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Abstract

The false positive rates (FPR) for surface-based group analysis of cortical thickness, surface area, 

and volume were evaluated for parametric and non-parametric clusterwise correction for multiple 

comparisons for a range of smoothing levels and cluster-forming thresholds (CFT) using real data 

under group assignments that should not yield significant results. For whole cortical surface 

analysis, thickness showed modest inflation in parametric FPRs above the nominal level (10% 

versus 5%). Surface area and volume FPRs were much higher (20–30%). In the analysis of 

interhemispheric thickness asymmetries, FPRs were well controlled by parametric correction, but 

FPRs for surface area and volume asymmetries were still inflated. In all cases, non-parametric 

permutation adequately controlled the FPRs. It was found that inflated parametric FPRs were 

caused by violations in the parametric assumptions, namely a heavier-than-Gaussian spatial 

correlation. The non-Gaussian spatial correlation originates from anatomical features unique to 

individuals (e.g., a patch of cortex slightly thicker or thinner than average) and is not a by-product 

of scanning or processing. Thickness performed better than surface area and volume because 

thickness does not require a Jacobian correction.

Introduction

Doing science is like solving a jigsaw puzzle where each piece is a conclusion from a study. 

However, unlike a real jigsaw puzzle, not all the pieces are correct. The more incorrect 

pieces, the harder it is to assemble them into a big picture, so controlling the fraction of 

wrong pieces is important. Scientific journals generally require that authors compute the 

probability that their positive conclusions could arise under the null hypothesis (the false 

positive rate, FPR) and generally (and arbitrarily) require that this probability be less than 

5% for publication (Benjamin et al., 2017). In the field of neuroimaging, the computation of 

the FPR is complicated by the fact there are tens of thousands of measurements (voxels) in 

an image of the brain. Since it is not generally known where an effect of interest will occur, 

an FPR is usually computed separately for each voxel (so-called “mass-univariate analysis”). 

These univariate FPRs must then be corrected for tests across multiple voxels to compute a 
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final FPR for the conclusion of the study (also known as the family-wise error rate (FWE)). 

This is the problem of multiple comparisons.

Several techniques exist to solve the multiple comparisons problem. Historically, random 

field theory (RFT, Worsley et al., 1992; Friston et al., 1994; Forman et al., 1995) has been a 

very popular solution for fMRI (Carp, 2012). RFT is a parametric method that that corrects 

for multiple comparisons using either the maximum statistic or statistics derived from 

clusters of spatially connected voxels. For the clusterwise analysis, the image is reduced to 

sets of contiguous voxels (clusters) whose univariate p-values are more significant than some 

(arbitrarily-defined) cluster-forming threshold (CFT). The final FPR is then the probability 

of seeing a cluster of that size by chance. Clusterwise RFT correction requires that the CFT 

and smoothing levels be high; violations of this requirement result in conservative FPRs 

(Friston et al., 1994; Hayasaka et al., 2003). Monte Carlo (MC) simulations can be used to 

overcome these requirements (Hayasaka et al., 2003). In MC simulation, white noise is 

smoothed and thresholded and then clusters extracted; after many iterations, the distribution 

of cluster sizes under the null is determined and used to compute the p-value of the clusters 

in the real data. While MC simulations avoid constraints on the CFT and level of 

smoothness, they are still parametric in the sense that there are still assumptions on the 

shape of the smoothing kernel (usually Gaussian) and that the underlying noise is Gaussian 

distributed. RFT, MC, and permutation generally assume that the smoothness itself is 

constant across the image (i.e., spatial stationarity), though methods exist to relax this 

assumption (see Discussion).

Concern about controlling false positives in neuroimaging has grown recently. Eklund et al., 

2016, ran tests on resting state fMRI data analyzed as task and found that the p-values 

generated by both RFT and MC simulation clusterwise correction were between 10 and 

60%, far exceeding the nominal 5% level (Woo et al., 2014, found a similar effect). This 

raised the possibility that the conclusions from many published fMRI studies are partially or 

entirely incorrect. The RFT FPRs were brought into line by using a higher CFT and 

smoothing levels. Eklund, et al, 2016, concluded that the source of the problem was that a 

key assumption of both RFT and MC was not being met, namely that the data did not have 

Gaussian spatial smoothness. Cox et al., 2017 also came to the same conclusion. Non-

Gaussian spatial smoothness has been noticed in fMRI before (Kriegeskorte et al., 2008). 

Eklund, et al, 2016, found that, in most cases, permutation (Nichols et al., 2001; Winkler et 

al., 2014) gave adequate control of FPRs. Elevated FPRs can be mitigated slightly by 

sampling into a lower resolution group space (Flandin et al., 2016; Mueller et al., 2017).

