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Abstract

Novel paradigms have allowed for more precise measurements of sustained attention ability and 

fluctuations in sustained attention over time, as well as the neural basis of fluctuations and lapses 

in performance. However, in recent years, concerns have arisen over the replicability of 

neuroimaging studies and psychology more broadly, particularly given the typically small sample 

sizes. One recently developed paradigm, the gradual-onset continuous performance task 

(gradCPT) has been validated behaviorally in large samples of participants. Yet neuroimaging 

studies investigating the neural basis of performance on this task have only been collected in small 

samples. The present study completed both a robust replication of the original neuroimaging 

findings and extended previous results from the gradCPT task using a large sample of 140 Veteran 

participants. Results replicate findings that fluctuations in attentional stability are tracked over 

time by BOLD activity in task positive (e.g., dorsal and ventral attention networks) and task 

negative (e.g., default network) regions. Extending prior results, we relate this coupling between 

attentional stability and on-going brain activity to overall sustained attention ability and 

demonstrate that this coupling strength, along with across-network coupling, could be used to 

predict individual differences in performance. Additionally, the results extend previous findings by 

demonstrating that temporal dynamics across the default and dorsal attention networks are 

associated with lapse-likelihood on subsequent trials. This study demonstrates the reliability of the 
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gradCPT, and underscores the utility of this paradigm in understanding attentional fluctuations, as 

well as individual variation and deficits in sustained attention.
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1. Introduction

Over the course of a day, individuals consistently employ and sustain attention to a multitude 

of tasks. Whether driving to work or reading a paper, the ability to maintain focused 

voluntary attention on a single task is a critical cognitive function that allows individuals to 

effectively interact with their environments and complete goals. Given that the ability to 

sustain attention can profoundly impact many other cognitive and sensory functions 

(Barkley, 1997; Fortenbaugh, Robertson, & Esterman, 2017; Sarter, Givens, & Bruno, 2001; 

H. Silver & Feldman, 2005), characterizing sustained attention abilities has been an active 

area of research for decades, with some studies focused on understanding fluctuations of or 

decrements in sustained attention ability across time in healthy observers (Berardi, 

Parasuraman, & Haxby, 2001; Carriere, Cheyne, Solman, & Smilek, 2010; Esterman, 

Rosenberg, & Noonan, 2014; Fortenbaugh et al., 2015; Levy, 1980; Mackworth, 1948; 

Robertson, Manly, Andrade, Baddeley, & Yiend, 1997; Rosenberg et al., 2016; Sarter et al., 

2001; Staub, Doignon-Camus, Bacon, & Bonnefond, 2014; Staub, Doignon-Camus, 

Després, & Bonnefond, 2013), and others focused on characterizing deficits in sustained 

attention ability associated with psychiatric and neurological disorders (Altpeter, Mackeben, 

& Trauzettel-Klosinski, 2000; Barkley, 1997; Clark, Iversen, & Goodwin, 2002; Forster, 

Nunez Elizalde, Castle, & Bishop, 2015; Park, Hood, Shah, Fogg, & Wyatt, 2012; 

Rosenberg et al., 2016; Van Vleet & DeGutis, 2013).

In recent years, researchers have made substantial progress in characterizing the neural 

networks involved in sustained attention (Clayton, Yeung, & Cohen Kadosh, 2015; 

Esterman, Noonan, Rosenberg, & DeGutis, 2013; Esterman, Rosenberg, et al., 2014; 

Fortenbaugh, DeGutis, & Esterman, 2017; Langner & Eickoff, 2013; Lawrence, Ross, 

Hoffmann, Garavan, & Stein, 2003; Rosenberg et al., 2016; Sarter et al., 2001). Enabling 

this progress has been the development of novel tasks and analytic methods that allow for 

more precise measurements of sustained attention ability and induce more failures in 

sustained attention over shorter testing periods, increasing sensitivity to individual 

differences, as well as behavioral relationships with brain activity/connectivity. One 

commonly used paradigm in this literature is the not-X continuous performance task, 

requiring participants to frequently respond to non-target stimuli and infrequently withhold 

responses to rare target stimuli. This task allows measurements of sustained attention and 

vigilance decrements to be obtained over much shorter periods of time than other tasks, 

which involve responses only to infrequent target events, while at the same time sampling 

behavior at a high rate. These include the commonly used Sustained Attention to Response 

Task (SART) (Robertson et al., 1997), and the Gradual Onset Continuous Performance Task 

(gradCPT) (Esterman et al., 2013), as well as many other innovative variations (Helton & 
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Russell, 2011; Kucyi, Hove, Esterman, Hutchison, & Valera, 2017; Shalev, Ben-Simon, 

Mevorach, Cohen, & Tsal, 2011; Temple et al., 2000). One unique feature that was 

introduced in the gradCPT is the use of gradual transitions from one trial image to the next, 

eliminating the abrupt offsets and onsets of stimuli between trials that can serve to orient 

involuntary attention toward the display (Fortenbaugh et al., 2015; Rosenberg, Noonan, 

DeGutis, & Esterman, 2013). The removal of these abrupt offsets/onsets makes the task 

more dependent on endogenous attentional control both behaviorally and with regard to 

fluctuations in the fMRI signal.

Previous studies using the gradCPT have leveraged its sensitive and data-rich behavioral 

output to identify and examine a number of behavioral and neural indicators of both 

instantaneous attentional state and overall sustained attention ability. For example, results 

from the original gradCPT study (Esterman et al., 2013) showed that while the default, 

dorsal attention, and sensory regions demonstrated characteristic task-negative and task-

positive BOLD responses to the onset of target (mountain) scenes, preparatory (pre-trial) 

activity in these regions was also associated with subsequent accuracy. Specifically, greater 

activity in stimulus-selective parahippocampal place area (PPA) and dorsal attention network 

(DAN) was associated with subsequent accuracy, while greater activity in the default mode 

network (DMN) was associated with subsequent errors. These results are consistent with 

other studies that indicate that ongoing DMN activity may reflect task-unrelated thoughts 

such as mind wandering (Andrews - Hanna, Smallwood, & Spreng, 2014; Broyd et al., 2009; 

Christoff, Irving, Fox, Spreng, & Andrews-Hanna, 2016; Greicius, Krasnow, Reiss, & 

Menon, 2003; Mason et al., 2007; Raichle et al., 2001), and that ongoing sensory/DAN 

activation may reflect ongoing attention to task-related stimuli (Corbetta & Shulman, 2002; 

Posner & Peterson, 1990; M. A. Silver & Kastner, 2009). In addition to examining activity 

surrounding rare target events, the original study by Esterman et al. (2013) computed a 

continuous dynamic metric of reaction time variability, which revealed that sustained 

performance can be characterized by at least two states: when participants are “in the zone” 

versus “out of the zone”. Periods of being “in the zone” are defined based on low reaction 

time variability to frequent non-target stimuli (e.g., images of city scenes) while “out of the 

zone” is defined as periods of higher reaction time variability. Analyses of in-the-zone 

versus out-of-the-zone periods revealed that accuracy was higher (fewer errors of 

commission and omission) during in-the-zone periods. In contrast to preparatory activation 

associated with target accuracy, fluctuations between these attentional states were coupled 

with on-going brain activity in the default mode network (DMN) such that greater activation 

was associated with being in the zone. The dorsal attention network (DAN) exhibited the 

opposite relationship--greater activity when out of the zone. Subsequent studies corroborated 

and extended the findings about these relationships, indicating greater task-negative 

activation when in the zone and greater task-positive activation when out of the zone (in 

dorsal and ventral attention regions; Kucyi 2016; Esterman 2016; Esterman 2014). Further, 

these patterns interacted with preparatory activity before targets (correct vs. incorrect) such 

that task-positive effects were stronger out of the zone and task-negative effects were 

stronger in the zone. This led to the hypothesis that optimal attentional states are not simply 

reflected by task-positive and task-negative activation alone. Specifically, attentional 

fluctuations can be described with multiple behavioral markers- accuracy, mind wandering, 
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RT variability, and motivational state- each of which may have independent and even 

opposing contributions to brain activity across large-scale brain networks. This dichotomous 

relationship between the neural markers of accuracy and variability suggest that, for tasks 

that require constant engagement across extended periods of time, prolonged suppression of 

DMN and/or activation of DAN may not be sustainable and may undermine attentional 

stability over time. Thus, in relation to the observed variability coupling with brain activity, 

moderate increases in DMN activity during “in the zone” periods and decreases in task-

positive attentional control regions such as the DAN may indicate a more distributed and/or 

efficient attentional state that can be maintained over periods of time. One unanswered 

question regarding this somewhat surprising variability-brain coupling is whether the degree 

to which DMN and DAN are coupled with fluctuations in variability is related to overall 

attention ability across participants. Specifically, do participants with better sustained 

performance show greater coupling, supporting the idea that this coupling helps maintain a 

balance or optimal activation across task-negative and task-positive networks.

Since the initial publication, the gradCPT and its variants have been used to further 

characterize sustained attention both in neurotypical (Esterman et al., 2016; Esterman et al., 

2015; Esterman, Poole, Liu, & DeGutis, 2017; Esterman, Reagan, Liu, Turner, & DeGutis, 

2014; Esterman, Rosenberg, et al., 2014; Kucyi, Esterman, Riley, & Valera, 2016; Kucyi et 

al., 2017; Rosenberg et al., 2013) and clinical populations (Auerbach et al., 2014; 

Fortenbaugh, Corbo, et al., 2017; Rosenberg et al., 2016). Further, this task has been used to 

explore variation in sustained attention associated with age, gender, sociocultural factors, 

and time of day (Fortenbaugh et al., 2015; Riley, Esterman, Fortenbaugh, & DeGutis, in 

press; Riley et al., 2016). Performance, as well as the neural correlates of fluctuations in 

accuracy (preparatory activity) and variability (in/out of the zone), have been shown to be 

modulated by motivation and reward (Esterman et al., 2016; Esterman et al., 2017; 

Esterman, Reagan, et al., 2014). In clinical samples, behavioral performance on the gradCPT 

has been associated with PTSD, depression, and early life trauma (Auerbach et al., 2014; 

DeGutis et al., 2015; Fortenbaugh, Corbo, et al., 2017). Analyses of functional connectivity 

during the task, although outside the scope of this paper, are sensitive to individual 

differences in performance, early life trauma, and ADHD (Fortenbaugh, Corbo, et al., 2017; 

Rosenberg et al., 2016).

