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Abstract

In the management of acute ischemic stroke, vessel recanalization correlates with functional 

status, mortality, cost, and other outcome measures. Thrombolysis with intravenous tissue 

plasminogen activator has many limitations that restrict its applicability, but recent advances in the 

development of mechanical thrombectomy devices as well as improved systems of stroke care 

have resulted in greater likelihood of vessel revascularization. Nonetheless, there remains 

substantial discrepancy between rates of recanalization and rates of favorable outcome. The poor 

neurological recovery among some stroke patients despite successful recanalization confirms the 

need for adjuvant pharmacological therapy for neuroprotection and/or neurorestoration. Prior 

clinical trials of such drugs may have failed due to the inability of the agent to access the ischemic 

tissue beyond the occluded artery. A protocol that couples revascularization with concurrent 

delivery of a neuroprotectant drug offers the potential to enhance the benefit of thrombolysis. 

Analogs of activated protein C (APC) exert pleiotropic anti-inflammatory, anti-apoptotic, 

antithrombotic, cytoprotective, and neuroregenerative effects in ischemic stroke and thus appear to 

be promising candidates for this novel approach. A multicenter, prospective, double-blinded, dose-

escalation Phase 2 randomized clinical trial has enrolled 110 patients to assess the safety, 

pharmacokinetics, and efficacy of human recombinant 3K3A-APC following endovascular 

thrombolysis.
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1. Introduction

Stroke is the third leading cause of death worldwide and the number one cause of disability 

in the United States (Mortality and Causes of Death, 2015). Among the subset of stroke 

patients with persistent proximal vessel occlusion, up to 80% die within 90 days or fail to 

regain functional independence (Amar et al., 2015). It is estimated that for each minute 

during acute ischemic stroke (AIS), 1.9 million neurons, 14 billion synapses, and 12 km (7.5 

miles) of myelinated fibers are destroyed (Saver, 2006).

Extensive research efforts have helped elucidate the pathophysiology underlying AIS and 

have characterized many processes of the ischemic cascade, including dysfunction of all 

elements of the neurovascular unit (neurons, astrocytes, microglia, and endothelial cells). 

Although these multiple injury mechanisms suggest myriad potential therapeutic 

approaches, the only medication approved by the United States Food and Drug 

Administration (FDA) for AIS remains intravenous tissue plasminogen activator (IV tPA), 

which targets the occlusive thrombus within a blood vessel. However, IV tPA has many 

limitations that restrict its widespread application, including a relatively short time window 

for delivery, low rates of recanalization in large vessel occlusion (LVO), and risks of 

intracranial bleeding (Amar et al., 2015). As a result of these and other reasons, only about 

5% of AIS patients receive IV tPA (Jauch et al., 2013; Mozaffarian et al., 2015; Schwamm et 

al., 2013). Adjunctive drugs that counteract these limitations may expand the applicability of 

this therapy in the future.

In the last few years, the role of mechanical neurothrombectomy in AIS therapy has 

expanded significantly. The current generation of aspiration and stent retrieval devices 

achieves recanalization in the majority of patients with LVO (Almekhlafi et al., 2014; 

Berkhemer et al., 2015; Campbell et al., 2015; Goyal et al., 2015; Nogueira et al., 2012; 

Saver et al., 2015; Saver et al., 2012) and detailed analysis of safety data confirms that 

neurothrombectomy procedures can be performed with minimal morbidity and mortality 

(Akins et al., 2014).

Nonetheless, the likelihood of functional independence following neurothrombectomy (14–

58%) remains poor compared with rates of recanalization (60–90%) (Amar et al., 2015). 
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This disparity underscores the need for adjunctive therapies that enhance the benefit of 

endovascular thrombolysis, such as pharmacological neuroprotection (Amar et al., 2015).

Thousands of preclinical studies and human trials with potential neuroprotective agents in 

AIS have been reported, but none has proven unequivocally efficacious and none has yet 

achieved FDA approval (Ginsberg, 2009; Tymianski, 2013). One plausible explanation for 

this failure is that the agent may not reach the ischemic tissue due to lack of perfusion. 

When administered systemically, neuroprotective agents might not traverse the occluded 

artery and must rely instead on collateral flow to ischemic tissue, but such collateral flow 

may be insufficient for adequate drug delivery. This provides impetus for a strategy coupling 

revascularization with the ancillary administration of a neuroprotective drug.

