e.g., geographically, age, disease severity, and degree of cognitive heterogeneity within 

cohorts) and in extensiveness of NP test battery could be a limitation. However, we see this 

as a strong point of our study because we were able to replicate our finding of two robust 

clusters with their corresponding clinical characterization. This suggests that the clusters we 

identified are generalizable to other AD populations; an often-encountered limitation of 

data-driven methods to cluster patients is that of limited generalizability.

Nonmemory cluster patients had on average lower MMSE scores, and therefore we 

performed additional analyses to study whether clustering has been driven by disease 

severity. Repeating the clustering after stratification based on MMSE scores, memory and 

nonmemory clusters were identified in each stratified cohort as well. Cluster differences in 

terms of clinical characteristics were largely similar for the strata, albeit more pronounced in 

the mildly demented stratum. This suggests that clinical heterogeneity is more prominently 

present in early stages of AD.

Our results emphasize the presence of nonmemory phenotypes in AD. Being able to identify 

AD subtypes is important in a clinical setting for early and adequate diagnosis and 

personalized medicine. Also, cognitive profiling should be taken into account when 

including patients for clinical trials or when choosing cognitive outcomes to analyze the 

effect of an intervention. Furthermore, the existence of these clusters with similar patient 
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characteristics across independent cohorts suggests that cognitive heterogeneity is caused by 

different disease mechanisms.

In conclusion, we found two robust AD subtypes using a data-driven clustering approach in 

four AD cohorts. Identified clusters were associated with distinct demographic, clinical, and 

neurobiological characteristics, emphasizing the presence of cognitive heterogeneity in AD 

and suggesting variation in underlying pathology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

1. Systematic review: Alzheimer’s disease (AD) is characterized by cognitive 

heterogeneity. We searched PubMed for clinical and neurobiological 

heterogeneity in AD profiles and for data-driven approaches used to identify 

AD subtypes based on neuropsychological test scores. Several studies 

demonstrated the potential of clustering methods to identify cognitive AD 

subtypes. Identified subtypes showed distinct clinical characteristics. 

However, none of the previous studies tested the generalizability of the cluster 

solutions, because those results were based on single-cohort studies.

2. Interpretation: In four large AD cohorts, we consistently identified two 

cognitive clusters using nonnegative matrix factorization of 

neuropsychological test scores. In each cohort one cluster most prominently 

showed memory impairment and the other cluster was relatively memory 

spared. These clusters were associated with distinct clinical characteristics.

3. Future directions: Future research should aim to further study the underlying 

biological disease mechanisms that cause a nonmemory AD phenotype.
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Fig. 1. 
Nonnegative matrix factorization is a dual-clustering approach, meaning that clustering 

includes two parallel steps. First, neuropsychological (NP) test results are grouped together 

into NP profiles (components), illustrated in the upper half of the figure, in which each row 

represents one NP test, and each column an identified NP component. The warmer the color, 

the higher the test loads to the component when test scores are high (relatively spared 

cognition); the colder the color, the lower the test loads to the component when test scores 

are high (relatively impaired cognition). The optimal number of components is based on the 

cophenetic correlation coefficient (for this example n = 2). Second, patients are grouped 

together (into “clusters”) based on the fit of their NP profile to the identified NP component, 

taking each test’s load to the component into account. This step is illustrated in the lower 

half of the figure, in which each row represents one patient. The warmer the color, the better 

the fit of patients’ NP profile to the NP profile of the identified component.
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Fig. 2. 
Memory tests (indicated in dark blue). Each row represents one neuropsychological test. The 

two columns represent the two found neuropsychological components. The warmer the 

color, the higher the test loads to the component when test scores are high (relatively spared 

cognition); the colder the color, the lower the test loads to the component when test scores 

are high (relatively impaired cognition). Interpretation: in each cohort, one component is 

associated with relative impairment of memory tests, therefore called the memory 

component. The other component is associated with relative impairment of nonmemory 

functions, therefore called the nonmemory component. In all cohorts, the optimal number of 

test clusters was two. Abbreviations: ABCD, Arizona Battery for Communication Disorders 

of Dementia; ADC, Amsterdam Dementia Cohort; ADNI, Alzheimer’s Disease 

Neuroimaging Initiative; comp questions, comparative questions; CERAD, Consortium to 

Establish a Registry for Alzheimer’s Disease; CVLT, California Verbal Learning Test; DCN, 

German Dementia Competence Network; DS, Digit Span; FAB, Frontal Assessment Battery; 

LDST, Letter Digit Substitution Test; LM, CERAD Logical Memory; RAVLT, Rey Auditory 
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Verbal Learning Test; TMT, Trail Making Test; UCSF, University of California, San 

Francisco; VAT, Visual Association Test; WL, CERAD Word List.
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Fig. 3. 
Patients were assigned to either the memory or nonmemory cluster based on the fit of their 

neuropsychological profile to the memory or nonmemory component (Fig. 2). Each column 

represents one patient. The warmer the color, the better the fit of patients’ 

neuropsychological profile to the neuropsychological profile of that component. 

Abbreviations: ADC, Amsterdam Dementia Cohort; ADNI, Alzheimer’s disease 

Neuroimaging Initiative; DCN, German Dementia Competence Network; UCSF, University 

of California, San Francisco.
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