There were two goals of the present study. First, we sought to replicate the core original 

findings from the Esterman et al. (2013) study. While multiple studies have utilized the 

gradCPT paradigm to ask novel questions, to date, the core findings regarding the 

relationship between ongoing activity in the DAN and DMN to ongoing attentional stability 

and pretrial activity in these regions to attentional lapses, has not been replicated. This is 

important as questions have arisen in recent years regarding the extent to which many 

findings in psychology and neuroscience replicate and generalize to larger samples that are 

not limited to self-selecting college students, have a greater range in baseline intelligence/

cognitive functioning, and are more representative of the general population as a whole 

(Boekel et al., 2015; Button et al., 2013; Open Science Collaboration, 2015; Poldrack et al., 

2017). Within the neurosciences, one of the primary issues that has been raised regarding 

findings from functional magnetic resonance imaging (fMRI) studies, is the low power that 

is associated in part with small sample sizes (Button et al., 2013). Given the diverse set of 
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inferences being drawn from gradCPT, it is critical to determine whether the core behavioral 

and neural findings are both replicable and robust to changes in sampling population. The 

behavioral aspects of the gradCPT, including overall performance, the relationship between 

variables, as well as the reliability of each variable, have been validated in a large, 

heterogeneous sample of participants (>10,000). In terms of the fMRI findings, variability-

BOLD correlations have been replicated in several gradCPT studies (Esterman et al., 2017; 

Kucyi et al., 2017), as well as in other sustained attention tasks (Johnson et al., 2015; Kucyi 

et al., 2017; Rosenberg, Finn, Constable, & Chun, 2015). However, these studies have only 

been assessed in small groups of healthy, young participants of a relatively restricted range 

of ages, demographics, and health status (Esterman et al., 2013; Esterman, Rosenberg, et al., 

2014). In order to address these issues, and to determine the extent to which the original 

gradCPT findings regarding brain-behavior relationships replicate to a larger sample, with 

more variability across a range of demographic factors, the present study assessed 

performance on the gradCPT with concurrent functional magnetic resonance imaging 

(fMRI) in a large sample of 140 Veterans.

The second goal of the current study was to extend previous findings from the original 

Esterman et al. (2013) study in three important ways. First, we used whole-brain voxel level 

analyses rather than the region-of-interest approach originally used to more fully 

characterize the evoked responses of all three response types possible on gradCPT task, as 

well as contrasts between different transient events. This revealed overlapping (e.g., salience 

network) and distinct (e.g., ventral visual cortex) activation markers of attentional lapses. 

Further, we have extensively expanded the lapses precursor analysis, by exploring the whole 

brain, as well as a longer trajectory of activation preceding errors. We find that areas outside 

of our a priori sensory, DAN, and DMN regions predict errors, and also show that error 

trajectories begin up to 12.8 seconds before a lapse of attention. In addition to these group-

level expanded analyses, we further explore the variance time course (in/out of zone BOLD 

coupling) in several ways that help elucidate the role of this variability/brain coupling in 

sustained attention. While it has been previously shown that BOLD activity in several 

regions tracks reaction time stability as measured with the variance time course (VTC), the 

degree to which the strength of this coupling affects overall performance or is predictive of 

individual differences in performance has not been tested. Leveraging the large sample size 

of the current study, we demonstrate here across two analyses that VTC coupling strength is 

associated with and can be used to predict overall performance on the task.

2. Methods

2.1 Participants

The initial participant sample included 157 Veterans from Operation Enduring Freedom/

Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND) who were recruited from 

the Translational Research Center for Traumatic Brain Injury and Stress Disorders 

(TRACTS) at the Veterans Affairs Boston Healthcare System. Details regarding the larger 

TRACTS cohort has been described in detail elsewhere (Lippa et al., 2015; McGlinchey, 

Milberg, Fonda, & Fortier, 2017). Exclusion criteria for TRACTS includes: (a) history of 

neurological illness (other than traumatic brain injury (TBI)); (b) history of seizures; (c) 

Fortenbaugh et al. Page 5

Neuroimage. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



current diagnosis of schizophrenia spectrum or other psychotic disorders (not related to 

PTSD); (d) current active suicidal and/or homicidal ideation, intent, or plan requiring crisis 

intervention; or (e) cognitive disorder due to general medical condition other than TBI. 

Participants in the present sample completed the current task during MRI scanning as part of 

a larger battery of tests that includes clinical interviews and neuropsychological testing. The 

TRACTS MRI protocol, completed at the end of the 8–10 hour testing day, includes two 

structural MRI scans, a diffusion tensor imaging (DTI) scan, and two 6-min resting state 

scans. The gradCPT functional scan was appended to the end of the MRI protocol between 

January 2013 and March 2015. Due to limited scanning time, only one run of the gradCPT 

was collected in contrast to the original study which collected multiple runs (Esterman et al., 

2013). The Institutional Review Board of Human Studies Research at the VA Boston 

Healthcare System approved all research procedures. All participants provided informed 

consent and were reimbursed for their time and travel expenses.

For the present study, veterans with a history of moderate or severe TBI were excluded from 

the final sample (N=7), as moderate and severe TBI has been consistently shown to impair 

cognition (Robertson et al., 1997; Schretlen & Shapiro, 2003; Slovarp, Azuma, & LaPointe, 

2012). Data from an additional participant was excluded due to technical difficulties (no 

responses recorded during task). An additional 5 participants were excluded due to excessive 

motion during the functional gradCPT scan run. This included 2 participants who moved 

over 5mm over the course of the 8-min run, and 3 participants who had more than 30% of 

their data points censored using the criteria outlined below. Finally, following the 

methodology of Fortenbaugh et al. (2015), we assessed whether participants showed 

significant periods of inactivity, defined as 30 second periods or greater with no response to 

the task (“tune outs”). Lack of responses over such large periods of time (i.e. >37 

consecutive trials) could be due to lack of engagement on the task by participants. A total of 

4 participants were excluded using this criterion leading to a final sample size of 140 

participants (131 males; 32.1 ±7.7 years of age). To highlight the broad age distribution in 

the current sample, Figure 1 shows a histogram of the participant’s ages in years. Average 

years of education was 14.2 ±2.0 years. The mean estimated premorbid IQ of the sample, 

measured with the Wechsler test of adult reading (WTAR; Wechsler, 2001), was 104.4 

±10.5. Thus, participants showed on average normal intellectual functioning. Compared to 

the known demographics of the original sample in Esterman et al. (2013), there are some 

differences which would be expected from a Veteran population compared to a 

predominantly college-based sample. The current sample was significantly more biased 

toward male participants, 37.5% vs. 93.6% male: χ2 = 43.63, p < 0.0001, and a Mann-

Whitney U test showed that on average the Veteran sample was older, 24 vs. 32 years of age: 

U=426.5, p < 0.001. As years of education were not recorded in the original sample, no 

comparison could be calculated though it is likely that a sample recruited from college 

campuses may have a higher number of years of education on average than the 14 years 

average in the current sample. We additionally note that our sample of Veterans, while 

limited in terms of gender, includes a range of individuals in terms of background 

demographics and clinical issues. While beyond the scope of the current paper, this sample 

includes Veterans with a history of mild TBI (e.g. concussions), and a range of potential 
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clinical symptoms including anxiety, PSTD, and depression. We include additional clinical 

information about our sample in Supplementary Figure 1 for the interested reader.

Finally, we compared the motion parameters across the two studies using Mann-Whitney U 

tests looking at the maximum absolute displacement across the entire run. These results 

show no overall difference across the six motion parameters in our current sample to those 

measured in Esterman et al. (2013). A trend towards smaller yaw rotations was observed in 

the present sample (Current Sample = 0.5479°; Esterman 2013 sample = 0.6162°; U = 795, 

p = 0.058) while no other motion directions showed any difference (p > 0.24 for all). The 

means for the six motion parameters across the two groups is shown in Supplementary 

Figure 2.

2.2 Behavioral Paradigm and Stimuli

For this study, a single 8-minute run of the gradCPT was completed, following the 

methodology of Esterman et al. (2013) with one exception. As in the original study, the 

gradCPT stimuli consisted of 20 round, grayscale photographs of mountain and city scenes, 

with 10 from each category. On each trial, a random scene was chosen for presentation with 

90% probability that the chosen scene would be a city scene and 10% probability that the 

scene would be a mountain scene, with the constraint that identical images could not be 

chosen on consecutive trials. Using linear interpolation, scene images gradually faded from 

one to the next over the course of 800ms, for a total of 600 trial images over the course of 

the 8-minute run. For the task, participants were required to press a button when a city scene 

was shown and withhold responses when mountain scenes were shown (i.e., go/no-go task). 

The task instructions emphasized response accuracy without reference to speed. However, as 

a new image replaced the previous image every 800ms, there was an implicit response 

deadline in the task. Participants were given a practice session prior to scanning where they 

were familiarized with each of the 20 scene images and given 1–2 minutes of practice 

completing the task. In contrast to the original study (Esterman et al., 2013), which used a 

goggle system for stimulus presentation, images in the current study were viewed from a 

mirror in the scanner projected via a back-projection screen.