We have previously reviewed the foundation of clinical trials that administer an analogue of 

activated protein C (APC) after endovascular thrombolysis by IV tPA, mechanical 

neurothrombectomy, or both (Amar et al., 2015). APC confers pleiotropic benefits, such as 

stabilizing blood brain barrier (BBB) integrity, preventing propagation of thrombosis, 

enhancing fibrinolysis, promoting neuroprotection, attenuating inflammation, and 

facilitating neuroregeneration (Griffin et al., 2002; Griffin et al., 2015; Zlokovic and Griffin, 

2011). It represents a novel multiple-action multiple-target approach that addresses all 

components of the pathogenic triad (consisting of vascular damage, neuronal injury, and 

neuroinflammation) in AIS (Zlokovic and Griffin, 2011). Since the first report of its anti-

inflammatory, cytoprotective, and antithrombotic properties in AIS (Shibata et al., 2001), 

APC has progressively fulfilled Stroke Therapy Academic Industry Roundtable (STAIR) 

criteria for drug development (Zlokovic and Griffin, 2011). The preclinical safety and 

pharmacokinetic profile of APC has been well characterized in mice and monkey models 

(Williams et al., 2012). A phase I safety study in normal human subjects has demonstrated 

that high dose bolus regimens of modified APC are well-tolerated in normal human subjects 

(Lyden et al., 2013), and a multicenter phase II dose-escalation clinical trial of intravenous 

administration for AIS (NCT02222714, NN104) is currently in progress (https://

clinicaltrials.gov/ct2/show/record/NCT02222714) (Lyden et al., 2016).

2. Overview of activated protein C (APC) pathways

Protein C (PC) is a 62 kDa vitamin K-dependent secretary glycoprotein produced mainly by 

liver (Griffin et al., 1993). PC circulates at 70 nM in the blood as an inactive zymogen of the 

natural anticoagulant serine protease APC (Gruber and Griffin, 1992; Mosnier et al., 2007). 

PC binds to the endothelial cell protein C receptor (EPCR) at the endothelial cell surface 

(Fukudome and Esmon, 1994) and is activated by thrombomodulin (TM) receptor-bound 

thrombin (IIa) by cleavage at Arg169 and removal of a peptide fragment at the amino-

terminal of PC heavy chain (Esmon, 2003; Essalmani et al., 2017) (Fig. 1). EPCR is also 

required for transport of APC across the BBB (Deane et al., 2009). APC associated with 

EPCR in caveolae microdomains (Russo et al., 2009) cleaves protease-activated receptor-1 

(PAR-1) initiating cytoprotective signaling including altered gene expression, and anti-

inflammatory, anti-apoptotic and barrier protective activities (Fig. 1). Normally plasma 

levels of APC are about 40 pM in healthy humans (Mosnier et al., 2007). APC is inactivated 

and cleared from plasma by serine protease inhibitors (Serpins) (Fig. 1). APC is a unique 
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protease having potent anticoagulant and anti-inflammatory activities (Griffin et al., 2002). 

APC along with its cofactor protein S partially degrade and inactivate coagulation factors Va 

and VIIIa on the platelet membrane (Esmon, 2003; Marlar et al., 1982) (Fig. 1). APC is 

physiologically very important as heterozygous PC deficiency increases the risk for venous 

thrombosis in adults and the rare homozygous PC deficiency in neonates results in a fatal 

syndrome known as purpura fulminans if untreated (Griffin et al., 1981; Marlar et al., 1989). 

In mice, total deletion of PC results in death soon after birth, whereas transgenic mice 

expressing very low levels of PC develop severe thrombosis and inflammation (Lay et al., 

2005).