The Eklund and Woo results are limited to fMRI brain imaging. A few papers have 

addressed morphological analysis using voxel-based morphometry (VBM, Ashburner et al., 

2000). Silver et al., 2011, found highly elevated FPRs, in the range of 10–50%, when using 

RFT cluster correction; permutation resulted in well-controlled FPRs. Scarpazza et al., 2013, 

found inflated FPRs when a single subject was compared to a group using RFT cluster 

correction; a subsequent analysis (Scarpazza et al., 2016) showed that permutation-based 

cluster correction had adequate FPR control. Scarpazza et al., 2015 and Meyer-Lindenberg 

et al., 2008 found that RFT adequately controls FPRs in when the maximum statistic is used, 
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though Salmond et al., 2002, found elevated FPRs unless the smoothing level was greater 

than 8mm FWHM.

Surface-based analysis is an alternative to VBM for morphological analysis. In Surface-

based analysis, the cerebral cortex is modeled as a 2D sheet from which thickness, surface 

area, and volume can be computed at each point. These quantities can be analyzed in a group 

surface space after surface-based registration and surface-based smoothing. Thousands of 

surface-based studies have been performed, mainly using FreeSurfer1 (www.freesurfer.net) 

with clusterwise correction computed with parametric Gaussian-based MC simulations to 

compute the FPR2. In this manuscript, we evaluate the validity of FPRs computed in this 

way using real data analyzed in FreeSurfer.

Methods

the data sets used in this study came from the 1000 Functional Connectomes data base (1000 

Functional Connectomes, fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html). This is a 

public data base of anonymized data. The data were collected according to procedures 

approved by the local ethics board at each site. The institutional review boards of NYU 

Langone Medical Center and New Jersey Medical School approved the receipt and 

dissemination of the data (Biswal et al., 2010). While best known for fMRI, the 1000 

Functional Connectomes also has anatomical MRI data from which we analyzed 499 

subjects. The set of subjects was identical to that used in Eklund et al., 2016: Beijing (198 

subjects), Cambridge (198 subjects), and Oulu (103 subjects), all at 3T. The subjects ranged 

in age from 18–30y. The voxel size was Beijing: 1.3×1×1mm, Cambridge: 1.2×1.2×1.2mm, 

Oulu: .94×.94×1mm.

All subjects were analyzed in FreeSurfer (www.surfer.nmr.mgh.harvard.edu) to provide 

detailed anatomical information customized for each subject (Dale et al., 1999; Fischl et al., 

1999a). Version 5.3 was used for most of the analysis, but the Oulu data was also analyzed 

in Version 6.0 to gauge consistency. The FreeSurfer analysis stream includes intensity bias 

field removal, skull stripping, and assigning a neuroanatomical label (e.g., hippocampus, 

amygdala, etc.) to each voxel (Fischl et al., 2002; Segonne et al., 2004). In addition to the 

volume-based analysis, FreeSurfer constructs models of the cortical surface. A surface 

model consists of a mesh of triangles. The location of the mesh is controlled by adjusting the 

location of the vertices. A vertex is the place where the points of neighboring triangles meet 

(typically about 1mm apart). The vertex positions are adjusted such that the surface follows 

the T1 intensity gradient between cortical white matter (WM) and cortical gray matter 

(GM). Smoothness constraints allow the surface to cut through a voxel to model partial 

volume effects and provide subvoxel accuracy of the location of the surface. A second 

surface is also fit to the outside of the brain (between the GM and the pia). The first surface 

is called the “white” surface, and the second is called the “pial” surface. The left hemisphere 

(LH) and right hemisphere (RH) are modeled separately. All surfaces are constructed in the 

individual anatomical space.

1The authors are two of the primary developers of FreeSurfer.
2The RFT-based SurfStat package (www.math.mcgill.ca/keith/surfstat; Chung et al., 2010) has also been used.
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The distance between the white and pial surfaces at a vertex is defined to be the cortical 

thickness at that vertex (Fischl et al., 2000). The thickness at a vertex is computed as the 

average of two distances. The first is the distance from the white surface vertex to the closest 

point on the pial surface (not necessarily at a pial vertex); the second is the distance from the 

corresponding pial vertex to the closest point on the white surface (again, not necessarily at a 

vertex). The area of a vertex is defined as the average area of the triangles of which the 

vertex is a member. The GM volume3 of a vertex is defined as the area times the thickness4. 

The surface curvature5 at a vertex can be computed based on its spatial relationship to 

neighboring vertices. The curvature is a quantification of the geometry of the folding 

patterns. Thus, at each point along the subject’s surface, the thickness, area, volume, and 

curvature can be quantified, all with subvoxel accuracy.

The folding pattern quantification is used to drive a non-linear surface-based inter-subject 

registration procedure that aligns the cortical folding patterns of each subject to a standard 

surface space (Fischl et al., 1999b). This approach is similar to performing a volume-based 

registration to Talairach or MNI space but is significantly more accurate for cortical areas 

(Fischl et al., 2008; Klein et al., 2010) and uses geometry instead of voxel intensity. The 

registration minimizes two competing terms: (1) the difference between the atlas geometry 

and the individual geometry and (2) the local metric distortion (i.e., how much the surface 

must be stretched or compressed from the original to match the atlas). The registration is 

performed in spherical space, i.e., the atlas exists as a sphere (a 7th order icosahedron). First, 

the subject’s white surface is “inflated” to the shape of a sphere, and the geometry 

quantification of the white surface is transferred to the sphere. The location of the vertices 

on the sphere are then adjusted to minimize the overall cost described above to establish the 

correspondence.