2.3 MRI Acquisition and Processing

Scanning was completed at the Neuroimaging Research for Veterans (NeRVe) center at the 

VA Boston Healthcare hospital on a 3T Siemens MAGNETOM Trio system. During the first 

part of the scanner session two anatomical magnetization prepared rapid gradient-echo (MP-

RAGE) structural scans were obtained with a 12-channel head coil. These MP-RAGE T-1 

scans were acquired with the following parameters: repetition time (TR) = 2530ms, echo 

time (TE) = 3.32ms, flip angle = 7°, acquisition matrix = 256 × 256 × 176, voxel size = 

1mm3. Anatomical scans were inspected at acquisition for motion artifacts and repeated if 

necessary. Following acquisition these scans were averaged to increase signal-to-noise ratio. 

All structural images were then processed using standard FreeSurfer and Analysis of 

Functional Imaging (AFNI) pipelines (Cox, 1996; Fischl, Sereno, & Dale, 1999; Fischl et 

al., 2004).
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The functional run was collected using a 32-channel head coil and one whole-brain echo-

planar T2*-weighted sequence. The scanning parameters for the functional scan were as 

follows: TR = 2000ms, TE = 30ms, flip angle = 90°, 248 volumes, acquisition matrix = 64 × 

64, in-plane resolution = 3.0 × 3.0 mm2, slice thickness = 3.75mm. Following acquisition, 

the functional scan was processed using AFNI and custom written routines in Matlab 

(Mathworks Inc., Natick, MA). Preprocessing steps included slice-time correction, motion 

correction using a 6-parameter, rigid body, least-squares alignment procedure, spatial 

smoothing with a 6-mm FWHM Gaussian kernel, automated co-registration and 

normalization of anatomical and functional volumes to Talairach space, and scaling of 

functional dataset values to percent signal change using the equation x′ = 100* (x − x0)/x0, 

where x0 was the mean value of the run. During preprocessing, automated segmentation 

algorithms generated three masks from the Talairached anatomical volume. These included 

masks covering grey matter, white matter, and cerebral spinal fluid (CSF). Average time 

series from the functional scan were extracted from eroded white matter and cerebral spinal 

fluid masks to use as nuisance regressors.

2.4 Behavioral Analyses

2.4.1 Reaction time and accuracy—Analysis of behavioral performance on the 

gradCPT has been described in detail elsewhere (Esterman et al., 2013; Fortenbaugh et al., 

2015). Briefly, response times to each trial were determined using an iterative algorithm that 

assigned button presses to individual trials. Reaction times were calculated relative to the 

beginning of each image onset. Thus, a reaction time of 800ms would indicate that the 

current image was 100% coherent while shorter reaction times indicate that the current 

image was still in the process of transitioning in from the previous image. After the response 

time algorithm was run, reaction time and performance variables were calculated. These 

include: mean reaction time, reaction time variability (defined using the coefficient of 

variation (CV), or the standard deviation of the reaction time divided by the mean reaction 

time for that participant), commission error (CE) rate (the number of target mountain scenes 

a participant pressed to), and omission error (OE) rate (the number of city scenes a 

participant failed to press to). Using standard signal detection analysis, the commission and 

omission error rates were then used to calculate d′ and criterion scores, where d′ reflects 

the ability of participants to discriminate between city and mountain scenes and criterion 

reflects the strategy used by participants, or the willingness to press the response button in 

the case of uncertainty. Standard procedures were used to correct for cases where hit rates 

were 100% or false alarm rates were 0%, with one-half error deducted or added, based on 

the total number of target or non-targets presented in the run, respectively. A confirmatory 

factor analysis was performed, following up on the exploratory factor analyses that were 

completed on the four primary behavioral variables examined in web-based versions of the 

gradCPT (Fortenbaugh et al., 2015)—namely, the two reaction time measures, d′, and 

criterion. The confirmatory factor analysis was run in R using a maximum likelihood 

estimator (Lavaan R package; Rosseel, 2012), specifying a 2-factor model of ability (CV and 

d-prime) and strategy (RT and criterion).

2.4.2 Vigilance—To investigate potential vigilance decrements over the course of the 8-

minute run, linear changes in performance were assessed for each of the six behavioral 
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measures: mean reaction time, reaction time variability, commission error rate, omission 

error rate, d′, and criterion. For this analysis, the data was divided into four 2-minute 

quartiles. Mean performance was then assessed for each quartile and a linear regression was 

calculated to determine the slope parameter for each participant separately. One-sample t-

tests were conducted to determine if the slopes differed significantly from zero.

2.4.3 In the zone vs. out of the zone—Following the analysis first outlined in 

Esterman et al. (2013), this analysis inferred instantaneous attentional state by using trial-by-

trial variations in reaction time to calculate the variance time course (VTC). VTCs were 

computed for each participant using the >500 correct responses to the non-target city scenes. 

First, reaction times were z-transformed to normalize values within participants and the 

absolute value of the z-scores was calculated so that higher values indicated greater 

deviations from the mean, including both very slow and very fast reaction times, while lower 

values indicated reaction times closer to the mean of the run. Values for trials without 

responses (omission errors and correct omissions to target mountain scenes) were linearly 

interpolated from the reaction times of the two surrounding trials. A smoothed VTC was 

then computed using a Gaussian kernel of 9 trials full-width at half-maximum (FWHM), 

integrating information from the surrounding 20 trials with a weighted average. While the 

VTC is a continuous, within-subject measure of variability that is agnostic of when 

participants are in any particular attentional state, splitting the time series up into high and 

low variability trials allows for accuracy comparisons across a participant’s relatively more 

or less stable periods of performance. From the smoothed VTC, a median split was used to 

divide performance on each trial into low and high-variability bins. Based on previous work, 

these 4-minute periods are referred to as being “in the zone” and “out of the zone”, 

respectively. While there are multiple ways that can be used to split performance (e.g., 

relative to the group-level mean variability, or splitting two or more contiguous intervals of 

trials into groups), the trial-by-trial assignment into low/high variability bins was used in 

order to follow previous methodology and provide a within-subject measurement of each 

participant’s state relative to their overall performance (Esterman et al., 2013).

2.5 Neuroimaging Analyses

2.5.1 Event Related Activity—For each participant, functional data was submitted to a 

hierarchical general linear model (GLM) analysis that included two levels. The first level 

analysis was used to regress motion and nuisance parameters from each voxel’s time series. 

The first-level GLM included regressors associated with the six motion parameters and two 

additional nuisance regressors: cerebral spinal fluid (CSF) and white matter time series. 

Additionally, linear, quadratic, and cubic trends were modeled. The GLM analysis also 

included censoring of time-points around abrupt movements. The time-points where motion 

exceeded 0.5mm as well as the TR immediately following the movement were censored 

(ignored) in the GLM analysis (see Supplementary Figure 2 for individual participant 

censoring proportions). This affected the estimation of regressor beta-values but did not 

delete the time points from the residual time series. The residual time series from the first-

level GLM were then submitted to a second-level GLM that modeled the stimulus events, 

again using time-point censoring. Stimulus events, including correct omissions, commission 

errors, and omission errors were modeled as impulse events in the same GLM. Correct 
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commissions (accurately responding to non-target city scenes) were not explicitly modeled 

in this GLM due to their high frequency. Regression coefficients for each of the three event 

types were compiled across participants and tested via voxel-wise one-sample t-tests. The 

correct omission versus commission error contrast was tested with a paired-sample t-test. 

Whole-brain statistical maps were corrected for multiple comparisons using the new and 

more conservative ex-Gaussian voxel-cluster Monte-Carlo-type α simulation rather than the 

previous standard Gaussian model in AFNI (Cox, Chen, Glen, Reynolds, & Taylor, 2017). 

First, the AFNI 3dFWHMx function was run with the spatial autocorrelation function (ACF) 

option in order to estimate the spatial smoothness of the data with a mixed Gaussian plus 

mono-exponential model to generate random noise fields. The estimated parameters for this 

model were then used with the 3dClustSim command and ACF option to estimate the 

minimum cluster sizes needed to reach statistical significance. Across all three event types, 

the correction omission/commission error contrast, and the two whole-brain VTC analyses 

below, we choose the most conservative cluster-size threshold corrected p < 0.05 for all 

analyses, at a nominal p=0.01. Significant clusters were ≥ 81 voxels.

2.5.2 Lapse Precursors—To model pre-trial activity in response to target mountain 

scenes when participants either correctly withheld responses (correct omissions) or 

incorrectly pressed (commission errors), two different analytic approaches were utilized. For 

both analysis, the residual time series from the first-level GLM which did not model events 

were used. As AfNI zeros out but does not delete censored time points in the residuals, after 

extraction of the time series the time points censored in the GLM analyses were converted to 

NaN in Matlab for all following analyses and were thus again excluded from these analyses. 