2.1. PAR1 cleavage-dependent signaling

Thrombin and APC differentially cleave PAR-1 to determine and trigger different unique 

downstream signaling cascades (Griffin et al., 2015; Mosnier et al., 2012). Thrombin cleaves 

PAR1 at Arg41 generating a new N terminus beginning at Ser42 which corresponds to a 

PAR1 peptide sequence known as thrombin receptor-activating peptides (TRAP, peptides 

beginning with SFLLRN) which mirrors many of thrombin’s biological effects (Fig. 2A) 

(Griffin et al., 2015; Mosnier et al., 2012). APC cleaves PAR1 at Arg46 generating a new N 

terminus beginning with Asn47 which corresponds to a 20-mer peptide known as TR47 (i.e., 

a peptide starting with NPNDKY) which acts as an biased agonist of PAR1 mimicking 

APC’s effects (Fig. 2A) (Griffin et al., 2015; Mosnier et al., 2012). In cultured endothelial 

cells, TRAP or thrombin causes rapid extracellular signal-regulated kinase 1/2 (ERK 1/2) 

phosphorylation (Griffin et al., 2015; Mosnier et al., 2012). Conversely, TR47 or APC 

causes delayed protein kinase B (Akt) phosphorylation (Griffin et al., 2016). Therefore, the 

cleavage of PAR-1 in sites separated by only 5 amino acids has opposite biological effects 

depending on the biased agonism of PAR-1 (Fig. 2B) (Griffin et al., 2016; Mosnier et al., 

2012). On one hand, PAR-1 can initiate G-protein-coupled receptor-dependent 

proinflammatory effects via ERK 1/2 activation, and Ras homolog gene family, member A 

(RhoA) activation, leading to BBB disruption (Fig. 2B) (Griffin et al., 2016; Griffin et al., 

2015; Mosnier et al., 2012). Alternatively, activated PAR-1 can initiate a β-arrestin-2 

pathway involving Ras-related C3 botulinum toxin substrate 1 (Rac1) and promoting BBB 

stabilization (Soh and Trejo, 2011) and survival signaling via Akt activation (Fig. 2B) 

(Griffin et al., 2016; Mosnier et al., 2012).

2.2. The protective effects of APC

The neuroprotective effect of APC was first discovered in a murine middle cerebral artery 

occlusion/reperfusion model (Shibata et al., 2001). Treatment of mice with purified human 

plasma-derived APC reduced brain infarct volume and edema, prevented brain infiltration of 

neutrophils, and reduced the BBB breakdown (Shibata et al., 2001). This initial study led to 

the cloning of murine PC for subsequent studies to avoid cross-species artifacts (Fernandez 

et al., 2003). Several in vitro and in vivo preclinical studies in the past two decades have 

identified APC’s anti-inflammatory, cytoprotective activities which are important for direct 

endothelial cell protection, BBB stabilization, neuronal protection, neurogenesis and 

neovascularization in ischemic stroke recovery (Griffin et al., 2006; Griffin et al., 2016; 

Mosnier et al., 2007; Zlokovic and Griffin, 2011) (Fig. 1). Preclinical studies in various 

injury models showed beneficial effects of human or mouse recombinant wild-type (wt)-
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APC (Griffin et al., 2015). Recent clinical studies in humans demonstrated effectiveness of 

local application of APC in the treatment of recalcitrant orthopedic wounds (Wijewardena et 

al., 2011), chronic skin ulcers (Kapila et al., 2014), chronic diabetic lower leg ulcers 

(Whitmont et al., 2015), and pressure sores (Wijewardena et al., 2016). Treatment with 

recombinant wt-APC has been shown to increase the risk for bleeding (Bernard et al., 2003; 

Christiaans et al., 2013). To understand APC’s distinct anticoagulant and cytoprotective 

actions and minimize risk for intracerebral bleeding, we took advantage of APC’s unique 

structural features and developed several signaling-selective (with significantly reduced, 

<10% anticoagulant activity) and anticoagulant selective APC mutants (Griffin et al., 2015; 

Mosnier and Griffin, 2006). Studies with signaling-selective recombinant APC mutants, 

such as 5A-APC or 3K3A-APC, found significant protection in several brain injury models 

such as amyotrophic lateral sclerosis (Winkler et al., 2014; Zhong et al., 2009), traumatic 

brain injury (Petraglia et al., 2010; Walker et al., 2010) and ischemic stroke (Guo et al., 

2009a; Guo et al., 2009b). Whereas treatment with anticoagulant-selective E149A-APC 

variant having >3-fold increased anticoagulant activity but defective cytoprotective activities 

worsened brain injury in ischemic stroke in mice (Wang et al., 2013a). These studies confirm 

that primarily, if not exclusively, the cytoprotective activities and not anticoagulant activities 

are central for neuroprotection after brain injury. Below, we review the literature assessing 

the protective effects of APC on several cell types of the neurovascular unit (NVU), 

including endothelial cells, neurons and microglia (Fig. 3).

