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Abstract

While classically considered a survival mechanism employed during nutrient scarcity, the 

autophagy pathway operates in multiple scenarios wherein a return to homeostasis or degradative 

removal of an invader is required. Now recognized as a pathway with vast immunoregulatory 

power, autophagy can no longer serve as a “one size fits all” term, as its machinery can be 

recruited to different pathogens, at different times, with different outcomes. Both canonical 

autophagy and the molecularly- related, yet divergent pathways non-canonical autophagy are key 

players in proper host defense and allow us an opportunity to tailor infectious disease intervention 

and treatment to its specific pathway.

Introduction

In 2016, Nobel Assembly at Karolinska Institutet awarded Yoshinori Ohsumi with the Nobel 

Prize in Medicine and Physiology for his groundbreaking work unraveling the molecular 

mechanisms that underlie the tightly regulated catabolic process of macroautophagy (herein 

referred to as autophagy). We now recognize that the reach of autophagy extends far beyond 

nutrient deprivation, into cellular quality control and host defense against internalized 

pathogens. While canonical autophagy likely evolved as a homeostatic response to cellular 

stress and/or nutrient deprivation, non-canonical autophagic functions are unified in the 

ancient theme of containment and suppression of inflammation. Similarly, efferocytosis, the 

immunotolerant clearance of dying host cells by tissue phagocytes, has recently been shown 

to rely upon recruitment of autophagy effectors to the phagosome through a non-canonical 

autophagic pathway called LC3-associated phagocytosis (LAP). Taken together, emerging 

evidence indicates that autophagy, through both canonical and non-canonical pathways, has 

diversified into a host defense mechanism, capable of confronting immunological and 

pathogenic stress and mediating immunological self-tolerance to both intracellular and 

extracellular threats.
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Canonical Autophagy

Autophagy is the highly conserved process by which eukaryotic cells scavenge their own 

cytoplasmic contents through sequestration into a phagophore and subsequent fusion with a 

lysosome for degradation. This process of “self-eating” is classically thought of as non-

selective in response to nutrient deprivation and is largely orchestrated by the ATG family of 

proteins [1]. Upon starvation, autophagy progresses in 6 stages: inactivation of mTOR and 

pre-initiation complex formation, vesicle/phagophore nucleation, vesicle elongation, 

autophagosome formation, lysosome fusion, and component degradation [2] (Figure 1).

Extensive research has shown AMP-activated kinase (AMPK) to be the main energy sensing 

rheostat regulating the cell’s response to ATP/AMP imbalance [3]. When ATP levels 

decrease and AMP levels rise, AMPK becomes activated and inhibits mTOR complex 

1(mTORC1) activity [4], leading to nuclear localization of TFEB and Gln3, two autophagy-

related transcription factors [5, 6]. AMPK directly controls autophagy factors ULK1 (ATG1) 

and ATG13 through phosphorylation and sequestration [4]. Once free and active, ULK1 

forms the autophagy pre-initiation complex with ATG13, FIP200, and ULK2 and 

phosphorylates ATG9 within nearby phospholipid membranes [7].

The Beclin-1-binding partner, Ambra1, directly connects the activity of this preinitiation 

complex, considered the most upstream regulator of the autophagic process, to the Class III 

PI3K complex. Ambra1 binds the core components of the Class III PI3K complex, Beclin 1 

and VPS34, at the cytoskeleton through an interaction with the dynein motor complex. Upon 

autophagy induction, ULK1 phosphorylates Ambra1, allowing it and its bound partners to 

re-localize to the ER and initiate vesicle nucleation. The activity and localization of the 

Ambra1 complex further supports the role of the ER in autophagosome formation [8, 9]. 

Interestingly, Ambra1 can act in an mTORC1-sensitive positive-feedback loop to promote 

K63-linked ubiquitination of ULK1 through recruitment of the E3-ubiquitin ligase TRAF6 

[10].

