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Abstract

Heritability is the proportion of phenotypic variance in a population that is attributable to 

individual genotypes. Heritability is considered an important measure in both evolutionary biology 

and in medicine, and is routinely estimated and reported in genetic epidemiology studies. In 

population-based genome-wide association studies (GWAS), mixed models are used to estimate 

variance components, from which a heritability estimate is obtained. The estimated heritability is 

the proportion of the model’s total variance that is due to the genetic relatedness matrix (kinship 

measured from genotypes). Current practice is to use bootstrapping, which is slow, or normal 

asymptotic approximation to estimate the precision of the heritability estimate; however, this 

approximation fails to hold near the boundaries of the parameter space or when the sample size is 

small. In this paper we propose to estimate variance components via a Haseman-Elston regression, 

find the asymptotic distribution of the variance components and proportions of variance, and use 

them to construct confidence intervals (CIs). Our method is further developed to estimate unbiased 

variance components and construct CIs by meta-analyzing information from multiple studies. We 

demonstrate our approach on data from the Hispanic Community Health Study/Study of Latinos 

(HCHS/SOL).

1 Introduction

Heritability is the proportion of phenotypic variance that is due to genetic variation among 

individuals in a population. Heritability is often estimated using mixed models (Zaitlen and 

Kraft, 2012), where the genetic relatedness between any two individuals in a given study 

population is estimated (e.g. kinship coefficients may be calculated from GWAS data, or 

inferred from pedigrees) and then taken as fixed. Then, a variance component due to genetic 

variation is estimated, and the estimated heritability is the ratio between this variance 

component and the total variance in the model.

Inference about heritability when estimated from mixed models, and more generally, about 

other proportions of variance, usually relies on asymptotic normal approximation to the 

distribution of the estimators. However, multiple studies showed (e.g., Burch (2011), Kruijer 

et al. (2015)) that such confidence intervals are inaccurate, and may yield values that are not 

permissible (e.g. negative values). Recently, Schweiger et al. (2016) proposed a bootstrap 

approach that does not rely on asymptotic normality for estimating confidence intervals for 

heritability, and a numerical approximation that does not require bootstrapping under a 
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specific way of calculating the genetic relatedness matrix. While they show that their 

confidence intervals are accurate, their method is limited by computation time, by requiring 

a single modeled variance parameter, and by requiring a specific form for the genetic 

relatedness matrix when using the numerical approximation. In addition, current meta-

analysis approaches for heritability estimates rely on the inaccurate normal asymptotic 

approximation.

In this work we proposes to use Haseman-Elston regression for estimating variance 

components. This approach entails regressing multiplied residuals against entries of 

covariance matrices. We find the distribution of the variance component estimators as well 

as the distributions of the proportions of variance, in a general model that allows for multiple 

sources of variation. We provide an algorithm to estimate the confidence intervals, and to 

obtain an unbiased meta-analytic estimator of heritability that accurately combines 

information from multiple studies. In the case where genetic relatedness (or kinship) is the 

only sources of variation, our algorithm is very quick, with the computationally demanding 

step being the calculation of eigenvalues from a sub-matrix of the kinship matrix. We 

demonstrate our method by estimating heritability and proportion of variance attributed to 

house-hold and community sharing for 47 health outcomes in the Hispanics Community 

Health Study/Study of Latinos.

2 Materials and methods

2.1 Haseman-Elston regression

Suppose that a quantitative trait Y, measured on n individuals, follows the regression model

with β a vector of fixed effects of a covariates vector w, bi,l, l = a, …, k, i = 1, …, n are 

mean-zero random effects with bl = (bi,1, …, bn,l) and , so that  are 

variances corresponding to a, …, k independent sources of variation, and A, …, K are n × n 
matrices with i, j entries ai,j, …, ki,j modeling the correlation between the individuals’ 

random effects. Also ei, i = 1, …, n are independent errors with variance . In genetic 

association studies one of these matrices, say K, is a kinship, or genetic relatedness, matrix. 

Then

where here  is the heritability.

Let β̂ be an unbiased estimator of β, and let  be an estimator εi, i = 1, …, n. We 

estimate the variance components in a residual regression, i.e. by taking the vector of all 

unique pairs of residuals ε̂i ε̂j, i ≤ j (we can do it by taking the upper diagonal sub-matrix of 

ε̂ ε̂T that includes the diagonal), denoted by ε̃d and regressing it according to the above 

model. The regression design matrix is given by:
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where the second equality is because ai,i, …, ki,i = 1 for all i. Denote the vector of variance 

components estimated from the Haseman-Elston regression by .