2.2.1. Endothelial cells—Murine APC directly prevented apoptosis via an EPCR/PAR1-

dependent pathway involving the inhibition of tumor suppressor protein p53, normalization 

of the apoptotic Bax/Bcl-2 ratio and reduction of caspase-3 signaling (Fig. 3A) (Cheng et al., 

2003). Furthermore, APC inhibited the pro-hemorrhagic tPA-induced, NFκB-dependent 

matrix metalloproteinase-9 (MMP-9) pathway in ischemic brain endothelium in vivo and in 

vitro by acting through PAR-1 (Fig. 3A) (Cheng et al., 2006). Additionally, APC inhibited 

the tPA-induced caspase-8 activation of caspase-3, shifting the apoptotic signaling from the 

intrinsic to extrinsic pathway which requires caspase-8 (Liu et al., 2004). Interestingly, APC 

regulates intracellular Ca2+ levels in brain endothelial cells by binding to EPCR and 

signaling via PAR-1 (Domotor et al., 2003).

2.2.2. Neurons—APC inhibits caspase-3 dependent nuclear translocation of apoptosis-

inducing factor in N-methyl-D-aspartate (NMDA)-treated neurons and reduced tPA-

mediated cerebral ischemic injury in mice (Liu et al., 2004; Zlokovic et al., 2005). Also, 

APC blocked NMDA-dependent apoptosis by inhibiting caspase-8 activation upstream of 

caspase-3 activation and apoptosis-inducing factor nuclear translocation (Guo et al., 2004). 

APC also blocked the induction of p53 (Guo et al., 2004). A series of mechanistic studies by 

others also confirm that APC’s neuroprotection is dependent upon PAR-1, PAR-3 and EPCR 

(Gorbacheva et al., 2009; Gorbacheva et al., 2010; Gorbacheva et al., 2013; Gorbacheva et 

al., 2008; Gorbacheva et al., 2007).

2.2.3. Neurogenic effects of APC—The first evidence of APC to promote neurogenesis 

were in middle cerebral artery occlusion mice which found PAR-1 dependent increased 

proliferation of neuronal progenitor cells in the subventricular zone (SVZ) by 40–50% and 
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migration of newly formed neuroblasts from the SVZ toward the ischemic border 

(Thiyagarajan et al., 2008). In vitro studies found that 3K3A-APC stimulated neuronal 

mitogenesis and differentiation from fetal human neural stem cells (NSCs) and neural 

progenitor cells (NPCs) that were mediated through PAR-1, PAR-3 and S1PR1, and 

triggering Akt (Guo et al., 2013). Interesting recent studies found that 3K3A-APC promotes 

the survival and neuronal production of transplanted NPCs into mice, leading to neuronal 

circuit restoration and improved function (Wang et al., 2016).

2.3. Stem cells and APC

Regenerative medicine with human stem cells holds the greatest promise for the treatment of 

stroke and other neurological disorders and central nervous system (CNS) injuries (George 

and Steinberg, 2015; Jeong et al., 2014). In the last decade, stem cell therapy has been 

extensively tested in preclinical experimental stroke models in rodents, large mammals and 

primates (Lees et al., 2012; Lemmens and Steinberg, 2013; Liu et al., 2014; Popa-Wagner et 

al., 2014; Shinozuka et al., 2013; Stem Cell Therapies as an Emerging Paradigm in Stroke, 

2009). These studies, although they are not all consistent due to the differences in the 

models, cell types and transplantation protocols, have encouragingly suggested that 

transplanted cells homing to the damaged brain regions can exert multiple beneficial effects, 

including neuroprotection, anti-inflammation, pro-angiogenesis and pro-neurogenesis, and 

improve functional outcomes (Bliss et al., 2007; George and Steinberg, 2015; Lees et al., 

2012; Liu et al., 2014). Despite recent advances, there is still a lack of mechanistic studies to 

address the issues regarding poor survival of transplanted cells and indiscriminate 

differentiation of the progenies in the hostile infarcted environment (Francis and Wei, 2010; 

Xian and Huang, 2015). In addition, whether transplanted cells can indeed be functional and 

replace the lost cells in the host neural network due to injuries has been debated. However, a 

recent report demonstrated that combination therapy with human NSCs and 3K3A-APC 

improved transplantation tolerance, stimulated cell replacement, accelerated structural 

recovery and enhanced functional restoration in a preclinical animal model of stroke (Wang 

et al., 2016). Furthermore, this study provided direct evidence showing functional 

integration of transplanted cells into the host neural circuits which is accompanied by 

substantial improvement in brain sensory-motor functions (Wang et al., 2016), suggesting 

that this combination approach may potentially be used for late treatment of stroke in 

patients.