First, we replicated the approach utilized in Esterman et al. (2013). Using the same, 

independently-defined, regions of interest (ROIs) from Esterman et al. (2013), three ROIs 

were assessed: the parahippocampal place area (PPA), dorsal attention network (DAN), and 

the default mode network (DMN). In the second approach, we looked at pretrial activity 

using a whole-brain voxel-level analysis. Average residual time series were extracted for 

each of the three ROIs in the first approach, while individual residual time series were 

extracted for each voxel in the second approach. Using an iterative algorithm, linear time 

interpolation was conducted to estimate the BOLD response at each image transition (rate = 

0.8 sec), using only the nearest TRs for estimation. For the ROI analysis, the pretrial period 

was defined as the average activation of the two trials immediately preceding a target 

mountain onset (−1.6 sec to −0.8 sec). For the second approach, in order to accommodate 

the increased noise moving from an ROI to voxel-level time series analysis, we increased the 

temporal averaging window to seven trials (~3TRs) that occurred in the window −4.8sec to 

0.0sec before target onset. To assess statistical significance in this second analysis, a 

permutation-based Monte Carlo approach was used. The correct omission and commission 

error labels were randomly shuffled for each participant. A new subtraction map was 

calculated and the maximum cluster size observed for positive and negative differences in 

this shuffled map was determined. This shuffling process was repeated 5,000 times and the 

distribution of maximum positive and negative cluster sizes for the shuffled subtraction maps 

was calculated. From these distributions, the 250th largest cluster size (top 5th percentile) 

was recorded separately for positive and negative cluster distributions. Taking the larger of 

these two cluster sizes resulted in a 353-voxel cluster threshold. Note we did not perform the 
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lapse precursor analysis split by in/out of the zone given the small number of commission 

error trials when participants were in the zone within a single run (i.e. 19 participants did not 

have a single commission error when they were in the zone and the average number of in the 

zone commission errors was ~4 trials).

In addition to calculating the mean pre-trial BOLD signal change, we extended analyses 

from previous studies using the gradCPT by examining the temporal dynamics across our 

three a priori ROI regions (PPA, DAN, and DMN) to determine the extent to which patterns 

of pretrial activity across these three regions is predictive of upcoming lapses or successes in 

sustained attention. For this analyses, we included only those participants who had 3 or more 

commission error trials (N=135) in order to ensure enough time points were available for the 

slope analysis. Of the 5 participants excluded from this analysis, one participant had no 

commission errors and thus no data available in this category, and two participants each had 

only one or two commission errors across the entire run. Using a design similar to that 

applied by Thompson et al. (2013), we assessed temporal dynamics in a 12.8 second 

window (16 trials) centered 6.4 seconds prior to the onset of a mountain stimulus (see Figure 

6A). First, we extracted the time points in the 12.8 sec window for each trial and modeled 

temporal changes in BOLD activity using linear regression to obtain a slope value. For each 

participant, separate trial-based slope values were calculated for correct omission and 

commission error trials in each of the three ROIs. The mean slope was then calculated across 

all the trials in each category. We then calculated the mean slope values prior to commission 

errors or correct omissions for each of the three ROIs individually and compared differences 

in slope values using a 3 (ROI) × 2 (Event Type) repeated-measures ANOVA and paired t-

tests.

2.5.3 Variance Time Course—To determine which voxels had time series that co-varied 

with fluctuations in attention state, a slightly different approach from the original study by 

Esterman et al. (2013) was used. We note, however, that this time-delayed approach is 

reported in the Supplementary Materials of that paper and compared with the main analytic 

approach. As in Esterman et al. (2013), the residuals from the second-level event-related 

GLM analysis outlined above were used. Given the delayed hemodynamic response, the 

smoothed VTC time series for each participant was then shifted by 6 seconds and whole 

brain correlations were calculated using 3dRegAna in AFNI. Spearman rho calculations 

were used rather than Pearson’s r as the question of interest was which brain regions show 

monotonic trends in fluctuations in BOLD activity with changes in reaction time variability, 

and there was no a priori reason to assume these fluctuations would be linearly related to 

reaction time. Additionally, inspection of individual participant’s VTC time series showed 

that data points are generally not normally distributed given the lower limit on reaction times 

variability (i.e., absolute z-scores) leading to positive skewed distributions. Thus, non-

parametric correlations are a more appropriate statistic in this type of analysis. The resulting 

correlation coefficients were converted to Fisher z scores and a one-sample t-test was 

calculated on normalized correlation coefficients. As with the event-related analyses above, 

results of the analysis were thresholded using the cluster-corrected thresholds for p < 0.05 

(nominal p = 0.01; cluster size ≥ 81 voxels).
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2.5.4. Variance Time Course and Individual Differences—While the degree to 

which multiple brain regions track the variance time course has been assessed in previous 

studies, to date no work has examined the extent to which the degree of coupling is related 

to or predictive of overall performance. To determine whether the degree of coupling 

between BOLD signal and reaction time variability is meaningful for an individual’s overall 

performance, two additional analyses were completed that examined inter-individual 

differences in overall performance on the gradCPT. First, we tested whether the z-scores 

from the above whole-brain VTC analysis were correlated with participant’s overall 

accuracy on the task using their d′ score. For this analysis, at every voxel the VTC 

regression z-scores were correlated with d′ scores across participants. As with the other 

whole-brain analyses above, results of the analysis were thresholded using the cluster-

corrected thresholds for p < 0.05 (nominal p = 0.01; cluster size ≥ 81 voxels).

In our second analysis, using our PPA, DMN, and DAN ROIs, we tested whether 

consideration of the degree to which each region tracks a participant’s VTC and the degree 

to which regions are coupled with each other over the course of the run can predict 

individual differences in overall performance, again using d′ as our dependent variable. For 

this, the 10 nodes of the ROIs were used (PPA = 2 nodes, left and right; DAN = 4 nodes, left 

and right intraparietal sulcus (IPS) and frontal eye fields (FEF); DMN = 4 nodes, bilateral 

anterior medial prefrontal cortex (AMPFC), bilateral posterior cingulate cortex (PCC), and 

left and right lateral parietal cortex; see Supplementary Figure 4). We first calculated the 

correlation (Pearson’s r) between the VTC and the average time series from each of the 10 

nodes as well as the correlation between each of the node pairs for each participant. This 

gave a total of 55 connections/VTC-brain correlations which were used in a multiple linear 

regression model using a leave-one-subject-out (LOSO) cross-validation procedure to 

predict d′ (Esterman, Tamber-Rosenau, Chiu, & Yantis, 2010; Fortenbaugh, Corbo, et al., 

2017). For the LOSO procedure, every participant was left out of the training dataset once. 

In each of these iterations, a linear regression model was built from N features across the 

139 participants in the training dataset, where N was varied from 1 to 55 (all possible) 

features. Feature selection was done by finding the N features with the greatest correlation 

between coupling and d′ in the training set. Thus, for a given feature set size, the features 

included in the model could vary across participants. Once the features were selected the 

beta weights from the regression model were used to predict the d′ score of the participant 

left out. After all 140 iterations for a given feature set size, the predicted and measured d′ 
scores across all 140 participants were correlated with each other to assess the quality of the 

model.

3. Results

3.1. Behavioral Results

3.1.1 Overall performance—While the primary focus of the current paper was to 

investigate whether the neuroimaging findings of Esterman et al. (2013) replicated in the 

current sample, it was first important to consider whether our novel sample of Veterans 

performed behaviorally similar to the previous sample of 16 young, healthy non-Veterans as 

any performance differences would be expected to impact the related BOLD signal. Table 1 
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summarizes the behavioral performance of the 140 Veterans in the current sample. For 

comparison, Table 1 also shows the mean performance from the 1st run of the experiment in 

Esterman et al. (2013) as participants in this study completed multiple runs of the task. 

Given the significantly larger sample size in the present study, data from Esterman et al. 

(2013) were compared to the present study using Mann-Whitney U tests. As seen in Table 1, 

for all performance measures including both reaction time and accuracy, at the group level, 

performance did not differ significantly in the present sample to that observed over the 1st 

run of the task in Esterman et al. (2013).

3.1.2 Time-on-task effects—The original study by Esterman et al. (2013) also 

considered changes in performance across each run, to investigate whether vigilance 

decrements could be observed in how participants completed this challenging sustained 

attention task. As seen in Table 1, a similar pattern of change in performance across the 8 

minutes of task was observed. For all four of the primary performance measures considered 

in Esterman et al. (2013), namely, mean reaction time, reaction time variability (CV), 

commission errors, and omission errors, significant changes in performance were observed 

as indicated by the one-sample t-tests comparing the group slope values to a hypothetical 

mean of zero. The present study also included two additional performance measures, d′ and 

criterion, which represent discrimination ability and strategy on task, respectively. 

Interestingly, while discrimination ability was seen to significantly decrease over the course 

of the run, consistent with a vigilance decrement, we found no change in the strategy used 

by participants. Comparing the slopes to those observed in the original sample (Esterman et 

al., 2013), the only behavioral difference was in the slope of the mean reaction times, with 

participants in the present sample speeding up their reaction times over the course of the run 

while participants in the original sample tended to slow down. Importantly, however, for all 

performance measures related to accuracy, strategy, or fluctuations in reaction time, changes 

in performance across time were equivalent across the two samples.

3.1.3 Relationship between performance variables—In the original study by 

Esterman et al. (2013), a strong correlation was observed across participants between 

reaction time variability (CV) and lapse rate, defined by the number of commission errors. 

In Fortenbaugh et al. (2015) this relationship was further investigated using factor analyses 

on the behavioral performance of over 10,000 participants across the world who completed 

an online version of the gradCPT task. Results of these analyses indicated two latent factors 

in performance on the gradCPT task. The first factor, which we have labeled the ability 

factor, was driven by reaction time variability and discrimination ability, measured using d′ 
to account for both commission and omission error rates. The second factor, the strategy 

factor, was driven by mean reaction time and criterion values, and reflected the approach 

used by participants to complete the task. As seen in Figure 2 and Table 2, the results of the 

present study replicated the findings found in Fortenbaugh et al. (2015), with strong 

correlations observed across the ability variables, d′ and reaction time variability and the 

strategy variables, criterion and mean reaction time. While all correlations show a significant 

relationship, further analyses were completed to compare the strength of the correlations 

taking into account the covariance matrix given that the correlations were from the same 

participants and the measures dependent (Steiger, 1980). As seen in Table 2, results showed 
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that the relationship between d′ to reaction variability is significantly stronger than the 

relationship between d′ and mean reaction time. Similarly, the relationship between 

criterion and mean reaction time is significantly stronger than the relationship between 

criterion and reaction time variability (see Table 2). To assess if the same latent variables 

were observed in the present sample as previous studies (Fortenbaugh et al., 2015), a 

confirmatory factor analysis was run using the proposed two factor model (Table 3). We 

found that this model fit the data sufficiently well with, according to current standards (Hu 

& Bentler, 1999; Schreiber, Nora, Stage, Barlow, & King, 2006), four out of five criteria 

indicating a good fit (see Table 3).