The surface registration is applied in one of two ways depending upon whether the total 

quantity being mapped needs to be conserved (e.g., area, volume) or not (e.g., thickness, 

fMRI, PET). In both cases, the target atlas is a surface (“fsaverage”) with 163,842 vertices 

(individuals tend to have about 120,000 vertices). In the non-conserving case, for each target 

vertex, the closest source vertex in the individual’s spherical surface is found. The value of 

the quantity to be mapped (e.g., thickness) is then assigned from the individual’s vertex to 

the target vertex thus assigning each target vertex a value. If a given source vertex maps to 

multiple targets, then its value is simply replicated at each target. There is the possibility that 

some vertices from the individual are never the closest to any target vertex and so are not 

represented in the output. To account for this, we reverse the processes, going through each 

unrepresented source vertex and mapping it to the closest target vertex. If a target vertex 

receives multiple source vertices, the value at the target is the average of the sources.

In the quantity-conserving case, the method is the same but with adjustments to preserve the 

total value. When there are multiple target vertices for a single source vertex, the value 

assigned to each target is set to the source value divided by the number of targets (rather 

3We emphasize here that volume is computed from the surface and should not be confused with VBM.
4FreeSurfer 6.0 computes volume using a truncated trilateral pyramid (Winkler et al., 2017).
5By “curvature” we mean the spatially smoothed mean curvature, which is the average of the two principal curvatures.
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than replication). When multiple source vertices map to a single target vertex, the value at 

the target is set to the sum (rather than the average) of the sources. These adjustments can be 

thought of as a “Jacobian correction” (similar to that described in Winkler et al., 2012) to 

account for local stretching or compression in the registration. After these modifications, the 

sum of the values of the vertices in the target is equal to that in the source. This is important 

for area and volume because we do not want the total quantity to change. This correction is 

not needed for thickness because it is measured along a vector normal to any stretching or 

compression. For volume and surface area maps, the values are divided by an estimate of 

total intracranial volume (eTIV, Buckner et al., 2004) for each subject; this is done to 

account for differences in volume and surface area purely due to differences in head size.

Smoothing is applied after resampling into the target space. This process is repeated for each 

subject after which their maps can be concatenated into a stack ready for vertexwise 

analysis. Spatial smoothing on the surface in FreeSurfer is implemented using iterative 

nearest neighbor averaging. This is an approximation to Gaussian smoothing where the 

number of iterations is related to the desired full-width/half-max (FWHM).

A laterality analysis was also performed using the tools described in Greve et al., 2013. The 

laterality analysis looks for cortical asymmetries in thickness, area, and volume (e.g., 

language areas have strong anatomical differences between left and right hemispheres 

(Keller et al., 2011)). In the asymmetry analysis, the left and right hemispheres were surface-

registered to a symmetric atlas. After spatial smoothing, a laterality index (LI) was 

computed at each vertex as LI = (L−R)/(L+R), where L is the value at a vertex in the left 

hemisphere and R is the value at the homologous vertex in the right hemisphere. The 

laterality analysis is being performed to document the performance for the evaluation of 

previously published studies that have used this method and to also help elucidate the source 

of false positives more generally.

Following Eklund et al., 2016, 20 or 40 subjects6 were randomly selected from a site and 

randomly assigned to one of two groups (10/group or 20/group). Thickness, surface area, 

and volume maps from each subject were mapped into the atlas surface space, surface 

smoothed (2, 4 6, 8, 10, and 12mm FWHM), after which a vertexwise two-group GLM 

analysis was performed. Clusters were formed by thresholding the vertexwise maps at CFT 

=.05, .01, .005, and .001. A positive was declared if there were one or more clusters with a 

clusterwise p-value of less than .05. We do not expect any real group differences since the 

subjects are young, narrow in age, and group membership is randomly assigned, so any 

positives are interpreted as false positives. The use of young subjects reduces the chance that 

age-related changes could produce actual true positives. The analysis was repeated 1000 

times, and the number of false positives counted. We would expect 50/1000=5% false 

positives. A secondary analysis was also performed to determine the maximum nominal 

cluster p-value for which the actual FPR was 5%. This is useful for evaluating the actual 

FPR for previously published studies.

6For the N=40 analysis, only the left hemisphere thickness in the Beijing group was analyzed.
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p-values for clusters were computed based on smoothed Gaussian Monte Carlo (MCZ) 

simulations7 (Hagler et al., 2006) and permutation (Hayasaka et al., 2004). In the MCZ 

method (the default in FreeSurfer), we created look up tables of p-values based on 

simulations in which a z-field was synthesized on the atlas surface. The z-field was Gaussian 

smoothed, rescaled to unit standard deviation, and then thresholded; the size of the largest 

cluster was then extracted. This was repeated 10,000 times for thresholds of p<.05, .01, .