2.2 Properties of the variance components and proportions of variance estimators

Complete mathematical derivations are provided in the Supplementary Information. Below 

are statements of some of the results to provide intuition to the findings and methods.

Lemma 2—Variance component estimators corresponding to the matrices A, …, K depend 

only on the between-observation multiplied residuals of the form ε̂i ε̂j for i ≠ j.

Lemma 3—Denote by . Then .

Theorem—We say that two matrices C1 and C2 are orthogonal in the trace inner product, 

or “trace orthogonal” if tr (C1C2) = 0. Let the matrix L− be the matrix L with all diagonal 

values set to 0. If a matrix L− is trace orthogonal to all other matrices in the set {A−, …, K−} 

\ L−, then

and the estimator of the proportion of variance modeled in L is the ratio between two 

quadratic forms given by:

The above theorem provides a closed form estimator for a variance component and the 

proportion of variance corresponding to a correlation matrix L when it represents either the 

only modeled source of variation in the model, or when it is orthogonal to all other modeled 
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sources of variation. The formula in the theorem explicitly shows that in Haseman-Elston 

regression the estimator of the total variance of an observation equals the “natural” 

estimator, the mean sum of squares of the marginal regression residuals, and that variance 

estimators corresponding to correlation matrices depend only on between-sample 

correlations (and not within-sample variances). Lemma 2 in the supplementary material 

shows that the same holds when the various correlation matrices are not trace orthogonal 

(after setting the diagonal values to zero).

In general, the estimators of variance components are quadratic forms. It is possible to 

obtain closed form expressions in the more complicated case of multiple modeled sources of 

variation that are not orthogonal, but the form of the estimator is not as nice as in the case of 

orthogonality. We here provide intuition to these estimators. Suppose that the correlation 

between two matrices is the Pearson correlation between the vectorized matrices. Consider 

the symmetric matrix (XTX) with the l, m = 1, …, k entry being equal to tr(L− M−). This is 

the design matrix of the Haseman-Elston regression. It describes relationships between the 

matrices in our model (e.g. if L− and M− are trace orthogonal, the l, m entry will be zero). 

Moreover, its inverse matrix (XTX)−1 could be referred to as the “precision matrix” (Li and 

Gui, 2006), a term we adopt from the gaussian graphical models literature. Here it means 

that the l, m, l ≠ m entry of (XTX)−1 represents the partial correlation between the matrices L
− and M− given all other matrices in the model, so that if L− and M− are uncorrelated given 

other correlation matrices, the corresponding entry of (XTX)−1 would be equal to zero. The 

quadratic form used for obtaining the estimator of the variance component corresponding to 

the matrix L = 1, …, K is of the form Q = (waA− + … + wkK−), with wm, m = 1, …, k being 

equal to the the l, m entry of (XTX)−1, or the partial correlation between L− and M− given all 

other matrices in the model.

2.3 Computation

2.3.1 Variance component estimators—While any unbiased estimator of β̂ suffices to 

generate residuals ε̂ and use them to obtain variance component estimators as (XTX)−1 XT 

ε̃d, a more efficient estimator iterates between estimating β and σ2 as follows:

1. Initialization step: set β̂(0) = (WT W)−1WT y.

2. Iteration step:

a. Given the kth estimator of β, β̂(k), set ε̂ = y − Wβ(k). Let ε̃ denote the 

vector of upper diagonal matrix (including the diagonal) of ε̂ εT̂. Set 

.

b. Given the kth estimator of σ2, σ̂2,(k), let 

 with inverse Σ̂−1,(k). Set 

β̂(k+1) = (WT Σ̂−1,(k) W)−1 WTΣ̂−1,(k)y

The iteration step repeats until convergence.