3.1.4 In the zone vs. out of the zone—Using the VTC time series to calculate stable 

reaction time periods (“in-the-zone”) and unstable periods (“out-of-the-zone”), we examined 

whether behavioral performance differs across these periods of time. As seen in Figure 3, 

consistent with the study by Esterman et al. (2013), paired-sample t-tests show that 

participants made more errors when they were out of the zone than in the zone (commission 

error rate: t(139) = 12.01, p < 0.0001; omission error rate: t(139) = 9.14, p < 0.0001), while 

no difference was seen in the mean reaction time across the two epochs, t(139) = 1.10, p = 

0.27. We further compared our signal detection measures across in-the-zone and out-of-the-

zone epochs. Results showed a decrease in discrimination ability (d′) when participants 

were out of the zone, t(139) = 17.47, p < 0.0001, while no change in response strategy were 

observed in the criterion measure, t(139) = 1.295, p = 0.197.

3.2. fMRI Results

3.2.1 Event-Related Activation Analyses—Analysis of event-related activity focused 

on three types of events: 1) correct omissions, where participants correctly withheld 

responses to the rare mountain scenes, 2) commission errors, where participants failed to 

withhold a response to mountain scenes, and 3) omission errors, or rare trials where 

participants failed to press to a city scene. Figure 4 shows maps of areas with significant 

event-related BOLD activity to these three types of events and the contrast between correct 

omissions and commission errors (see Supplementary Tables 1–3 for detailed cluster 

information). As seen in Figure 4a, the most frequent type of event, correct omissions, was 

associated with widespread increases in task positive networks associated with attention, 

including the dorsal attention, fronto-parietal, and salience networks (Yeo et al., 2011). This 

widespread positive activity also covers regions associated with the vigilance attention 

network (Langner & Eickoff, 2013), specifically the pre-supplementary motor area (pre-

SMA), inferior frontal gyrus, insula, lateral prefrontal cortex, temporal-parietal junction, 

intraparietal sulcus, middle occipital gyrus, temporal occipital junction, and thalamus. In 

contrast, decreases in activity are seen in default network regions, including the anterior 

medial prefrontal cortex (amPFC), posterior cingulate cortex (PCC), left lateral parietal 

cortex. Within visual cortex, a division was seen with medial visual cortex showing a 

decrease in activity while lateral and ventral visual cortex showed an increase in activity. 

These activations were likely the results of a combination of target detection, cognitive 

control and response inhibition necessary to withhold a response to target mountain stimuli.

Fortenbaugh et al. Page 14

Neuroimage. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Commission errors, or failures to effectively detect and/or withhold responses to rare 

mountain trials (Figure 4b), were associated with increased activity in the ventral attention 

and salience networks, also referred to as the cingulo-opercular network, thought to be 

engaged in error monitoring, attentional reconfiguration, and maintaining/refreshing tonic 

alertness, task control and goals (Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008; 

Sadaghiani & D’Esposito, 2015), including the bilateral insula and fronto-operculum, 

thalamus, dorsal anterior cingulate cortex including pre-SMA, and anterior prefrontal cortex. 

Figure 4d shows the correct omission vs. commission error map, with positive values 

showing areas with greater activity following correct omissions while negative values show 

relatively higher activity following a commission error. Lateral visual and parietal regions, 

including the IPS which is known to contain topographic maps of spatial attention (M. A. 

Silver & Kastner, 2009; M. A. Silver, Ress, & Heeger, 2005), showed greater responses on 

correct omission trials, potentially reflecting greater visual attention to stimuli during these 

trials. On the other hand, greater activation in dorsal ACC and insular cortex for commission 

errors may have reflected error-related activation or processing.

The second type of error that participants made in this type of not-X CPT task was omission 

errors, where participants fail to respond to frequent city images. Task-evoked activity to 

omission errors (Figure 4c) was almost entirely overlapping with the evoked responses to 

commission errors and correct omissions, with increased activity seen in the pre-SMA 

region, thalamus, inferior parietal lobules, middle frontal gyrus, and insula, and decreased 

activity in the posterior cingulate. This may have reflected some aspect of response 

inhibition, independent of task-relevance (CO and OE), as well as error-related activation, 

independent of stimulus type (CE and OE).

3.2.2 Precursors of Attention Lapses—While the previous analysis examined the 

evoked responses to correct omissions, commission errors, and omission errors using a 

standard GLM approach assuming a canonical hemodynamic response, in our next analysis 

we examined BOLD activity related to these events in the time leading up to the target 

mountain trials (correct omission and commission errors). Following the approach outlined 

in Esterman et al. (2013), we first examined pre-trial activity averaged across the two trials 

immediately preceding the beginning of each mountain trial (−1.6 to −0.8 secs from trial 

beginning). Note that one participant made no commission errors across the run and was 

therefore excluded from the following analyses. Figure 5a shows the mean deviation in 

BOLD signal for the PPA, DAN, and DMN ROIs across this window. Paired-sample t-tests 

showed only a partial replication of the results from Esterman et al. (2013). BOLD activity 

was significantly lower in the PPA and higher in the DMN prior to lapse trials when 

participants made commission errors compared to trials where participants correctly 

withheld responses (PPA: t(138) = −2.25, p = 0.026; DMN: t(138) = 3.05, p = 0.003). In 

contrast to Esterman et al. (2013), while numerically the DAN showed lower BOLD activity 

in lapse trials compared to correct response trials, no significant difference was observed 

across commission error and correct omission trials, t(138) = −0.88, p = 0.382. To further 

explore the consistency across studies, we plot in Table 4 the mean BOLD activity contrast 

(correct omissions - commission errors) along with the 95% confidence intervals from the 

original Esterman et al. (2013) dataset, along with the measured contrast from the current 
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data. As can be seen in Table 4, not only was no significant difference observed between 

commission errors and correct omission trials for the DAN ROI in the present dataset, but 

the difference across these two types of trials fell outside the 95% confidence interval of the 

significant contrast measured in Esterman et al. (2013). Thus, while the magnitude of the 

difference was small within the DAN ROI in the original study, the observed difference fell 

outside the expected range, indicating that the current results do not replicate those of the 

original study.

Extending this analysis beyond Esterman et al. (2013), we examined differences between 

precursors of correct omissions vs. commission errors at the whole brain voxel-wise level 

(Figure 5b; see Supplementary Table 4 for detailed cluster information). We found 

significant clusters in ventromedial PFC regions consistent with the ROI-level analysis 

showing higher activity in the DMN before a commission error. Interestingly, we also found 

a cluster in somatomotor cortex in the right hemisphere extending to left somatomotor 

cortex, suggesting greater activity in the task-relevant motor system or fine motor 

preparation signals could lead to errors of commission (right-handed response). Conversely, 

left insula, right ventral visual cortex, and bilateral thalamus exhibited greater activity before 

correctly withholding, regions consistent with response control and visual processing 

respectively. Overall these results were consistent with the ROI analyses and prior work, but 

do not provide support for DAN as a precursor to response accuracy, as was found in the 

original report.

3.2.3 Temporal Dynamics of Pretrial Activity—While the previous analysis examined 

mean activity levels in the time just prior to a target stimulus onset, examining mean activity 

within a small window of time provides just a snapshot of overall activity and may not fully 

capture the temporal dynamics that lead to subsequent lapses in performance. While there 

are many potential ways to model temporal dynamics, in the following analysis we 

examined temporal changes in pretrial BOLD activity using a simple measurement of 

change over time: linear slope analysis (i.e., moving from a point estimate to a line). Figure 

6a shows a schematic of the procedure used, which involved estimating slope parameters 

across the 16 trials (12.8sec window) preceding a target onset and examining differences in 

slope patterns across event type (correct omissions and omission errors) for the PPA, DAN, 

and DMN ROIs. Comparing the mean slope parameter estimates across participants with a 

2×3 repeated-measures ANOVA (see Figure 6b), we found no main effect of event type, 

F(1,134) = 2.45, p = 0.120 but a main effect of ROI, F(2,268) = 6.34, p = 0.002. Importantly, 

however, an Event Type x ROI interaction was observed, F(2,268) = 3.50, p = 0.032, with 

lower slopes prior to commission errors than correct omissions in the task-positive PPA and 

DAN ROIs while higher slopes prior to commission errors were seen in the DMN. Follow-

up paired sample t-tests showed that slopes significantly differed across correction omission 

and commission error trials in the task-positive ROIs (PPA: t(134) = −2.16, p = 0.032; DAN: 

t(134) = −2.14, p = 0.034), while no significant difference was found in the DMN ROI, 

t(134) = 0.87, p = 0.387.

3.2.4 Reaction Time Stability—To examine the relationship between trial-by-trial 

fluctuations in reaction time stability and BOLD activity, whole-brain correlations were 
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calculated using each participant’s VTC time series. For this correlation, the VTC time 

series were down-sampled into TR-space and shifted by 3 TRs (6 sec) to account for the 

hemodynamic delay. Correlations were calculated using Spearman Rho and the resulting 

correlation coefficients were Fisher transformed. Figure 7 shows the resulting VTC 

thresholded map (see Supplementary Table 5 for detailed cluster information). Consistent 

with previous studies (Esterman et al., 2013; Esterman, Rosenberg, et al., 2014; Kucyi et al., 

2017), several networks showed significant correlations with reaction time variability. 