Given that 3K3A-APC has neuroprotective effects in aged female mice and hypertensive rat 

models with a larger infarct volume (Wang et al., 2013b), it may be predicted that 3K3A-

APC and NSC-repair therapy would successfully translate both to different experimental-

stroke models and to humans (Albers et al., 2011). There are ongoing Phase I 

(NCT01151124) and Phase II (NCT02117635) clinical trials directly injecting manufactured 

NSCs into the brain of patients that remain moderately to severely disabled following an 

ischemic stroke. The Phase I trial, known as PISCES, found that a single intracerebral 

injection of up to 20 million NPCs induced no adverse events and was associated with 

improved neurological function (Kalladka et al., 2016). The Phase II trial recently completed 

recruitment and is investigating the benefit of NSC injection in ischemic stroke patients with 

stable upper-limb paresis. Future studies should determine whether including 3K3A-APC 
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treatment with NPC transplantation in ongoing clinical trials could be a beneficial 

combination therapy for stroke patients that may help repair stroke-damaged neural circuits.

3. Augmenting the benefit of thrombolysis with APC

The premise of endovascular thrombolysis is that timely restoration of blood flow to the 

ischemic territory improves clinical outcome by salvaging the hypoperfused tissue at risk of 

converting to infarction. Meta-analysis of more than 50 studies confirms the strong 

correlation between recanalization and outcome in AIS, and the odds ratio of functional 

independence or death for those with recanalization compared to those without is 4.43 and 

0.24, respectively (Rha and Saver, 2007).

However, recanalization alone –whether achieved by IV tPA, mechanical 

neurothrombectomy, or both—is often insufficient to achieve good clinical outcome. The 

current generation of neurothrombectomy devices can achieve recanalization in the 

overwhelming majority of patients, but even when this procedure is performed expeditiously 

among AIS patients with small infarct cores, the rate of good clinical outcomes is 

comparatively poor (Amar et al., 2015). Analysis of the reasons underlying this disparity 

reinforces the benefit of a strategy combining endovascular thrombolysis with APC. We 

have previously reviewed many of the mechanisms by which adjunctive delivery of APC 

should strengthen the biological relationship between recanalization and outcome (Amar et 

al., 2015):

a. Recanalization of upstream large arteries may not restore distal tissue 

reperfusion. Rethrombosis, migration of emboli, secondary thrombosis of 

downstream arteries, or microcirculatory occlusion may produce a no-reflow 

phenomenon despite proximal vessel thrombolysis (Bai and Lyden, 2015). The 

inherent anticoagulant activity of APC might attenuate the thrombosis that 

underlies no-reflow. Conversely, excessive anticoagulation could promote 

intracerebral bleeding. Variants such as 3K3A-APC, which have reduced 

anticoagulant activity (< 8%) compared with wild type APC, might represent a 

favorable compromise between prothrombotic and anticoagulant forces, but this 

proposition awaits confirmation in clinical trials.

b. Restoring flow to ischemic brain tissue following thrombolysis or thrombectomy 

risks reperfusion injury, hemorrhagic transformation, or cerebral edema, all of 

which could counteract the benefit of recanalization. By reinforcing the integrity 

of the damaged BBB within ischemic tissue, adjunctive APC confers 

vasculoprotective benefits.

c. It has been proposed that recanalization therapies such as tPA may be neurotoxic, 

either directly through induction of caspases and other proapoptotic pathways, or 

through breakdown of the BBB that promotes the toxic accumulation of serum 

proteins that affect secondary neuronal injury (del Zoppo, 1998; Liu et al., 2004; 