005, .001, .0005, and .0001 over a FWHM range of 1–30mm allowing us to compute the 

probability of a cluster of a given size for a given threshold at a given smoothness level. 

These tables are distributed in FreeSurfer. When a user analyzes a data set, clusters are 

extracted from the significance map from the GLM. The p-value for the cluster is 

determined by indexing into the table based the size of the cluster, the threshold used to form 

the cluster, and an estimate of the global FWHM (see below). The parametric assumption is 

that the true data have a Gaussian smoothness describe by the estimated FWHM. Clusters 

are extracted separately for both hemispheres. The final p-value of a cluster is then corrected 

for both hemispheres by multiplying the p-value by 2 (i.e., an N=2 Bonferroni correction). 

This last correction is not applied to the laterality analysis since there is only one surface. 

Permutation correction was done by permuting the design matrix, recomputing the 

significance map, thresholding, and extracting the largest cluster over 1000 iterations. The p-

value for a cluster in the real data was then computed as the probability of seeing a 

maximum cluster of that size or larger in a given hemisphere, followed by the correction for 

two hemispheres (if needed).

The global FWHM of a given analysis is estimated by computing the correlation coefficient 

between the residuals of nearest neighbors (this is the first lag of a spatial autoregressive 

series, i.e., the AR1). The residuals are computed from the GLM by subtracting the fitted 

data from the actual data. The AR1 is averaged over all vertices and then used to compute 

the estimated FWHM based on an isotropic smooth 2D Gaussian field: 

, where D is the average inter-vertex distance (Kiebel et al., 1999; 

Jenkinson, 2000). The FWHM is rounded to the nearest integer for indexing into the cluster 

probability look up table. To compute the full ACF, the AR calculation is computed at 

different distances (i.e., second nearest neighbors, third nearest neighbors, etc.).

Simulation Studies: we performed several simulation studies to validate the software as well 

as to help determine where the false positives were coming from. In the first simulation, we 

simply replaced the thickness values in native space with spatially white Gaussian noise 

(WGN-N) after which it was sent through the full pipeline identical with the thickness 

analysis. Next, we synthesized white Gaussian noise in the atlas space (WGN-A) and sent it 

through the pipeline. The difference between WGN-A and WGN-N is that WGN-A is not 

transformed into the atlas space. Third, we replaced the vertex volume/area values in the 

native space with a map where the value at every vertex was 1.0 (we refer to this as the 

“JAC” simulation). This was then analyzed as if it were volume or area (i.e., divide by eTIV 

7Eklund, et al, 2016, found a small bug in the AFNI MC simulator (alphasim). This bug is not present in the FreeSurfer MC 
simulation program and ended up having a minor effect on the AFNI FPRs (Cox et al., 2017).
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and perform Jacobian correction). The JAC simulation is designed to isolate the effects of 

Jacobian correction from individual differences in thickness, area, and volume. Finally, we 

created simulations of raw MRI images by adding WGN to the MRI volume for a given 

subject. Twenty such noise instantiations were generated for a single subject. All were then 

independently analyzed through the full FreeSurfer stream; thickness, area, and volume were 

extracted and mapped to atlas space; the group of 20 inputs was analyzed in a GLM; finally, 

the ACF was computed from the residual. This simulation allows us to see how FreeSurfer 

processing, particularly smoothness constraints on surface placement, affects the ACF.

Longitudinal Analysis: we will argue in the Discussion that elevated FPRs are due to heavy-

tailed ACFs which are due to anatomical features unique to individuals. If heavy-tailed 

ACFs are caused by unique features, then the heavy-tailedness should disappear when the 

unique features are removed. To evaluate this claim, we analyzed 20 subjects for which we 

have two measurements for each subject from the MIRIAD data set (Malone et al., 2013; 

www.ucl.ac.uk/drc/research/methods/miriad-scan-database; 9 female; average age 69.7y). 

Each subject has two MRIs collected during the same scanning session. These were 

analyzed separately in FS8 to compute thickness, area, and volume for each time point, 

which were then mapped into fsaverage space as described above. We then subtracted scan 1 

from scan 2 (i.e., a paired difference); this should remove unique anatomical features since 

the brain will not have changed in the minutes between the two scans. Residuals were 

computed by subtracting the mean difference over the 20 subjects at each vertex from each 

of the 20 values. The ACFs were then computed from the paired difference data residuals as 

well as from each scan separately. The paired difference data is like a longitudinal study 

where each subject is scanned multiple times to track changes over time. The individual scan 

data is a cross-sectional study similar to those analyzed above.

Confidence Intervals (CI): 95% CIs appearing in figures were computed assuming a 

binomial model with frequency of 5% and 1000 trials. As pointed out in Eklund, et al, 2016, 

this model is not exact for resampling with replacement because the samples are not 

independent. However, Eklund found that the biggest errors were for a sample size of 40. 

For most of this study, we use a sample size of 20. For N=20, Eklund, et al, 2016, found that 

the binomial CIs were very close to the empirically computed CIs.