Within the DMN, bilateral posterior cingulate and ventromedial prefrontal cortex, and left 

lateral parietal cortex all showed negative correlations with the VTC time series, indicating 

higher levels of activity during moments of relative stability (i.e. lower reaction time 

variability). Negative correlations were also seen extending from the posterior cingulate 

cortex inferiorly into the medial occipital cortex. In contrast, positive correlations were 

observed in several task-positive regions including supplementary motor association area, 

lateral and ventral occipital cortex, bilateral inferior frontal gyrus and insula, frontal eye 

fields, and temporo-parietal junction. These areas corresponded to areas typically engaged 

during sustained attention tasks, including the dorsal and ventral attention networks and the 

salience network.

3.2.5 Reaction Time Stability and Overall Performance—While multiple task-

positive and task-negative regions were found to track fluctuations in reaction time 

variability, and this replicates several previous studies (Esterman et al., 2013; Esterman et 

al., 2017; Esterman, Rosenberg, et al., 2014; Kucyi et al., 2016), these relationships are 

counter to other characterizations of these networks (for review see: Fortenbaugh, DeGutis, 

et al., 2017). For example, DMN was more active “in the zone”, while task positive networks 

were more active “out of the zone” (see Discussion). Given this, our next analysis went a 

step further in asking whether this coupling of BOLD activity and response variability is 

predictive of overall behavioral performance at the individual level. For this, the Fisher z-

transformed correlation coefficients from each participant’s VTC analysis were correlated 

on a voxel-by-voxel basis with overall discrimination ability (d′) across participants. Results 

of this analysis (Figure 8; see Supplementary Table 6 for detailed cluster information) 

showed that the degree to which the posterior cingulate cortex (overlapping with DMN) 

tracked reaction time variability on a moment-to-moment basis predicted overall task 

performance (d′) across participants. Greater negative coupling (lower variability and higher 

PCC activation) in an individual was associated with more accurate performance. A similar 

relationship was found for a region in the left superior frontal gyrus which also overlaps with 

the DMN (Yeo et al., 2011). In contrast, regions in right inferior parietal/temporal-parietal 

junction (overlapping with VAN) and ventral visual cortex showed the opposite pattern—

greater positive couple (higher variability and higher temporal-parietal junction activation) 

was associated with more accurate performance. Overall, these results suggest that if 

anything, these relationships between ongoing variability and brain activity (Figure 7) were 

generally reflective of better performance at the individual level.

3.2.6 Predicting Individual Differences in Performance Using VTC and 
Network-Level—In our final analysis we utilized the three networks/ROI groupings from 

the Esterman et al. (2013) study to determine whether the degree of coupling between PPA, 
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DAN, and DMN regions with reaction time stability and overall connectivity across network 

regions can be used to predict individual differences in overall performance. Across the VTC 

and 10 nodes comprising the PPA, DAN, and DMN ROIs (see Methods Section 2.5.4. 
Variance Time Course and Individual Differences and Supplementary Figure 4 for details), 

we tested the ability of 1–55 features to predict d′ using a leave-one-subject-out linear 

regression approach. Figure 9a shows the correlation coefficient between the measured and 

predicted d′ values across all 140 participants as a function of the number of features used 

in the linear regression models. As seen in Figure 9a, the best prediction ability was seen 

with the 18-Feature model, which showed a significant positive correlation between the 

measured and predicted d′ values, r = 0.402, p < 0.0001 (see Figure 9b). For the 18-Feature 

model, a total of 25 unique connections were selected across all 140 participant folds and 

11/25 connections were selected on 140/140 participant folds. Of the 11 connections 

selected in every fold, the predominant groupings included VTC-DMN connections and 

DMN-DAN connections (see Figure 9c). The pattern held when all connections selected 

were grouped according to ROIs (see Table 5). Across the 25 connections, 10 included 

DAN-DMN connections while 9 included VTC-ROI connections (4 VTC-DMN, 4 VTC-

DAN, 1 VTC-PPA). Collectively, these results suggest that important information regarding 

attentional stability and overall performance is carried in both the degree to which the DAN 

and DMN track reaction time stability, or the VTC, and that additional unique information is 

carried in the degree to which DAN and DMN activity is correlated with each other.

4. Discussion

The results of the present study provide both an important robust replication of findings 

from the original gradCPT study (Esterman et al., 2013), as well as an extension by relating 

the strength of VTC-brain coupling to individual differences in performance and pretrial 

temporal dynamics to lapse likelihood. In the original gradCPT study (Esterman et al., 

2013), 16 young, healthy volunteers completed multiple runs of the task while in the 

scanner. In contrast, the present study utilized 140 Veteran participants who each completed 

one run of the task. While Veterans can be considered a special population, with higher 

prevalence rates of both neurological and psychiatric illnesses than the general population 

(e.g., mild traumatic brain injury and posttraumatic stress disorder; see below), it is 

important to note that at the group level, the performance of the Veteran participants in the 

present study was statistically identical to that of the participants in the original study for all 

behavioral measures with the exception of one: the change in mean reaction time over the 

course of the run. Additional behavioral analyses comparing the relationship across four of 

the primary behavioral measures using a confirmatory factor analysis (Table 3) provided 

support for the same latent factors related to ability and strategy on the task as found in a 

large web-based sample of over 10,000 participants between the ages of 10–70 years old 

who completed a shorter version of the gradCPT task (Fortenbaugh et al., 2015). 

Collectively then, the behavioral results of the present sample suggest that performance of 

this unique sample are both valid and representative of what one would expect at the group-

level from the general population.

More importantly, perhaps, given recent concerns that the field of neuroimaging faces a 

replication crisis (Poldrack et al., 2017), the present neuroimaging results provide a robust 
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replication of the relationship between fluctuations in response variability and ongoing brain 

activity. Specifically, the whole-brain VTC correlation (Figure 7) replicated and extended 

the results of Esterman et al. (2013), and corroborated similar analyses in subsequent papers 

(Esterman et al., 2017; Esterman, Rosenberg, et al., 2014; Kucyi et al., 2016). Namely, we 

found that regions in the default mode network exhibited greater activity during low 

variability in-the-zone periods, as does the putamen. On the other hand, task-positive regions 

in the dorsal and ventral attention network exhibited greater activity during highly variable, 

out-of-the-zone periods. Our results, along with these previous studies, suggest that in-the-

zone performance is accomplished with either less attentional resources (i.e., more 

effortlessly), or alternatively, that attentional resources are engaged with greater efficiency 

and precision. Studies have supported the latter; task-irrelevant stimuli are processed with 

greater depth during these in-the-zone periods, akin to lower perceptual load, or more 

efficient task-related processing (Esterman, Rosenberg, et al., 2014). Similarly, we have 

found that inhibitory TMS (1 Hz) to the right frontal eye field impaired more optimal 

periods of performance (in the zone), but not less optimal (out of the zone) periods of 

performance (Esterman et al., 2015). This suggests that despite lower overall activity levels 

in dorsal and ventral attention regions while in the zone, these task-positive regions may be 

more critical during these periods of consistent and accurate performance. In the domain of 

attentional control over the motor system, Kucyi et al. (2017) found that stable and accurate 

periods of rhythmic finger tapping was also associated with less activation in task-positive 

regions and more activation in DMN regions, again consistent with neural efficiency and 

suggestive that the relationship between attentional stability and neural coupling is not 

restricted to visual attention. On the other hand, recent evidence suggests that DMN activity 

may be greater during periods of high predictability, suggesting that in the zone periods 

could be akin to a more “autopilot” mode (Vatansever, Menon, & Stamatakis, 2017).

While the variability-brain correlation replicated prior group-level results, we also took 

advantage of the large sample size to ascertain whether this coupling between ongoing brain 

activity and behavioral variability was associated with individual differences in performance. 

While the VTC has been shown behaviorally to track relative performance within 

individuals (i.e., better accuracy in versus out of the zone), the extent to which individual 

differences in VTC coupling may relate to overall performance has not been examined 

before. If, on the one hand, the VTC correlations in the brain were stronger in those with 

worse performance, it would suggest that this coupling is maladaptive. If, however, this 

brain-behavior coupling is stronger in better performers, it suggests that this correlation is 

adaptive. Our results from the whole-brain VTC coupling correlation analyses (Figure 8) 

suggest the latter, such that subcomponents of the DMN show stronger negative coupling 

(more activity in the zone) in more accurate performers. Similarly, the right temporal-

parietal junction of the ventral attention network exhibited stronger positive coupling with 

variability (more activity out of the zone) in more accurate performers. These individual-

differences results, while not as extensive as the group VTC result, suggest that the coupling 

observed between fluctuations of attention and ongoing activity in large-scale brain 

networks is adaptive. Additionally, focusing just on the PPA, DAN, and DMN networks, our 

cross-validation linear regression analysis demonstrated that the degree of VTC coupling 

within the nodes of the DAN and DMN in particular, in addition to coupling across the DAN 
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and DMN nodes, contains discriminative information that can be used to predict individual 

differences in overall performance. These results provide further support that the extent to 

which regions couple with fluctuations in reaction time variability, while intrinsically a 

within-subject measure of attentional state, also contains information regarding inter-

individual differences in sustained attention performance. In the original study, it was 

posited that the relative balance of DMN and DAN activity may play an important role in 

determining attentional state at any given moment, though no interactive effects were tested 

at that time (Esterman et al., 2013). The theory that the interplay between task-positive and 

task-negative regions, and in particular the interplay between the DAN and DMN, rather 

than the activity in one region alone, may have an important role in cognitive functioning is 

receiving increasing interest (Avelar-Periera, Backman, Wahlin, Nyberg, & Salami, 2017; de 

Pasquale, Corbetta, Betti, & Penna, in press; Gao & Lin, 2012; Kucyi et al., 2017; 

Thompson et al., 2013; Vatansever et al., 2017). The fact that the degree of DMN and DAN 

connectivity was able to provide additional information beyond just the VTC-DMN and 

VTC-DAN features in the regression models supports this assertion. Given the limited 

number of a priori regions used in the present analysis, however, future work is needed to 

determine how widespread or localized this connectivity-derived information is across the 

brain.