2.3.2 Confidence intervals for the variance components—From Lemma 4 in the 

Supplementary Information, any variance component (or sum of variance components) is 
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given as a quadratic form. Let Q be the quadratic form corresponding to a variance 

component estimate , such that . This  is distributed as the sum of 

independent  variables in , where λ1, …, λn are the eigenvalues of cov(ε̂)1/2 

Qcov(ε̂)1/2. In practice, for cov(ε̂) we use the estimated . Functions in 

the R package CompQuadForm (Duchesne and de Micheaux, 2010) calculate the probability 

function (or survival function) of this quadratic form based on λ1, …, λn. While it takes 

times to compute the eigenvalues, once they are computed, calculating the probabilities 

associated with the quadratic form is quick. We can test the hypothesis  by 

calculating the probability

and calculate two-sided confidence intervals for  by calculating the appropriate quantiles 

of the survival probability. For example, for a 95% confidence interval we take the values 

(c1, c2) for which

We find these values using a binary search on the interval [0, ].

We comment here that cov(ε̂) is in fact given by V̂ = Σ̂ − W (WT Σ̂−1 W)−1 WT because ε̂ = 

y − W β̂. In practice, we compared the coverage of confidence intervals when using V̂ and 

when using Σ̂ and the results were essentially the same.

2.3.3 Computing heritability estimates and their confidence intervals—Suppose 

that the variance component corresponding to the kinship matrix is , with quadratic form 

denoted by Qk. We estimate heritability as . However, we cannot use the 

confidence intervals for  to construct confidence intervals for hk. Instead, we note that the 

point estimate ĥk is given by:

where x ~  (0, I), for F = Σ̂1/2 QkΣ̂1/2 and G = Σ̂ /n. Thus, it is a ratio between two 

quadratic forms in (what we assume are) normal variables. For the squared root Σ̂1/2, we use 

the Cholesky decomposition of Σ̂.
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We use the saddlepoint approximation for the distribution of a ratio of quadratic forms in 

normal variables, proposed by Lieberman (1994). Complete detailed are provided in the 

Supplementary Information. In brief, for each potential value of hk, say , we can calculate 

the survival probability  using the saddlepoint approximation. Each such 

calculation requires as input , the eigenvalues of the matrix . We 

apply a binary search on the potential values  to find end points c1 and c2 for the 

confidence intervals, as was done for calculating a confidence intervals for .

2.3.4 Fast computation when genetic relatedness is the only modeled source 
of correlation—If we have only have a single kinship matrix K modeling the phenotypic 

variance, we can compute the eigenvalues λ1, …, λn of the matrix K− once, and then 

transform these eigenvalues to obtain the eigenvalues  for each value , 

and save computation time. To see this, suppose that u is an eigenvector of K− with an 

eigenvalue λ. Then, by definition, K−u = λu. Since , it is 

straightforward to see that u is also an eigenvector of Σ:

Similarly, u is an eigenvector of Σ1/2 with an eigenvalue , which finally leads 

to the transformation between an eigenvalue λi of K− to an eigenvalue of :

As before, we use the estimated  instead of the true unknown values.

2.3.5 Meta-analysis across studies when kinship is the only source of 
correlation—Suppose that there are S studies that we wanted to combine in meta-analysis. 

We assume that kinship is the only source of correlation. Each study has a vector of 

residuals ε̂s = (ε̂s,1, …, εŝ,ns)
T, s = 1, …, S. Consider the Haseman-Elston regression, but 

incomplete, so that only the pairs of multiplied residuals within study ε̂s,i ε̂s, j are regressed 

against entries of the kinship covariance matrix, but not ε̂s,i ε̂t, j for s ≠ t. For this, we do not 

need to assume that a participant in one study is genetically unrelated of a participant in 

another study. The meta-analytic estimator of  is given by . 

Let . The meta-analytic kinship variance component estimator is given by

where  is the block diagonal matrix that have all the study-specific kinship matrix 

(without their diagonal values) arranged diagonally, as
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To see that this meta-analytic estimator of  is unbiased, note first that 

, where now K− has kinship coefficients for individuals across 

studies (and diagonals set to zero). From characteristics of quadratic forms:

Let , where  is the matrix of cross-study relatedness. Although the 

variance components estimates and their ratios depend only on , their distribution depend 

on  as well.