In addition to Beclin 1 and VPS34, the Class III PI3K complex consists of ATG14 or 

UVRAG in a mutually exclusive manner [11]. VPS34, the class III PI3 kinase in the 

complex, generates PI3P (phosphatidylinositol 3-phosphate), which serves as a critical 

recruitment signal for the two downstream ubiquitin-like conjugation systems. These two 

systems, the ATG5-12 system and the LC3-PE system, are required for vesicle nucleation, 

elongation, and curvature of the forming autophagosomes [2]. E3-ligase complex ATG7 and 

ATG10 mediates the conjugation of ATG5 to ATG12 in association with ATG16L1 to form a 

multimeric complex. Subsequently, this ATG5/12/16L1 complex is critical for the generation 

of LC3-PE (or LC3-II), the lipidated form of LC3 (or LC3-I). Cytosolic LC3-I is cleaved by 

ATG4, and conjugated to phosphatidylethanolamine (PE) via the activity of ATG7 and 

ATG3 [12]. This lipidated LC3-PE is bound to the autophagosomal membrane and is require 

for subsequent fusion to lysosomes, wherein the autophagosomal contents are degraded and 

recycled [13, 14].

Traditionally, autophagy is considered a cell survival process, however it is important to note 

that the autophagy machinery can serve as a switch from survival to death. Beclin 1 can bind 
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pro-survival members of the BCL2 family, specifically BCL2, thus preventing its inhibition 

of BAX and allowing apoptosis to proceed. Importantly, BCL2-bound Beclin 1 cannot 

participate in autophagy [15]. Similarly, ATG proteins (ATG5, ATG3, ATG4D), cleaved by 

calpain or caspases have been shown to be pro-apoptotic, and mutation of the cleavage sites 

in these same proteins prevents the pro-apoptotic effect [16].

While the ability to self-eat evolved as a cellular response to metabolic stress and a need to 

return to intracellular homeostasis, autophagy has diverged in to combat infection and is a 

pivotal regulator of the inflammatory response. In both unicellular and multicellular 

organisms, autophagy can regulate different steps of the immune response, with immune 

signaling pathways eliciting an autophagic response to aid in defense [17–20]. Autophagy 

functions not only as a response to cellular stress, but is also important for pathogen 

recognition, pathogen degradation, antigen presentation, and regulation of pathways for 

cytokine production. Unsurprisingly, defects in the autophagic pathway have been strongly 

associated with inflammatory and autoimmune disorders, as well as infectious susceptibility 

[21]. However, we now recognize that the autophagic machinery serves many non-canonical 

functions that are critical for host defense.

Non-canonical Autophagy

While canonical autophagy is considered a non-specific process that sequesters and degrades 

cytoplasmic contents in bulk, the autophagy machinery can also be selectively targeted to 

internal cellular substrates. Selective autophagy can be triggered for a variety of stimuli, 

such as damaged organelles (mitophagy for mitochondria) [22], macromolecules (lipophagy 

for lipids) [23], aggregated proteins (aggrephagy) [24], intracytoplasmic microbes 

(xenophagy), or phagocytosed particles such as dying cells or extracellular pathogens (LC3-

associated phagocytosis or LAP) (Figure 2) [25–27].

Xenophagy

Hosts have evolved to utilize the autophagy machinery to detect and eliminate intracellular 

pathogens, such as viruses, bacteria and protozoa [17, 28]. Xenophagy (from the Greek for 

"strange" and "eating") is a selective form of non-canonical autophagy wherein pathogens 

are targeted and directed to the autophagosome for subsequent degradation via the 

autophagolysomal pathway [18, 19]. In addition to cytosolic detection by autophagic 

elements, some pathogens, such as Mycobacterium tuberculosis (Mtb) and Salmonella 
enterica serovar Typhimurium, can be eliminated by the fusion of the pathogen-containing 

vesicles to the autophagolysosome [17, 19, 20, 29].

Xenophagy is initiated by the ubiquitination of either the pathogen substrate, thus sealing its 

fate. Either the pathogen itself or the ruptured pathogen-containing vacuole can be 

ubiquitinated, as occurs during Salmonella ser. Typhimurium infection [30–33]. The process 

is mediated by a family of ubiquitinating enzymes comprised of the ubiquitin-activating 

enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). Leucine Rich 

Repeat and Sterile Alpha Motif Containing 1 2 3 5 RING-Type E3 Ubiquitin Transferase 

(LRSAM1) and Parkin are two E3 ubiquitin ligases involved in xenophagy, suggesting that 
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the host autophagy machinery has devised a mechanism against the invading bacteria 

without a prompt from the pathogen [20, 34, 35].