The current study also sought to replicate and extend previous analyses on the neural 

precursors of attentional lapses, defined as errors of commission. Broadly, the results across 

the two pretrial analyses show that changes in BOLD activity leading up to a target event 

can provide information regarding future performance, or lapse likelihood. Consistent with 

the original report and others (Esterman et al., 2013; Esterman, Rosenberg, et al., 2014; 

Thompson et al., 2013), mean activity in stimulus specific PPA was higher just prior to 

correct vs. lapses trials, while DMN showed the opposite pattern, greater mean activity 

preceding lapses vs. correct trials. Extending this analysis, examining the temporal dynamics 

across correct omission and commission error trials showed different patterns of activity 

across the three ROIs in the 12.8 seconds prior to a target mountain onset. While PPA and 

DAN showed negative slopes prior to a lapse trial, with BOLD activity decreasing, results 

showed if anything an increase in DMN BOLD activity, though the contrast across correct 

omission and commission error slopes was not significant for DMN. As seen in Figure 6, the 

differences in slopes was primarily seen for lapse trials across the three ROIs with little to no 

difference in activity patterns across the PPA, DMN, and DAN ROIs (slopes ≈ 0) prior to 

correct omission trials. These results suggest that PPA and DAN activity represents task-

related stimulus processing that enables successful performance, and that when this activity 

wanes over many seconds, performance can suffer. On the other hand, it suggests that DMN 

activity may reflect task-unrelated activity, such as mind wandering (Christoff et al., 2016; 

Garrison et al., 2013; Konishi, McLaren, Engen, & Smallwood, 2015; Kucyi et al., 2016; 

Raichle et al., 2001). This is consistent with several studies, including Kucyi et al. (2016), 

which used thought probes to examine DMN activity in relation to both mind wandering and 

variability. Interestingly, they also found that while DMN activity was greater during mind 

wandering, it was also greater during periods of low variability (i.e., in the zone, see 

previous paragraph). This was the case despite overall greater variability during mind 

wandering. Additionally, there was no anatomical segregation between DMN voxels that 
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tracked behavioral variability versus those that tracked mind wandering. Rather, independent 

and additive influences of attentional state (in/out of the zone) and mind-wandering were 

assessed using linear mixed-effects models on the average DMN time series, and were again 

found when tested on DMN sub-regions parcellating the DMN into 7 or 54 sub-regions. 

These results are also consistent with findings from a recent study assessing cognitive 

flexibility (Vatansever et al., 2017) which suggests a role for the DMN in automated 

information processing related to the performance of external task goals (i.e., not just mind 

wandering). Together, the current results, along with Kucyi et al. (2017) and Vatansever et 

al. (2017), argue against a unitary model of DMN and suggest that multiple, independent 

contributions of the DMN to cognition exist (e.g., in relation to behavioral variability, 

accuracy, and mind wandering).

In contrast to the original report, we did not replicate the significant precursor effects in the 

DAN (see Figure 5 and Table 4), though the slope analysis showed a significant difference in 

the direction of BOLD activity slopes prior to attentional lapses versus correct omissions. In 

the original study (Esterman et al., 2013), higher mean levels of activity in the DAN was 

associated with subsequent correct vs. lapses trials. In the current data, this effect did not 

reach significance and the observed difference fell outside of the 95% confidence interval 

from Esterman et al. (2013). There are several possible reasons why this component of the 

study failed to replicate. One possible explanation regards the role of motivation. We 

previously found that task positive networks, including DAN, exhibited greater activity 

before correct trials only when participants were motivated (with monetary rewards) relative 

to an unrewarded condition (Esterman et al., 2017). This led to the conclusion that 

motivation is associated with a more proactive strategy (Botvinick, Braver, Barch, Carter, & 

Cohen, 2001), such that participants actively maintain activity in task positive regions in 

order to maximize success. Thus, such motivational differences could explain the weaker 

nature of the current results, which may have varied more in this sample because participants 

completed the gradCPT task at the end of a long day of assessments. Conversely, it may be 

that prior to target onsets pretrial effects are weaker in DAN than PPA, with differences 

evolving and becoming more prominent after target onsets. The fact that significant slope 

differences were observed in the pretrial window could be seen as supporting this argument, 

with the dynamic changes in the DAN perhaps more important than the final value just prior 

to target onset. Along these lines, it may be that given the small sample size in the original 

study, the mean pretrial differences observed just before target onset in the DAN are in fact 

unreliable. Given recent work suggesting that changes in short-window temporal dynamics 

may be related to cognitive functioning (Kucyi et al., 2017; Thompson et al., 2013), and our 

potentially conflicting finding regarding changes in DAN activity leading to correct 

omissions and commission errors, additional work will be needed to decide between these 

competing explanations.

Finally, using a whole brain approach, we found that activity in the motor cortex was also 

associated with lapses of attention. We speculate that greater activity in the contralateral 

motor system could indicate a more pre-potent response set, increasing the likelihood of a 

failure to inhibit a response in the upcoming target/mountain trial. Peak activation in this 

cluster was observed in the right (ipsilateral) motor cortex extending across into left motor 

cortex (see Figure 5 and Supplementary Table 4). While ipsilateral, and specifically the 
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right, motor cortex has been associated with fine finger movements (Chen, Gerloff, Hallett, 

& Cohen, 1997), it is unclear from the present data the extent to which such ipsilateral 

signals may reflect general motor planning signals. Together, these results suggest that there 

are heterogeneous neural, and perhaps psychological causes of attentional lapses (e.g., 

motor, mind wandering, effort). Future work should further examine whether individual and 

clinical differences in types of lapses exist and whether they can be independently predicted 

and even modulated. For example, TMS directed toward DMN regions could be used to 

reduce lapses due to mind wandering, while stimulation of visual cortices could attenuate 

lapses due to visual distraction. Further, trial-to-trial prediction, or even real-time fMRI 

could take advantage of a heterogeneous model of attentional lapses to enhance accuracy 

(deBettencourt, Cohen, Lee, Norman, & Turk-Browne, 2015).

In addition to the analyses of the original report, we also examined and contrasted the 

evoked responses to the different stimulus event types. Target/mountain events evoked broad 

activation in task-positive and lateral visual regions, as well as a deactivation in DMN and 

medial visual regions, regardless of whether participants correctly withheld their response 

(Figure 4a and 4b). Interestingly, correct omissions evoked relatively greater responses in 

lateral visual and dorsal attention, implicating enhanced visual processing and attentional 

control in the execution of response inhibition (Figure 3d). In contrast, errors of commission 

evoked relatively greater responses in salience network regions including dorsal anterior 

cingulate (dACC) and insular cortex, regions implicated in error processing and task 

reconfiguration. Finally, rare errors of omission evoked responses in regions that were 

associated with commission errors (insular and dACC) as well as others associated with 

correct omissions (dorsal parietal/prefrontal). In general, all task events evoked highly 

overlapping patterns of activation that call into question pure regional specificity of 

functions such as inhibition or error monitoring (Aron, Robbins, & Poldrack, 2004; 

Botvinick, Cohen, & Carter, 2004; Kerns et al., 2004; Swick & Chatham, 2014).

There are several limitations in the current study. One important limitation is the low number 

of female participants, with 94% of our sample being male. While this is representative of 

the U.S. Veteran population, important gender differences have previously been reported in 

the sustained attention literature (Blatter et al., 2006; Riley et al., 2016). For healthy 

samples, this concern is somewhat reduced by the fact that our results largely replicate those 

of Esterman et al. (2013), in which the sample was 62.5% women. However, from a clinical 

perspective, understanding how sustained attention varies as a function of gender is an 

important issue that requires further study to better understand individual differences and 

provide a framework for understanding changes in sustained attention in clinical populations 

that may include more women than men. Additionally, the current sample included all 

Veterans enrolled into the TRACTS cohort who were able to complete an MRI scanning 

session. As no additional screening or inclusion/exclusion criteria were applied, within the 

sample as a whole, there are multiple sub-groups of participants (e.g., Veterans with mTBI, 

clinical symptoms of anxiety, depression, or PTSD). The goal of the present study was to 

take a group-level approach to replication and the fact that clinical sub-samples were present 

in the current group of participants represents more of a limitation for the individual 

differences analysis than the group-level evoked events, VTC, and pretrial analyses. 

However, as with any selective sample, the present data must therefore be approached with 
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some caution in terms of generalizing the results to the general population or other potential 

clinical samples. Finally, while the gradCPT paradigm is similar to many other continuous 

performance tasks that utilize a go/no-go response paradigm (Conners, 1994; Robertson et 

al., 1997), the ability to completely segregate event-related effects attributable to attentional 

lapses vs. response preparation/inhibition is reduced. While there are separate issues that 

may be faced using alterative response paradigms (e.g., 2AFC), future research examining 

differences across paradigms with differing response patterns may help to further dissociate 

the underlying cognitive processes that contribute to the evoked response patterns observed.