Results

The WGN-A and WGN-N simulation studies were very close to each other, with average 

MCZ FPRs being 4.1% and 3.8%, respectively with little or no dependence on applied 

smoothing level or CFT. Of the 24 FWHM and CFT combinations, WGN-A had 15 FPR 

measurements within the 95% confidence range with the rest being slightly conservative; 

WGN-N had 16 FPR measurements within the 95% confidence range with the rest being 

slightly conservative. The conservativeness is probably due to the MCZ lookup table being 

generated from a z-map whereas the WGN p-values are computed via a t-map.

8We did not use the specialized FreeSurfer longitudinal pipeline to maintain consistency with the other analyses in this manuscript.
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The results for all three sites were very similar (See Figure S1) as were the results across 

version (Figure S2) and for N=40 (Figure S3), so we report only on the Beijing N=20 

sample using version 5.3. Figure 1 shows the FPRs for thickness, surface area, and volume 

for MCZ and permutation. For MCZ, the FPRs are inflated beyond the expected 5% range, 

with all showing some smoothing and CFT dependency. Thickness is the best behaved with 

little dependency on smoothing and threshold (excluding CFT=.05) with many of the FPRs 

approaching the 95% confidence interval of the nominal FPR. For CFT=.001, almost all data 

points were within the 95% range. Surface area performs the poorest with strong 

dependence on smoothing and CFT and FPRs that exceed 20%. The volume measure 

performs in between thickness and surface area. Figure S4 shows the spatial frequency of 

false clusters for MCZ FWHM=6mm, CFT=.01. For thickness, the clusters are so sparse, it 

is hard to say whether they are really concentrated anywhere. Surface area (and JAC) 

clusters tend to be concentrated in temporal, occipital, and frontal areas. The spatial 

distribution of false clusters in the volume analysis appears to be fairly random. Returning to 

Figure 1, the permutation FPRs are almost all within the 95% confidence intervals for the 

nominal 5% for thickness, area, and volume across all smoothing levels and CFTs.

The results in Figure 1 show the actual FPRs when the desired FPR is 5%. However, this 

figure indicates what is happening for only those clusters near the 5% level. Strong effects, 

i.e., clusters with MCZ p-values much less than .05, may still have an actual FPR that is less 

than 5%. To evaluate this, we used the data from Figure 1 to determine the maximum MCZ 

cluster p-value that would result in the actual FPR being 5%; the results are shown in Figure 

2. For a thickness study with CFT<=.01 and FWHM>=6, a cluster would need to have a 

nominal p-value of .02 or less to be truly significant at the .05 level. For surface area, the 

nominal p-value would need to be much more significant, and volume somewhere in 

between. These results are helpful for assessing the true significance of historical data. 

Numerical values can be found in Tables S1, S2, and S3.

Figure 3 shows the MCZ FPRs for the laterality analysis. In a dramatic departure from the 

unlateralized analysis, the thickness FPRs are almost all in the 95% confidence interval, 

even for CFT=.05 and low smoothing levels. In contrast, the laterality analysis has little 

effect on the surface area FPRs (they actually get slightly worse). The volume FPRs get a 

little bit better but still very high.

Figure 4 shows the ACFs for the left hemisphere (lh) and the laterality analysis (LI) for set 

806 of the Beijing sample for thickness, area, and volume. The dashed line is the ACF for a 

Gaussian with FWHM based on the AR1 measured from the residuals. The legend has two 

values; the first value is the applied FWHM, and the value in parentheses is the measured 

FWHM. The measured FWHM is always greater (sometime much greater) than the applied 

FWHM indicating the presence of endogenous spatial correlation. All have heavy-tailed 

(HT) ACFs, with surface area being the worst. The HT ACF is a violation of the Gaussian 

smoothness assumption in MCZ. As the applied smoothness is increased, the deviation from 

Gaussianity decreases. In all cases, the overall smoothness and HT drops in the LI analysis. 

However, for surface area, the reduction in HT is much less than for thickness. This is 

brought out in Figure S5 which shows a plot of the difference between the expected and 

actual ACFs for FWHM=6mm. For surface area, the HT reduction does not happen until a 
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distance of 12mm whereas the reduction happens at a much shorter radius for thickness. For 

this reason, the LI analysis does not affect the MCZ FPRs much for area, whereas it helps 

considerably for thickness. The LI results suggest that whatever is causing the HT is 

somewhat symmetric across the hemispheres.

Figure 5 shows the residual for a representative subject (sub30556, the 15th subject from the 

Beijing 806 set) for thickness, surface area, thickness LI, and for WGN smoothed to the 

FWHM measured from the residuals of the thickness analysis. We show an individual here 

to demonstrate the unique anatomical features that we will argue in the Discussion are 

responsible for heavy tails in the ACF. For the unlateralized thickness and area, there are 

large patches of cortex that have the same sign indicating that those regions deviate from the 

group mean in the same way (i.e., spatial correlation). These patches represent anatomical 

properties that are unique to the individual. For the LI thickness analysis, the patches are 

much smaller. The WGN shows what the patches look like under the ideal case -- the 

patches are much smaller than the real data, though similar to the LI thickness analysis.