Once ubiquitinated, the pathogen substrate is now capable to connecting to LC3-containing 

autophagosomal membranes via recruitment by autophagy receptors, namely SQSTM1 

(p62), NDP52, NBR1, and optineurin (OPTN), which contain both a ubiquitin-binding 

domain and LC3-interacting region (LIR), thus bridging the ubiquitinated substrate to the 

autophagy machinery [19, 20]. The receptors p62, NBR1, and OPTN bind to LC3 isoforms 

through their LIR [36–38]. Some LC3 isoform specificity exists, as p62 selectively binds to 

LC3B and NDP52 binds to LC3C [36, 38, 39]. LC3 itself is a ubiquitin-like protein that 

conjugates with PE on the autophagosomal membrane [38, 39]. NDP52 is critical to binding 

ruptured endosomal membranes, as it binds to galectin-8, a β-galactose binding lectin that 

translocates to the endosomal membrane after its rupture [20]. The mechanisms that govern 

their function in xenophagy, however, are still under investigation.

Ubiquitinated pathogen substrates also recruit autophagic proteins like ULK1, ATG9L1, 

ATG16L1, ATG14L, and however, the mechanisms involved are currently not well 

understood [40]. This recruitment can trigger the formation of an autophagosomal 

membrane around pathogens or pathogen-containing vacuoles, even in the absence of LC3-

bound membranes, indicating that xenophagy can occur independently of the autophagy 

receptors [40, 41]. Collectively, the goal of xenophagy is targeting of pathogens with 

ubiquitin, the assembly of the autophagy machinery at the autophagosomes, and degradation 

of the cargo [20].

The autophagy machinery can also orchestrate the capture of viral components for the 

removal of the both RNA and DNA viruses [42, 43], a process termed virophagy. Viral 

receptors such as endosomal toll-like receptors (TLR3, 7–9) or cytosolic nucleic acid 

sensors (RIG-I, STING, DAI, etc.) are essential for detection of a variety of viral pathogens 

like measles virus, human herpesvirus 6, adenovirus, and bovine viral diarrhea virus 

(BVDV) and triggering autophagy in antigen presenting cells [43]. In addition, there exists 

crosstalk between viral recognition and the autophagy machinery. For example, the 

lentivirus-encoded protein Nef binds Beclin 1 and induces autophagy [20, 44, 45].

There exist autophagy-independent roles for ATG proteins during host defense. Pathogens 

such as Listeria monocytogenes, Shigella flexneri, Mycobacterium marinum, HIV, 

herpesviruses, and Influenza A virus have developed strategies to circumvent detection by 

the host autophagy apparatus and remain hidden in the cytosol or in the vacuole [17, 18, 20, 

46]. In the case of S. flexneri, the endosomal membrane is ubiquitinated after the bacteria 

has escaped the endosome, resulting in delivery of an empty vacuole to the autophagic 

machinery [30–32]. Other bacteria like Listeria monocytogenes, Mycobacterium marinum, 

and Francisella tularensis disrupt the formation of initial phagosome and enter the cytosol 

without host detection [18, 20, 32]. Strikingly, Mycobacterium tuberculosis (Mtb) 

colocalizes with multiple autophagy proteins, like ATG5, ATG12, ATG16L1, p62, NDP52, 

Beclin 1, and LC3, yet only ATG5 in polymorphic mononuclear cells (neutrophils) is 

required for resistance to Mtb in vivo, suggesting a novel autophagy-independent role for 

ATG5 in tuberculosis pathology and Mtb replication [47].
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Moreover, bacteria have evolved to advantageously utilize the autophagy machinery for 

survival [18]. Brucella abortus recruits ULK1, Beclin 1, and ATG14L to form LC3-negative 

Brucella-containing vacuoles [48, 49]. Like bacteria, viruses (such as herpesviruses, HIV, 

and influenza A virus) have also adapted to opportunistically commandeer the autophagy 

machinery for their own purposes [42, 43, 50–52]. For example, Sindbis virus can degrade 

autophagy sensors/proteins like STQSM1 and ATG5, thereby evading detection [44]. As the 

autophagosome may or may not be decorated by LC3, careful consideration of the processes 

at play during host defense should be considered before characterizing the outcome as 

autophagy [20].