Computing the meta-analytic heritability estimator and confidence intervals: Suppose 

that each of S independent studies calculated the residuals from a “null model” (a regression 

model without genetic fixed effects other than PCs). Each study s reports:

1.
,

2. ,

3. ,

4. The number of participants in the study ns,

5. The eigenvalues  of its matrix .

The meta-analysis estimates of the kinship variance components and the total variance are:

Sofer Page 7

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2018 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The error variance component is taken to be the difference , and the eigenvalues 

of the across-studies matrix K− (=  under independence between studies) are taken to be 

. Using these, the central location calculates heritability 

estimates and confidence intervals. These estimators are the estimators that one would have 

obtained if all regression residuals and kinship values were available at the central location 

and individuals were unrelated between studies. Interestingly, the estimator of the kinship 

variance is the weighted average of the kinship variance estimators from the various studies, 

weighted by the sum of squared entries of the study-specific kinship matrices with diagonal 

values set to zero. Therefore, a study with larger values of relatedness overall will make a 

stronger contribution to the kinship variance estimator. The estimator of the total variance is 

simply weighted by the sample sizes. Thus, as when estimating variance components from a 

single study, all residuals have equal contribution to the estimator of the total variance, while 

multiplied residual pairs with greater corresponding kinship coefficients have large influence 

on the kinship variance estimator.

2.4 The Hispanic Community Health Study/Study of Latinos

The HCHS/SOL (LaVange et al., 2010, Sorlie et al., 2010)) is a community based cohort 

study, following self-identified Hispanic individuals from four field centers (Chicago, IL; 

Miami, FL; Bronx, NY; and San Diego, CA). Individuals were sampled via a two-stage 

sampling scheme, in which households were randomly sampled from sampled community 

block units. Almost 13,000 study participants consented for genotyping. Correlation 

matrices to model environmental variance due to households and community block units 

were generated so that the i, j entry of a given matrix was set to 1 if the i and j individuals 

live in the same household (or community block unit), and 0 otherwise.

HCHS/SOL individuals were classified into ‘genetic analysis groups’: Central American, 

Cuban, Dominican, Mexican, Puerto Rican, and South American. These groups are based on 

self reported ethnicities and genetic similarity (Conomos et al., 2016a). This study was 

approved by the institutional review boards at each field center, where all participants gave 

written informed consent. The HCHS/SOL genotype and phenotype data are available on 

dbGaP under accession numbers phs000880.v1.p1 and phs000810.v1.p1.

2.4.1 Genotyping, imputation and quality control—Blood samples from HCHS/SOL 

individuals were genotyped on a custom array consisting of Illumina Omni 2.5M content 

plus ~150,000 custom markers selected to include ancestry-informative markers, variants 

characteristic of Amerindian populations, known GWAS hits and other candidate gene 

polymorphisms. Quality control was similar to the procedure described in Laurie et al. 

(2010) and included checks for sample identity, batch effects, missing call rate, 

chromosomal anomalies (Laurie et al., 2012), deviation from Hardy-Weinberg equilibrium, 

Mendelian errors, and duplicate sample discordance. 12,784 samples passed quality control, 

and 2,232,944 SNPs passed quality filters. Pairwise kinship coefficients and principal 

components reflecting ancestry were estimated in an iterative procedure which accounts for 

admixture (Conomos et al., 2016a). All common variants were used to estimate kinship 
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coefficients. Finally, we removed some individuals at random to generate a set of 10,255 

individuals without any pair having kinship coefficient higher than 2−11.

2.4.2 Heritability and proportion of variance estimation in the HCHS/SOL—Due 

to the sampling structure of the HCHS/SOL, the correlation between individuals is modeled 

via a kinship matrix, and two matrices modeling environmental effects: household and 

community block unit matrices. For each investigated trait we estimated variance 

components corresponding to the three correlation matrices via the Haseman-Elston 

regression. We estimated 95% confidence intervals for heritability, and for the proportion of 

variance explained by both modeled environmental effects together.

We first consider 47 traits for which previous GWAS was performed (though not necessarily 

published) in the HCHS/SOL. The traits were, by groups, white and red blood cells counts 

and indices: eosinophils (EOS), hemoglobin (HB), lymphocytes (LYMPH), neutrophils 

(NEUT), total white blood cell count (WBC), monocytes (MONO), total red blood cells 

count (RBC), hematocrit (HCT), mean corpuscular hemoglobin (MCH), mean corpuscular 

volume (MCV), mean corpuscular hemoglobin concentration (MCHC), red cell distribution 

width (RDW), and platelet count (PLT), anthropometric measures: BMI, waist 

circumference adjusted for BMI (WCadjBMI), waist-to-hip ratio adjusted to BMI 

(WHRadjBMI), hip circumference adjusted for BMI (HIPadjBMI), height, ECG measures: 

heart rate and its variability (HR, HRV_SD and HRV_RMS), QT and PR intervals (QT, PR), 