Figure 6 shows the FPRs, the ACF, and residual for the JAC simulation. The FPRs are highly 

inflated and strongly dependent on smoothing level and CFT. The ACF is also strongly non-

Gaussian. The JAC curves are quite similar to those for surface area. There are large patches 

in the residual similar to those in Figure 5B.

Figure S6 shows the ACFs for the simulation subject for thickness, area, and volume. The 

tails are not nearly as heavy for any of the three measurements as compared to when 

different subjects make up the group, and the overall smoothness is much less. Interestingly, 

area and volume have about the same smoothness and tail heaviness as thickness.

Figure S7 shows the ACFs for the longitudinal analysis. The two individual time points are 

very similar to those shown in Figure 4, i.e., heavy tails for all three measurements with area 

being the worse. The two time points are nearly identical showing good repeatability. 

However, computing the difference between the two time points caused a substantial drop in 

smoothness and HT, and the difference between thickness and area or volume becomes 

much less.

Discussion

This study tested whether parametrically computed clusterwise FPRs are statistically valid in 

morphological surface-based analysis of cortical thickness, surface area, and volume. 

Thickness analysis showed slightly inflated FPRs in the range of 5–10% for CFTs<=.01 and 

FWHM>=4mm, not nearly as bad as for fMRI at matching smoothness and CFT levels. At 

CFT=.05, the FPR was only 20% (Eklund, et al, did not test at this liberal CFT, but one can 

assume that the fMRI FPRs would have been much worse). The values are much worse for 

VBM (Silver et al., 2011) at all CFTs. The thickness FPRs were not strongly dependent on 

either applied smoothing level or CFT. On the other hand, surface area and volume showed 

much higher FPRs, in the range of 10–20% at FWHM=6mm and CFT<=.01. This is more in 

line with the results of Silver et al., 2011 for VBM. Both volume and area FPRs were highly 

dependent on CFT and applied smoothing. These results were consistent across site, 
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FreeSurfer version, and number of subjects in the group analysis. For thickness 

interhemispheric (LI) analysis, the MCZ FPRs were almost perfectly controlled, even at 

CFT=.05. For surface area and volume, the FPRs did not change substantially from the 

ipsilateral analysis.

As with Eklund et al., 2016, the source of the problem with MCZ was determined to be a HT 

spatial ACF, which violates the parametric Gaussian assumption. It does not appear that the 

HT is due to smoothness constraints imposed during surface placement (Figure S6) or some 

artifact of scanning, since it appears in the results from four different sites. Rather, several 

pieces of evidence point toward true anatomical features which are unique to each subject as 

the underlying source of the HT correlation. First, HT is reduced in the cross-hemisphere 

analysis; this clearly points to an anatomical feature and not an artifact. Second, if HT is 

caused by unique anatomical features, then HT should be reduced in longitudinal analysis 

where subtraction of one time point from the next should remove these features; this is 

indeed what we observe. Visually, these unique features manifest themselves as large same-

sign patches in the residual in an individual as shown in Figures 5A, 5B, and 6C.

Surface area and volume both produced much higher FPRs than thickness as well as heavier 

tailed ACFs. They also produced larger patches in the individual residual (Fig 5A vs 5B and 

6C). The JAC simulation shows that even when area or volume vertices are set to 1.0 for all 

vertices and subjects, the FPRs are inflated and dependent on smoothing level and CFT. The 

JAC ACF is also strongly non-Gaussian, and there are very large subject-specific patches in 

the residual (Figure 6C) just as in the volume and area analyses. These are likely caused by 

the Jacobian correction, which is needed to conserve the total quantity (area or volume) in 

the presence of stretching and compression in the nonlinear intersubject registration. It is not 

surprising that large patches of the Jacobian would have the same sign for a subject since an 

entire gyrus or sulcus needs to be stretched or compressed to fit the atlas. Nor is it surprising 

that the Jacobian patches would be unique to a subject since they represent the registration 

of that subject to the atlas. The HT in area and volume is reduced somewhat in the cross-

hemisphere analysis and reduced substantially in the longitudinal analysis. In the simulation 

of the individual subject, the ACFs for area and volume are very similar to thickness. These 

all point in the direction of the Jacobian correction being a unique anatomical feature that 

exacerbates the HT in the ACF beyond that seen in thickness alone but that can be reduced 

through subtraction from the contralateral hemisphere or another time point.

This Jacobian effect will likely be present in any analysis that has Jacobian correction, such 

as voxel-based morphometry (VBM, Ashburner et al., 2000)). Indeed, Silver et al., 2011 

found highly elevated FPRs in VBM when using RFT cluster correction and Scarpazza et 

al., 2013, found inflated FPRs when using clusterwise RFT correction in a single subject, 

though neither examined the ACF.