Zlokovic and Griffin, 2011). The intrinsic neuroprotective actions of adjunctive 

APC might overcome this damage.
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d. Similarly, APC might protect against the deleterious effects of anesthesia, which 

is often administered during neurothrombectomy procedures. Unpublished data 

from the pooled analysis of the HERMES collaboration, reported at the 2017 

International Stroke Conference, show that AIS patients given endovascular 

treatment under general anesthesia (GA) experienced worse neurological 

outcomes than those treated without GA. Among the potential explanations for 

this observation is the inherent neurotoxicity of intravenous and inhalational 

anesthetics. These actions are mediated through neuroapoptosis and inhibition of 

neurogenesis (Bilotta et al., 2017). The propitious effects of APC on apoptosis 

and neurogenesis could mitigate these effects of anesthesia on AIS patients 

receiving GA.

e. Through neuroprotection of the ischemic penumbra that has not yet converted to 

infarction, APC might extend the time window for the effectiveness of 

thrombolytic therapies. Unpublished data from the DAWN (Diffusion weighted 

imaging or computed tomography perfusion assessment with clinical mismatch 

in the triage of wake up and late presenting strokes undergoing neurointervention 

with Trevo) trial, presented at the 2017 European Stroke Organization 

Conference, indicates that neurothrombectomy is superior to standard medical 

therapy even when performed beyond six hours since the last known well time 

among the subset patients with limited infarct size and clinical-core mismatch. 

By sustaining the viability of the penumbral tissue through collateral flow, APC 

might increase the proportion of patients who can successfully undergo 

neurothrombectomy beyond the standard 6–8 hour time window.

f. If recanalization occurs too late to benefit the ischemic tissue that has progressed 

to infarction, the intrinsic neurogenic and angiogenic properties of APC, 

confirmed in both in vitro and in vivo models, might enhance functional recovery 

and improve clinical outcome.

These theoretical benefits of APC as an adjunct to endovascular thrombolysis form the 

underpinnings of the “Safety Evaluation of 3K3A-APC in Ischemic Stroke (RHAPSODY)” 

trial (NCT02222714, NN104). This multicenter, prospective, double-blinded, dose-

escalation Phase 2 randomized clinical trial assesses the safety, pharmacokinetics, and 

efficacy of four increasing doses of 3K3A-APC following treatment with tPA and/or 

mechanical neurothrombectomy.

The RHAPSODY protocol utilizes a regimen of intravenous 3K3A-APC bolus doses every 

12 hours, up to a total of 5 doses following endovascular thrombolysis. Prior studies in 

sepsis have shown that low-dose continuous infusion of APC is very unlikely to optimize the 

favorable cell signaling actions leading to cytoprotection and that bolus dosing more 

effectively promotes the receptor activation leading to altered gene expression profiles, 

which in turn contribute to the beneficial effects of APC in AIS, such a BBB stabilization 

and anti-apoptotic and anti-inflammatory activities (Griffin et al., 2015). The previous Phase 

1 safety study in normal subjects confirmed that high dose bolus regimens using 3K3A-APC 

are safe and feasible in adults (Lyden et al., 2013).
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The RHAPSODY trial began recruitment in 2014 and recently completed its preplanned 

enrollment of 110 patients, with approximately half of the study drug patients receiving IV 

tPA and the other half receiving thrombectomy (Lyden et al., 2016). The study results are 

anticipated at the end of 2017.

4. Conclusion

Adjunctive delivery of a multiple-action, multiple-target drug may augment the benefit of 

endovascular thrombolysis with IV tPA and/or mechanical neurothrombectomy. The anti-

inflammatory, anti-apoptotic, neuroprotective, and neuroregenerative properties of APC 

make this agent an ideal candidate for such a strategy.
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Abbreviations

AIS acute ischemic stroke

Akt protein kinase B

APC activated protein C

BBB blood-brain barrier

CNS central nervous system

EPCR endothelial protein C receptor

ERK1/2 extracellular signal-regulated kinase 1/2

FDA food and drug administration

GA general anesthesia

IV tPA intravenous tissue plasminogen activator

LVO large vessel occlusion

MMP9 matrix metalloproteinase-9

NFkB nuclear factor kappa-light-chain-enhancer of activated B cells

NMDA N-methyl-D-aspartate

NPCs neural progenitor cells

NSC neural stem cell

NVU neurovascular unit
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PC protein C

PAR1 protease activated receptor 1

PAR3 protease activated receptor 3

Rac1 Ras-related C3 botulinum toxin substrate 1

RhoA Ras homolog gene family, member A

Serpins serine protease inhibitors

STAIR stroke therapy academic industry roundtable

SVZ subventricular zone

IIa thrombin

TM thrombomodulin

tPA tissue plasminogen activator

TRAP thrombin receptor-activating peptides

wt wild-type
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Highlights

• Stroke is a leading cause of death and disability.