lipid measures: LDL and HDL cholesterol (HDL, LDL), total cholesterol (TC) and 

triglycerides (TG), measures of lung function: forced vital capacity (FVC), forced expiratory 

volume in one second (FVC1), and their ration (FEV1_FVC_ratio), blood pressure 

measures: systolic and diastolic blood pressure (SBP, DBP), mean arterial pressure (MAP) 

and pulse pressure (PP), iron measures: ferritin, total iron binding capacity (TIBC), 

transferring and its saturation (iron, Saturation), glycemic control, kidney and other 

metabolic traits: fasting insulin, ankle-brachial index (ABI), estimated glomerular filtration 

rate (eGFR), urine albumin to creatinine ratio (ACR), glycated hemoglobin (HbA1c), dental 

traits: periodontitis (PERIO) approximated by the cube root of the mean attachment loss 

interproximal teeth areas, and measures of dental caries (counts of cavities) on teeth surface 

(TS) and teeth (TT), and a depression score (known as CESD10, a sum of ten questionnaire 

items related to depression in the week prior to the clinic visit). All regression models were 

adjusted (via the design matrix W) to the 5 first principal components, study center, age, sex, 

and genetic analysis group. For some traits we used additional covariates.

We also studied the use of our method for meta-analysis when there are some related 

individuals across studies on a subset of five traits. We first generated a restricted data set of 

7,848 individuals that none of them lived in the same house-hold. We then treated each of 

the genetic analysis groups as a separate study, and used the proposed procedure for 

calculating heritability in each of the genetic analysis groups and in meta-analysis. We also 

compared these analyses to the pooled analysis that modeled all 7,848 individuals together. 

Note that for this exercise we neglected block unit correlation, i.e. assumed that it does not 

contribute to the phenotypic variance.
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2.5 Simulation studies

We study the accuracy of the proposed method for calculating confidence intervals in 

simulations, and compare it to other methods for obtaining estimates and confidence 

intervals. All methods under investigations are those that use pre-defined between-

individuals correlation matrices. We used correlation matrices from the HCHS/SOL 

corresponding to kinship, household, and community block unit, to generate quantitative 

outcomes with realistic correlation structures. In the Supplementary Information we provide 

additional simulation studies with correlation matrices that are not directly based on the 

HCHS/SOL. In any given simulation, data were sampled by first generating an error vector 

eind from a standard normal distribution. We simulated the covariance structure

by taking e = Σ1/2eind. The matrices K, H, and C were the kinship, household, and 

community matrices in the HCHS/SOL. The outcomes were simulated by

where PC1 is the first principal component of the HCHS/SOL data. All simulations were 

performed 1,000 times.

In the first simulation study we set , and studied our 

method in settings of small sample size (n = 1,500) and large sample size (n = 12, 784). We 

compared the Haseman-Elston approach to a REML approach, with confidence intervals that 

rely on normal approximation. For this we used the GENESIS R package (Conomos et al., 

2016b) that can estimate multiple variance components. In a second simulation study we set 

, with , so that kinship is the only source of 

correlation. In these settings we are able to compare additional methods: a combination of 

REML with the GENESIS R package and the ALBI package (Schweiger et al., 2016) for 

estimating bootstrap confidence intervals, the REML implementation in the heritability R 

package (Kruijer et al., 2016) with confidence intervals based on asymptotic normal 

approximation of either the variance component themselves, or their log. Here we also 

considered small and large sample sizes, and in addition, we randomly divided the large 

dataset into 5 subgroups, to generate data mimicking five different studies with possible 

genetic relatedness between participants of different studies, and studied our meta-analysis 

approach in this scenario. We randomly partitioned the data to subgroups four times, to 

make sure that results did not depend on a specific partition.

3 Results

3.1 Simulation studies

Table 1 provides simulation results in terms of root-mean-squared-error (RMSE) of the 

variance proportion estimator, where RMSE is given by
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and nsim = 1,000 is the number of simulations; coverage, which is the proportion of 

simulations in which the true variance proportion is within the confidence interval; and 

width, which is the average width of the 95% confidence interval. Table 1 is divided to two 

parts. On the left side, it provides results from simulation settings that included three 

different correlation matrices, mimicking the HCHS/SOL, for large and small sample sizes. 