LC3-associated Phagocytosis

Whereas xenophagic processes are initiated once the pathogen is within the cell, the 

autophagic machinery can be actively recruited upon phagocytosis of a pathogen via 

signaling and sensing by an extracellular receptor. LC3-associated phagocytosis (or LAP) is 

a form of non-canonical autophagy that is initiated by the engagement of an extracellular 

receptor, such as Toll-like receptors (TLR), by a pathogen during phagocytosis. LAP can 

also be triggered by the uptake of dying cells (via phosphatidylserine receptors [PtdSer-R]) 

or immune complexes (via FcR), therefore LAP can be viewed as a conserved mechanism 

for mediating control and tolerance over exogenous threats. Receptor signaling results in the 

recruitment of some, but not all, of the autophagy machinery to the cargo-containing, single-

membraned vesicle, which facilitates its decoration with lipidated LC3-PE [14, 25, 27]. The 

LC3-decorated, cargo-containing structure, or LAPosome, then fuses to lysosomes to 

mediate the rapid destruction of the cargo and modulation of the pursuant immune response 

[14].

While LAP and other autophagic immune responses share much of the same machinery, 

LAP is a process molecularly and functionally distinct from both canonical autophagy and 

xenophagy. Firstly, LAP results in a single-membraned LAPosome, whereas canonical 

autophagy and xenophagy create a double-membraned autophagosomes. Furthermore, the 

pre-initiation complex, described above, Ambra1, and WIPI2 are critical mediators of 

autophagy and xenophagy, yet completely dispensable for LAP [14, 25, 53]. The most 

upstream autophagic players required for successful execution of LAP are the components 

of the Class III PI3K complex (Beclin1, VPS34, and VPS15) [27, 54]. Whereas the Class III 

PI3K complex can contain with ATG14 or UVRAG during autophagy, LAP exclusively 

utilizes the UVRAG-containing Class III PI3K complex [14]. Similar to canonical 

autophagy, Class III PI3K complex-mediated PI(3)P on the LAPosome facilitates 

downstream recruitment of the ubiquitin-like conjugation systems, the ATG5-12 and LC3-

PE conjugation systems required for successful LAP. LC3 bound to the LAPosome is 

required for subsequent fusion to the lysosome and degradation of the engulfed cargo [14].

Rubicon (RUN domain protein as Beclin-1 interacting and cysteine-rich containing) was 

recently identified as a protein required for LAP, yet not required for canonical autophagy. 

Rubicon acts as an inhibitor of autophagy, via its negative regulation of VPS34 [55, 56] or 

GTPase Rab7 activation [57]. Rubicon associates constitutively with the UVRAG-containing 

Class III PI3K complex and seems to serve two critical roles during LAP both – promoting 
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the generation and localization of PI(3)P by the Class III PI3K complex and the production 

of ROS via the NOX2 complex, the major NADPH oxidase in phagocytes which is also 

required for LAP [14, 58, 59]. Rubicon stabilizes NOX2 by interacting with the p22phox 

subunit, and PI(3)P generated via Rubicon’s activity on VPS34 binds the p40phox subunit of 

NOX2 for optimal ROS production [60]. Further cementing the role for NOX2 in LAP are 

its interactions with Beclin1 via its CCD domain [58] and VPS34 via its RUN domain [61]. 

Collectively, Rubicon promotes the localization and activity of the Class III PI3K complex 

with the LAPosome and stabilizes the active NOX2 complex to promote optimal ROS 

production, which is also required for successful LAP [14]. As LAP is a recently described 

phenomenon, work uncovering its role in host defense is ongoing. Clearance of 

Saccharomyces cerevisiae [27], Listeria monocytogenes [58], and Aspergillus fumigatus is 

severely compromised in LAP-deficient macrophages and animals [14]. In response to 

fungal β-glucans and engagement of Dectin-1, Rubicon associates with CARD9 to displace 

it from the NF-κB complex needed for antifungal immunity. Similar scenarios exist during 

viral infection, wherein RNA viruses, such as VSV, Sendai virus, and influenza A (IAV), 

engage RIG-I and result in Rubicon disrupting the CARD9- NF-κB complex [62]. During 

HBV, IAV, and VSV infection, Rubicon can negatively regulate type I interferon signaling 

by interacting with IRF3 and IRF 7 [63, 64]. Furthermore, Rubicon binds to NEMO and 

suppresses ubiquitination, thus enhancing viral replication [64]. Hence, in these pathogenic 

scenarios, Rubicon-deficiency affords a survival advantage.