While thickness does not require a Jacobian correction, the stretching and compression are 

still taken into account through local averaging or replication which could theoretically have 

an effect on the FPRs. This does not appear to have a significant effect as the WGN-N 

experiment (where the averaging/replication is present) had near identical FPRs to those of 

the WGN-A experiment (where the averaging/replication is not present). The FPR 
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differences between thickness and area/volume/VBM caused by Jacobian correction have 

implications for statistical power and choice of anatomical measure. Consider the case 

where thickness and volume studies have the same power curve (i.e., the true positive rate 

(TPR) vs. FPR) where positives are declared when the RFT/MC cluster p-value less than .05 

with CFT=.01. Under these conditions, both studies would be operating at an actual FPR of 

greater than 5%, but the actual FPR of the volume study would be much greater than that of 

the thickness study. This would push the volume study further out on the power curve and 

give it an apparently higher TPR than the thickness study even though, by construction, they 

are the same. This could make thickness studies appear to have less power than volume 

studies (or any study where the underlying measure requires a Jacobian correction). In these 

cases, permutation must be used to assure that the two methods are operating at the same 

FPR. It is impossible to say from this data whether the actual power curves are different 

between thickness and area/volume/VBM; the question may not make sense given that they 

are all measuring different features. However, we can say that any measure requiring 

Jacobian correction will have to have a much larger cluster size than thickness because large 

clusters are so much more frequent under the null.

The implications for previously published studies that use MCZ are mixed. The majority of 

the surface-based morphometry studies are thickness-based, and many of those use CFT<=.

01 and FWHM>5mm (FreeSurfer does not have default CFT or FWHM values). In those 

cases, the FPRs will only be slightly inflated. Further, the results in Figure 1A only apply to 

clusters that were significant at the p=.05 level. Larger, more significant clusters (“strong 

effects”) might still be significant at the .05 level as indicated in Figure 2. Thickness 

lateralization/asymmetry studies would need no caveats. For surface area studies, the 

repercussions are much more worrisome as one really needs to use CFT=.001 and smooth by 

8–10mm to achieve a nominal FPR, and effects would have to be very strong to stay 

significant. For volume analysis, one also needs CFT=.001 for weak effects, but for strong 

effects, a cluster would need p=.005 at CFT<=.01 and FWHM>=6mm to stay significant at 

the 5% level. We did not test MCZ FPRs in longitudinal analysis, but the improved 

Gaussianity we observed should result in fairly well controlled MCZ FPRs.

For future studies, there are several options. For thickness or volume studies, one could use 

MCZ with CFT<=.001 with any smoothness level or CFT<=.005 with FWHM>10mm. For 

surface area, one would need CFT<=.001 and FWHM>10mm. The problem with such 

stringent CFTs is that there are often no voxels that survive; this is a huge disadvantage as it 

will greatly reduce the TPR/power. Permutation is attractive because it makes fewer 

assumptions about the data than parametric methods, and, perhaps more importantly, it 

allows for less stringent CFTs. Permutation has some disadvantages, however. The 

correction is computationally intensive, though it is possible to reduce the computation time 

by fitting the tails to an analytic formula (Winkler et al., 2016). Permutation requires that the 

data be exchangeable across subject. Exchangeability is a complicated topic in permutation 

but generally requires that the joint distribution of the noise across measurements not change 

under permutation. This can be violated in very simple and common circumstances like the 

presence of a nuisance age effect (i.e., non-orthogonal design matrices). This is potentially a 

significant drawback because the vast majority of studies have such nuisance variables. 

However, there are approximations that seem to work well (Winkler et al., 2014). 
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Exchangeability may be violated when two groups have different variances, though this can 

be overcome through sign flipping (Winkler et al., 2014). Permutation is less powerful than 

its parametric counterpart when the parametric assumptions are met (Nichols et al., 2001), 

though the loss of power may be small (Winkler et al., 2014). Permutation is more 

complicated to set up, especially for complicated designs like mixed effects models; this will 

be an added burden to the neuroimager who is not statistically savvy. Software to perform 

surface-based permutation analysis does exist. The FreeSurfer mri_glmfit-sim script can be 

run with the –perm option; the currently released version can only be applied to orthogonal 

designs, but we have recently created a software patch to handle non-orthogonal designs 

using the ter Braak approximation tested in Winkler et al., 2014. Winkler et al., 2014, 

recommend the Freeman-Lane method over ter Braak, but ter Braak performed similarly on 

power but was only a little more liberal. We implemented the ter Braak method because it fit 

easily within our current framework, making a simple software patch possible; we will 

implement Freeman-Lane for release in future FreeSurfer versions. Permutation Analysis of 

Linear Models (PALM, fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM) provides extensive permutation 

functionality and can be run in a surface-based mode. Another parametric solution is to 

measure the ACF in a data set and then perform the Monte Carlo analysis by smoothing 

WGN using the empirical ACF, as is now offered by AFNI (afni.nimh.nih.gov, Cox et al., 

2017) for volume-based analysis. However, while this is fast for volume-based analysis that 

can use the FFT, it will be very slow for surface-based analysis because the iterative nearest 

neighbor smoothing operation is slow. It would not be possible to distribute pre-computed 

tables as we do now, so a user would have to run the simulation on a case-by-case basis. In 

this case, the time is probably better spent doing permutation.