This part only provides results computed using the proposed Haseman-Elston (HE) 

procedure and using the asymptotic normal approximation based on REML as implemented 

in the GENESIS R package. The right side of the table provides results from simulation 

settings in which only a single kinship matrix was used, again in large and small sample 

sizes. For these, results from all compared methods are provided.

The HE estimates of proportion of variance are very similar to those obtain using REML 

procedures, though often slightly less efficient (usually slightly larger RMSE when 

compared to the GENESIS estimates). The confidence intervals obtained from the HE 

regression are better than the REML normal distribution based confidence intervals when the 

sample size is small, but are similar otherwise. Additional simulation results in the 

Supplementary Information demonstrate that the normal approximation based confidence 

intervals perform poorly also when the actual values in the correlation matrix are small, and 

when multiple correlation matrix are somewhat correlated. Asymptotic REML-based 

confidence intervals that use the log-transform do not perform well. The bootstrap 

confidence intervals (GENESIS-ALBI) perform well and tend to be slightly narrower than 

other confidence interval.

The meta-analysis procedure that ignores between-study relatedness had proper coverage of 

the proportion of variance, but had less efficient estimates, as seen by the large RMSE and 

wide confidence intervals. This is expected because we discarded some information 

compared to the procedure that used the entire data.

3.2 Heritability estimation in the HCHS/SOL

Figure 1 provides the estimated heritability and proportion of variance due to modeled 

environmental factors (household and community) for the 47 traits examined in the HCHS/

SOL, together with 95% confidence intervals. The results are ordered by the estimated 

heritability. Height has the largest estimated heritability (almost 60%, consistent with other 

estimates from GWAS), while the heritability of iron (transferrin), periodontitis and the 

depression score are close to 0, with confidence interval containing zero. Interestingly, the 

proportion of variance of periodontitis explained by household and community sharing was 

very high, larger then 20%, and that of CESD10 was also statistically significant at the 0.05 

level. The trait with the largest proportion of variance attributable to modeled environmental 

factors was MCHC (a measure of hemoglobin concentration in red blood cells). Perhaps this 

is due to environmental exposure that varies among households. For instance, it is known 

that smoking is associated with MCHC levels (Asif et al., 2013). While smoking status 
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(never, past, current) was used as a covariate in the MCHC model, this variable may not 

have capture passive smoking that may vary by households.

Figure 2 provides results from studying the meta-analysis procedure. For the five 

investigated traits, it provides estimated proportion of variance (heritability and 

environmental variance) and 95% confidence intervals from the Full data set, that included 

environmentally correlated individuals (and was used for Figure 1), and from the restricted 

data set that did not include environmentally correlated individuals. We used the restricted 

data set to compare a pooled analysis, genetic analysis group specific analyses, and meta-

analysis that ignores the correlation between individuals from different genetic analysis 

groups, to mimic meta-analysis across different studies. Considering the restricted data set, 

the analyses of specific genetic analysis groups yielded wide confidence intervals, which 

often included zero. This is expected due to low power. In addition, the meta-analyses that 

did not account for the correlations between the genetic analysis groups had wider 

confidence intervals than the corresponding pooled analyses.

4 Discussion

In this manuscript we investigate the properties of Haseman-Elston regression estimators of 

variance components. We get a closed-form expression for the variance estimators, and use 

them to characterize the distribution of the estimated variance components and ratios of 

variance, and to compute confidence intervals. Our confidence intervals require normality of 

the residuals from the trait regression model after adjusting for covariates. We further show 

how to obtain unbiased estimates of the variance components and proportions of variance by 

meta-analyzing information from multiple studies. In this case, the heritability estimates are 

unbiased even if individuals are related between studies, but the asymptotic distribution of 

the estimators depends on the unknown (and non-estimated) kinship coefficients of cross-

study individuals.

The Haseman-Elston regression does not naturally constrain the variance component 

estimators to be non-negative. In practice, if an estimator of a variance component parameter 

becomes negative during the algorithm iteration process, it is set to zero, as is also done in 

REML estimation. However, unlike REML with asymptotic confidence intervals, where 

there is no uncertainty associated with the parameter that was set to zero, here we can obtain 

a confidence interval for the variance component estimator, because we can still estimate 

quantiles of the distribution of the quadratic form. The solution is still somewhat ad-hoc, as 

we constrain the confidence interval to have 0 as its low end point, and the high end point is 

that of estimated 97.5% probability. Still, in simulations with null heritability values and 

values close to 0, the confidence intervals had good coverage.