While LAP certainly plays a critical role in the degradation of engulfed pathogens, LAP is 

also an important mediator of the immunotolerant response. Cells and animal models with 

Rubicon deficiency produce significantly increased levels of pro-inflammatory cytokines, 

such as IL-6, IL-1β, and IL-12, in response to a variety of pathogens [14, 58, 62]. Strikingly, 

this increase in inflammation is observed in response to pathogens that require LAP for 

clearance (such as Aspergillus fumigatus [14], Listeria monocytogenes [58]) and pathogens 

that do not (fungal β-glucans, Sendai virus, HBV, IAV, and VSV [62–64]. The role of LAP 

in maintaining the immunotolerant state is exemplified during the clearance of dying cells, a 

process termed efferocytosis. Animals with LAP deficiency (i.e. Rubicon deficiency), but 

not canonical autophagy only-deficiency (i.e. ULK1 deficiency), develop lupus-like 

pathology with age, with increased serum levels of pro-inflammatory cytokines, 

autoantibodies, and kidney dysfunction [26]. Therefore, LAP represents a conserved cellular 

rheostat for shaping the appropriate immune response to engulfed pathogens and dying cells.

Mitophagy

The autophagic machinery can also target damaged organelles, such as mitochondria, for 

degradation, highlighting the quality control function that autophagy plays. In this sense, the 

degradative clearance of endosymbiont mitochondria (mitophagy) mirrors the clearance of 

intracellular pathogens (xenophagy) in that mitochondrial components, such as mtDNA, can 

mimic bacterial molecules and elicit autoinflammatory activation of cells. Both involve the 

ubiquitination of autophagy substrates resulting in the recruitment of autophagy machinery. 

Many of the adaptors utilized by xenophagy are also used in Parkin-dependent mitophagy 

[22].
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Several mechanisms for mitophagy have been describe in the literature, all of which involve 

recognition of mitochondrial distress signals (depolarization, exposed cardiolipin, 

ubiquitination), and targeting of distressed mitochondria to LC3-containing phagophores via 

autophagy receptors, such as p62, OPTN, and NDP52 [65]. The most well characterized 

mitophagy pathway utilizes the kinase PINK1 and the E3 ubiquitin ligase Parkin. After 

depolarization of the mitochondrial membrane, PINK1 translocates and is stabilized on the 

outer mitochondrial membrane, wherein it phosphorylates ubiquitin chains that have tagged 

the damaged mitochondria and elicits the recruitment of Parkin from the cytosol. Here, 

Parkin is transformed into an active phospho-Ub-dependent E3 ligase that ubiquitinates itself 

as well as many different mitochondrial substrates. These ubiquitinated substrates are 

subsequently phosphorylated by PINK1, which fueling a feed forward amplification cycle of 

further PARKIN recruitment and activation [66]. These ubiquitinated, damaged 

mitochondria are then delivered to the LC3+ autophagosomes via autophagy receptors [22, 

66].

In the absence of Parkin, several mitophagy receptors have been shown to facilitate the 

clearance of mitochondria during hypoxic stress in an LIR-dependent manner. LIR 

containing proteins NIX1 (also involved in Parkin-dependent mitophagy), BNP31, and 

FKBP8 have been shown to recruit lipidated LC3A to damaged mitochondria [67, 68]. 

FUNDC1 ubiquitination by MARCH5, a E3 ubiquitin ligase, on the outer membranes of 

mitochondria also targets mitochondria for mitophagy [69].