In spite of these limitations, this robust replication has many implications for future research 

focused on clinical populations with attentional dysfunction. Importantly, this study 

indicates that previous findings using this neurocognitive measure of sustained attention will 

likely generalize to other samples with greater diversity or unique characteristics in terms of 

demographics or clinical pathology. Although beyond the scope of this study, we are hopeful 

this task will help elucidate mechanisms of attentional impairments across a wide range of 

clinical pathologies that are common in this population and others, including PTSD, mTBI, 

and substance abuse (DeGutis et al., 2015; Swick, Honzel, Larsen, & Ashley, 2013; Swick, 

Honzel, Larsen, Ashley, & Justus, 2012). Additionally, while the neuroimaging results of the 

current study focused on group-level results, future studies focused on individual differences 

within the general population may provide an opportunity to assess the neural basis of 

normal variations in sustained attention ability. Functional connectivity during the task may 

also add additional mechanistic understanding of how sustained attention can reveal 

clinically relevant brain dysfunction. Research has already demonstrated that connectivity 

during the gradCPT is associated with early life trauma and ADHD symptoms (Fortenbaugh, 

Corbo, et al., 2017; Rosenberg et al., 2016). Given that deficits in sustained attention are 

pervasive across a wide range of clinical populations (for review, see: Fortenbaugh, DeGutis, 

et al., 2017), the present results may provide a basis for exploring cognitive and neural 

dysfunction across a wide range of patient groups.

In conclusion, the current study robustly replicates the majority of behavioral and 

neuroimaging markers of sustained attention and fluctuations in accuracy and variability 

over time. As the current sample represents a more demographically and clinically diverse 

group than most basic fMRI research, the present results further underscore the validity of 

the gradCPT and supports its generalizability to other populations. As this task has already 

been used by multiple research groups and cited hundreds of times, the current study 

provides valuable assurance to future investigators who contemplate this methodology to 

study sustained attention. More broadly, we hope this work serves to highlight the 

importance and utility of replication in the fMRI community.
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Figure 1. 
Histogram showing the ages of participants in years.
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Figure 2. Behavioral Results
Scatterplot showing the relationship across the four primary behavioral measures on the 

gradCPT task identified in Fortenbaugh et al. (2015): mean reaction time, reaction time 

variability (CV), d′, and criterion. The graph shows strong correlations within the behavioral 

measures related to performance (d′ and CV) and the measures related to strategy (criterion 

and RT). Each diamond represents a single participant and the black line shows the 

regression line.
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Figure 3. Behavioral Results
Bar graphs showing mean behavioral performance differences when participants are in-the-

zone versus out-of-the-zone for the behavioral performance measures. Error bars represent 

±1 S.E.M.
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Figure 4. Evoked Activity Results
Event evoked activity results from GLM analysis for (a) Correct Omissions, (b) Comission 

Errors, (c) Omission Errors, and (d) Correct Omissions – Comission Error contrast. All 

maps show T-statistics and are displayed after correction for multiple comparisons 

(corrected p < 0.05; nominal p < 0.01, cluster size > 81 voxels).
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Figure 5. Pre-trial Activity Results
(a) The left panel shows the results from ROI-level analysis. The average activation level for 

Commission Errors (CE) and Correct Omissions (CO) across the −1.6sec to −0.8sec window 

prior to target onset are shown for the PPA, DAN, and DMN ROIs. Error bars show ±1 

S.E.M. Significant differences across CO and CE pretrial activity are shown with * for p < 

0.05. (b) The right panel shows the results from the whole-brain voxel-level analysis on the 

CO-CE contrast activity averaged across the −4.8 to 0.0sec window prior to target onset. 

This map shows the T-statistic thresholded after correction for multiple comparisons 

(Monte-Carlo p < 0.05, cluster size > 353 voxels).
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Figure 6. Network-Level Trends Prior to Attentional Lapses
(a) The panels on the left side of the figure illustrate the method used to assess dynamic 

pretrial activity in individual participants. The mean time series in the window −20sec to 

0sec prior to target scene onsets is shown for Correct Omission (CO) and Commission Error 

(CE) trials for the PPA, DAN, and DMN ROIs separately. The blue and red dots show the 

mean across trials with the red and blue shaded regions shows ±1 S.E.M. The shaded gray 

box shows the 12.8sec (16 trials) interval of interest just prior to target onset used in the 

current analysis. Linear regression was applied to the 16 time points in each trial to extract a 

slope parameter (examples shown by red and blue lines). (b) Group level bar graph showing 

the mean slope across participants for CO and CE trials as a function of ROI (PPA, DAN, 

and DMN). Error bars show ±1 S.E.M. Significant differences in slopes across CO and CE 

trials are shown with * for p < 0.05.
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Figure 7. Variance Time Course Results
BOLD signal correlation with the reaction time variability time course. Positive (yellow) 

values show regions where BOLD activity increased as reaction time variability increased; 

negative (blue) values show regions where BOLD activity decreased as reaction time 

variability increased. The map shows T-statistics after correction for multiple comparisons 

(corrected p < 0.05; nominal p < 0.01, cluster size > 81 voxels).
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Figure 8. Variance Time Course and Performance Results
Results of analysis correlating individual VTC-BOLD signal correlation strength with 

overall performance (d′) on the task across participants. The map shows T-statistics after 

correction for multiple comparisons (corrected p < 0.05; nominal p < 0.01, cluster size > 81 

voxels).
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Figure 9. Predicting Individual Differences in Performance
Results of the leave-one-subject-out multiple linear regression analysis. (a) Pearson’s r 

correlation coefficient between the measured and predicted d′ score as a function of the 

number of features (connections) used in the model. (b) Scatterplot showing the relationship 

between the measured and predicted d′ scores for all 140 participants in the 18-feature 

regression model. (c). Figure showing the 25 connections selected at least once between the 

10 nodes of the PPA, DMN, and DAN ROIs, and the VTC in the 18-feature regression 

model. The color and weight of the connection show the number of folds that each of the 

connections was selected as a feature in the prediction model (max = 140 folds).
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Table 1

Group means on the behavioral performance measures in the present study. For comparison, the mean values 

from the 1st run of the 16 participants from Esterman et al. (2013) are shown and compared to the means of the 

present sample. One-sample t-tests on the slope parameters tested if the slopes differed from zero (i.e., did 

performance change over time).

Parameter Mean ± 95%CI 1-Sample t-test (x0 = 0)
Esterman (2013) 1st run 

(95%CI) Mann-Whitney Across samples

Mean reaction time (RT) 0.764 ± 0.012 0.780 ± 0.037 U = 991, p = 0.451

Reaction time variability 
(CV)

0.197 ± 0.007 0.187 ± 0.024 U = 910, p = 0.220

Commission Error Rate 
(CE)

0.212 ± 0.023 0.271 ± 0.065 U = 809, p = 0.069

Omission Error Rate (OE) 0.050 ± 0.013 0.043 ± 0.026 U = 1109, p = 0.949

D′ 2.926 ± 0.141 2.695 ± 0.485 U = 951, p = 0.324

Criterion 0.573 ± 0.071 0.684 ± 0.117 U = 1002, p = 0.491

Slope – RT −0.0015 ± .00015 t(139) = −2.016, p = 0.046 0.0049 ± 0.0043 U = 694, p = 0.013

Slope - CV 0.0046 ± 0.0013 t(139) = 6.938, p < 0.0001 0.0042 ± 0.0030 U = 1065, p = 0.748

Slope - CE 0.0139 ± 0.0051 t(139) = 5.383, p < 0.0001 0.0046 ± 0.0113 U = 980, p = 0.413

Slope - OE 0.0046 ± 0.0024 t(139) = 3.792, p < 0.0001 0.0045 ± 0.0050 U = 1101, p = 0.909

Slope – D′ −0.0898 ± 0.0237 t(139) = −7.426, p < 0.0001 −0.0661 ± 0.0439 U = 1025, p = 0.579

Slope - Criterion 0.0048 ± 0.0115 t(139) = 0.815, p = 0.416 −0.0199 ± 0.0313 U = 976, p = 0.400
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Table 2

Statistical results of correlations across the four primary performance measures, mean reaction time, reaction 

time variability (CV), d′, and criterion shown in the scatterplots of Figure 2. The bottom row compares the 

difference in the strength of the correlation in the two rows above.

Accuracy Measures

D′ Criterion

Mean Reaction Time r = −0.490, p < 0.001 r = −0.705, p < 0.001

Coefficient of Variation r = −0.749, p < 0.001 r = −0.288, p = 0.001

Difference of Correlation z = −3.943, p < 0.0001 z = −5.566, p < 0.0001
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Table 3

Results of the confirmatory factor analysis testing the proposed two factor model: ability (reaction time 

variability and d′) and strategy (mean reaction time and criterion). We considered a ratio of χ2 to degrees of 

freedom = ≤3, SRMR and RMSEA values = ≤.06, and CFI and TLI values > .95 to be indicators of good 

model fit (Hu & Bentler, 1999; Schreiber et al., 2006). All criteria indicated a good fit except for Root Mean 

Square Error of Approximation (indicated by * in the table).

Quality of Fit Measurement Value

χ2/degrees of freedom 2.525*

Standardized Root-Mean-Square Residual (SRMR) 0.024*

Root Mean Square Error of Approximation (RMSEA) 0.104

Comparative Fit Index (CFI) 0.994*

Tucker-Lewis Index (TLI) 0.963*
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Table 5

Summary table showing the number of connections across regions in the leave-one-subject-out linear 

regression analysis using VTC and network level coupling to predict individual participant performance (d′) in 

the 18-Feature model. A total of 25 unique connections were selected at least once across the 140 folds of the 

18-Feature model (see Figure 9c). The main table shows the distribution of the 25 connections across the 9 

potential categories. The bottom row, labelled Node Total, shows the total number of times each of the three 

networks (PPA, DAN, DMN) or the VTC was selected as one of the two nodes in the 25 connections. Thus, 

the Node Total values are not equal to the sum of the column above and the sum across the Node Total row is 

50 (2 nodes × 25 node pairs).

PPA DAN DMN VTC

PPA 0 2 3 1

DAN 0 10 4

DMN 1 4

Node Total 6 16 19 9
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