• Current ischemic stroke interventions have limited success rates.

• 3K3A-APC is a potent cytoprotective, anti-inflammatory and 

neuroregenerative agent.

• 3K3A-APC is a promising candidate for adjunctive therapy for ischemic 

stroke.
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Figure 1. 
The Protein C (PC) pathway and the protective effects of activated protein C (APC) after 

ischemic injury. There are four major PC pathways. 1. PC activation. PC, bound to its 

receptor, endothelial protein C receptor (EPCR), is activated by thrombomodulin (TM)-

bound thrombin (IIa) complex on the endothelial cell surface. 2. Antithrombotic activity. 

APC employs its anticoagulant activities by proteolytic inactivation of factor Va (FVa) and 

factor VIIIa (FVIIIa) aided by the cofactor Protein S (PS). 3. Cytoprotective signaling. APC 

associated with EPCR cleaves protease-activated receptor-1 (PAR-1) in caveolae initiating 

cytoprotective signaling including altered gene expression, and anti-inflammatory, anti-

apoptotic and barrier protective activities. Other receptors (not shown) may also contribute 

to cytoprotective signaling. 4. APC is inhibited by serine protease inhibitors (Serpins). APC 

is transported across the blood-brain barrier (BBB) into brain where it has many protective 

and regenerative effects. APC treatment after ischemic stroke limits brain injuries by 
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protecting the BBB and neurons and reducing inflammatory responses. Furthermore, APC 

promotes neovascularization and neurogenesis, and it improves neural stem cell (NSC) 

proliferation, integration and neurogenic activity, aiding functional recovery.
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Figure 2. 
PAR-1 signaling depends on the preference of thrombin or APC for different cleavage sites. 

A) PAR-1 is cleaved at Arg41 by thrombin resulting in an N-terminal tethered peptide. APC 

cleaves PAR-1 at Arg46, resulting in a different N-terminal tethered agonist. B) Thrombin 

cleavage of PAR-1 promotes G-protein-dependent signaling, inducing proinflammatory 

effects and BBB breakdown. APC cleavage of PAR-1 at Arg46 promotes β-arrestin 2-

dependent signaling, inducing regenerative and cytoprotective effects. Adapted from 

(Mosnier et al., 2012).
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Figure 3. 
Cell specific APC protective signaling pathways. A) In endothelial cells, APC helps to seal 

the BBB and is vasculoprotective. APC/EPCR activates PAR-1 and inhibits caspase-8 

activation of caspase-3, thereby limiting the extrinsic apoptotic pathway in endothelium. 

APC/EPCR-dependent PAR-1 activation also suppresses the pro-apoptotic p53 transcription 

factor inhibiting caspase-3 activation blocking the intrinsic apoptotic pathway. Also, APC 

suppresses the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)-

dependent transcriptional activation of matrix metallopeptidase 9 (MMP-9), thereby 

blocking the breakdown of the BBB basement membrane. Furthermore, APC blocks the 

expression of proinflammatory cytokines limiting inflammation by controlling NFκB 

nuclear translocation. APCs cytoprotective effects on endothelial cells require EPCR and 

PAR-1 to cross-activate sphingosine 1-phosphate receptor 1 (S1PR1). Cross-activation of 

S1PR1 triggers Ras-related C3 botulinum toxin substrate 1 (Rac1) leading to stabilization of 

cytoskeleton, thereby boosting the integrity of the BBB. B) In neurons, APC/EPCR is 

cytoprotective via PAR-1 and PAR3 which inhibits caspase-8 upstream of caspase-3 and 

thereby limiting the extrinsic apoptotic pathway. Also, an APC-PAR-1-PAR3 pathway block 

p53 activation in injured neurons, thereby blocking the caspase-9-dependent intrinsic 

apoptotic pathway. Furthermore, APC promotes neurogenesis via a PAR-1-PAR3- S1PR1-

Akt pathway. C) APC’s inhibition of NFκB-dependent transcriptional expression of 

different proinflammatory cytokines suppresses microglial activation.
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