In the simulation studies, we compared our proposed approach to the approach that 

calculates confidence intervals based on the asymptotic normal approximation to the 

distribution of the variance components obtained by maximizing the REML. Using the latter 

method to obtain confidence intervals is attractive, because it is straightforward to 

implement and has almost no computational cost. However, the normal approximation does 

not hold close to the boundary of the parameter space, and when the information is low, e.g. 
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when the values of the kinship matrix are small, as is shown in simulations in the 

Supplementary Information. In contrast, the proposed Haseman-Elston based confidence 

intervals perform well, and are almost as efficient (have similar width) as the normal 

approximation based ones when the sample size is large. The computational cost of 

calculating the proposed confidence intervals is large when using multiple matrices to model 

the covariance structure of the outcomes. However, this can be substantially reduced using 

recent developments in algorithms for fast calculations of the largest eigenvalues of matrices 

(e.g. Lumley et al. (2016)).

Our approach for heritability estimation and for obtaining confidence intervals relies on 

having a pre-defined kinship matrix that models the relatedness between individuals. The 

same is true for other mixed-models based approaches that use individual-level data. Other, 

relatively new approaches such as the LD-score regression (Bulik-Sullivan et al., 2015) and 

MQS (Zhou (2016), unpublished manuscript) use summary statistics from GWAS and a 

reference panel (for calculating confidence intervals, MQS also proposes a combination of 

the two approaches). Therefore, these methods use actual estimated effect sizes and LD 

between variants, instead of genetic correlation between individuals. It is a topic of future 

research to study the relative advantages (e.g. power under various settings) of these 

manners for estimating heritability: using genetic relatedness between individuals without 

estimating variants’ effect sizes, versus estimating effect sizes and using correlation between 

the variants.

We show in simulations based on the HCHS/SOL correlation structure that the coverage of 

our confidence intervals is good both in pooled analysis, and in meta-analysis (even when 

individuals are related between studies) while being quite conservative when the sample size 

is small. More work is needed to study the analytic properties of the confidence intervals in 

meta-analysis when individuals are related between studies and when some individuals 

belong to multiple studies. We expect such a scenario to cause a larger deviation between the 

estimated and the actual distribution of the kinship variance component and heritability, 

potentially leading to worse coverage of the estimated confidence intervals, depending on 

the how many such overlaps in study participants exists.

5 Software

An R code for estimating heritability (or proportion of variances due to other modeled 

factors), and their confidence intervals, together with an example script and with sample 

code and instructions for running simulation studies can be found at https://github.com/

tamartsi/Heritability_CIs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimated proportion of variance due to kinship (i.e., heritability) and due to modeled 

environmental factors (household and community sharing) for 47 traits in the HCHS/SOL 

data of 10,255 individuals. The investigated traits are related to blood cell count and indices 

(EOS, HB, LYMPH, NEUT, WBC, MONO, RBC, HCT, MCH, MVC, MCHC, RDW, PLT), 

anthropometric measures (BMI, height, WCadjBMI, HIPadjBMI, WHRadjBMI), ECG traits 

(HR, HRV_SD, HRV_RMS, QT and PR), lipid measures (LDL, HDL, TC, TG), measures of 

lung function (FVC, FEV1, FEV1_FVC_ratio), blood pressure measures (SBP, DBP, MAP, 

PP), dental traits (perio, Dental caries (TS, TT)), iron (iron, ferritin, TIBC, saturation), 

depression score, and other metabolic, glycemic and kidney traits (fasting_insulin, ABI, 

eGFR, ACR, HBA1C).
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Figure 2. 
Estimated proportions of variance from the various subsets of the HCHS/SOL data. The Full 

dataset included 10,255 individuals with mutual kinship coefficient smaller than 2−11/2. 

Using Full, we estimated both heritability and the proportion of variance that is due to 

modeled environmental effects: the sum of the variance components corresponding to 

household and community block unit sharing. A restricted data set included 7,848 

individuals from separate households and was used to compare meta and pooled analysis 

heritability estimates, where the meta-analysis used information from each of the genetic 

analysis groups. Dental caries (TS) is a measure of teeth damage on teeth surfaces. 

Depression score is a summation of responses to questions related to depressive behavior or 

feelings in the week prior to a participant’s clinic visit. FEV1 is a measure of lung function. 

SBP is systolic blood pressure.
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