The analysis we have presented makes the assumption that the surface maps have uniform 

smoothness as measured by the FWHM. Non-stationarity affects RFT and MC as well as 

permutation. In RFT and MC, a global estimate of the FWHM is computed and used to 

perform the correction. Non-stationarity will cause clusters in areas of higher-than-average 

smoothness to have too small a p-value, increasing false positives in these areas, while 

causing areas of lower-than-normal smoothness to be too conservative. To overcome this in 

RFT, Worsley et al., 1999 used a voxel-specific measure of the FWHM to adjust the size of 

the cluster, though this method will still be sensitive to the non-Gaussian smoothness 

discussed here. A stationary permutation test properly controls the FPR under non-stationary 

conditions but loses sensitivity less-smooth areas. Hayasaka et al., 2004 and Salimi-

Khorshidi et al., 2011 implemented a permutation method in which the cluster size used to 

compute the null distribution was adjusted by the local FWHM. Spatial non-stationarity has 

been observed in both fMRI (Hayasaka et al., 2004) and VBM (Ashburner et al., 2000). 

Non-stationarity has not been fully evaluated for surface-based operations. However, the 

MCZ false cluster frequency maps (Figure S4) indicate the false clusters are not uniformly 

distributed across cortex; this non-uniformity is evidence of non-stationarity. It is our 

intention to incorporate non-stationarity into the FreeSurfer permutation test.

Conclusions

False positives are an inevitable part of science and should not be seen as catastrophic. 

Nevertheless, software developers and researchers need to take steps to understand and 
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adequately control for false positives. In this study, inflated parametric FPRs were found for 

surface-based morphological analysis of cortical thickness, surface area, and volume. For 

thickness, the FPRs were in the range of 10% instead of the desired 5% for typical analysis 

parameters, much less than has been found for fMRI or VBM analysis at matching cluster 

forming thresholds. For surface area and volume, the FPRs were much higher, at times 

rivaling that of fMRI and VBM. The inflated FPRs were driven by non-Gaussian, heavy-

tailed ACFs resulting from large patches where a subject’s unique anatomy differed from 

that of the group; these were made worse by the Jacobian correction implicitly used for area 

and volume analysis. Fortunately, most surface-based studies using FreeSurfer use thickness. 

In inter-hemispheric analysis, where one compares a vertex value to its homologous vertex 

on the opposite hemisphere, we found good parametric control of FPRs for thickness but not 

for surface area or volume. It is likely that longitudinal studies will have good control of 

MCZ FPRs, although this was not explicitly tested. As with fMRI and VBM, the FPRs were 

brought into line by using high thresholds and smoothing levels or by using non-parametric 

permutation instead of Gaussian-based MCZ. The presence of inflated FPRs does not 

necessarily invalidate previous studies because many have strong effects that would have 

been significant even after adequate control of FPRs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Clusterwise false positive rates (%) versus applied smoothing level for thickness, surface 

area, and volume using either Monte Carlo simulation (MCZ) or permutation (Perm) tests 

for the Beijing data. Dashed lines are the 95% confidence interval around the ideal 5% 

value. Note the difference in vertical range between the top and bottom rows.
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Figure 2. 
Maximum nominal MCZ cluster p-value that allows for the actual cluster p-value to be .05 

or better. See Tables S1, S2, and S3 in the supplementary data for actual values.
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Figure 3. 
MCZ clusterwise false positive rate (%) for laterality index (LI) analysis. The values cut off 

for CFT=.050 in panel B are 96% for FWHM=2mm and 74% for FWHM=4mm. A laterality 

analysis evaluates asymmetries between the left and right hemispheres.
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Figure 4. 
Residual autocorrelation functions (ACF) for left hemisphere (LH) or laterality index (LI) of 

Beijing set 806 for nominal smoothing levels of 2, 6, and 10mm. The values in the 

parentheses are the measured FWHM based on the AR1 value. The dashed lines are the ideal 

Gaussian ACF based on the measured FWHM. An ACF is heavy-tailed if the actual ACF is 

greater than the Gaussian ACF. The Distance is the distance along the surface.
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Figure 5. 
Residual from Subject 15 of Beijing Set 806 (sub30556) displayed on the inflated average 

surface. A. Thickness, B. Surface Area, C. Thickness laterality index (LI), D. White 

Gaussian noise smoothed to actual FWHM of Thickness. Red/yellow is a positive difference 

with the group; blue/cyan is a negative. Patches of same-sign residual indicate anatomical 

features unique to this subject. A scale bar is not supplied because only the sign of the 

difference is important for appreciating the patches.
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Figure 6. 
Results of the JAC simulation. (A) MCZ clusterwise false positive rates. (B) Autocorrelation 

function (see Figure 4 for explanation). (C) Residual from Subject 15 of Beijing Set 806; 

note the similarity to Figure 5B.
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