While clearance of defective mitochondria is a tool to limit unwanted inflammation and 

maintain homeostasis, mitochondria themselves play a crucial role in host defense by 

producing ROS, generating the necessary energy for an immune response, and providing a 

platform for host defense [70]. Studies involving RIPK2 have shown that mitophagy 

prevents hyperactivation of the NLRP3 inflammasome during infection [71]. In the absence 

of mitophagy, apoptotic mitochondria release mtDNA which can also trigger NLRP3 

inflammasome activation [72] and promotes genomic instability and tumorigenesis [73]. The 

mitochondrial antiviral signaling (MAVS) protein localizes on the outer mitochondrial 

membrane where it interacts with RIG-I and MDA5 to activate downstream NF-κB and IRF 

signaling pathways for pro-inflammatory cytokine and type I IFN production. This 

mitochondrial localization makes MAVS a target for regulation via mitophagy. Ubiquitin 

ligases associated with mitophagy, like Smurf1 and Gp78, have been shown to also 

negatively modulate MAVS activity via both ubiquitin-dependent and -independent 

mechanisms, and in the absence of mitophagy, infection with VSV, a MAVS agonist, results 

in hyperstimulation [70]. Interestingly, other studies [74] have demonstrated that that healthy 

mitochondria are required to promote MAVS activity.

Conclusion

It is well established that defects in the autophagic machinery have been associated with 

aberrant host defense, inflammatory disease, and age-related disorders [21]. While initial 

interpretation implicates canonical autophagy in these pathologies, it is possible that the 

defect lies with non-canonical autophagic processes, such as LAP, rather than traditional 

autophagy. This is an emerging field in host defense and immunity, and our ability to 
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discriminate between these related, yet distinct processes will have far-reaching applications 

in our approach to tumorigenesis, autoimmunity, and infectious disease. As broad inhibition 

of autophagic processes could be more harmful than beneficial, selective manipulation of 

specific canonical or non-canonical autophagy pathways could prove to be an invaluable tool 

for immunomodulation. Therefore, it is imperative that the molecular mechanisms that 

distinguish these processes are differentiated, as well as the physiological scenarios in which 

each is required, thus allowing for the design of anti-inflammatory therapeutics that 

specifically target the appropriate pathway, while maintaining the quality control 

mechanisms of canonical autophagy.
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Highlights

• Whereas the stress induced during infection can induce canonical autophagy, 

invading organisms and viruses can be specifically targeted for degradation by 

the autophagic machinery in a process broadly termed selective autophagy.

• Xenophagy and LC3-associated phagocytosis (LAP) represent two forms of 

non-canonical selective autophagy. During xenophagy, intracellular pathogens 

are targeted for removal via ubiquitination and delivered to the LC3+ 

autophagosomes via autophagy receptors. During LAP, engagement of 

extracellular pathogen recognition receptors (PRR) trigger the recruitment of 

autophagy machinery and Rubicon to the pathogen-containing LAPosome for 

degradation.

• Autophagic processes function not only in the physical removal of pathogens, 

but also in the modulation of the subsequent immune response.
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Figure 1. The molecular mechanisms of canonical autophagy
Normally held in check by mTOR, autophagy-inducing signals (such as nutrient deprivation) 

triggers the activation of AMPK, whose kinase activity simultaneously inhibits mTOR and 

activates the pre-initiation complex (ULK1/2, ATG13, FIP200). This complex then activates 

the Class III PI3K complex, composed of VPS34 and Beclin 1, along with either ATG14 or 

UVRAG. The Class III PI3K complex produces phosphatidylinositol 3-phosphate (PI3P), 

which acts as recruitment signal for the downstream ubiquitin-like conjugation systems, the 

ATG12-5 system and the LC3-PE system. The activity and coordination of these two 

systems facilitates the curvature and sealing of the autophagosome, as well as the lipidation 

and embedding of LC3-PE into the autophagosomal membrane.

Sil et al. Page 15

Curr Opin Immunol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Xenophagy versus LC3-associated phagocytosis
(Left) During xenophagy, rupture of the pathogen-containing vesicle triggers the recruitment 

of ubiquitin to endosomal proteins or the pathogen itself. subsequently, autophagy adaptors, 

like p62, OPTN, and NDP52, are recruited and link these ubiquitinated pathogen substrates 

to the LC3-containing autophagosome. In addition, ATG proteins and other autophagy 

components are recruited via ubiquitin to mediate autophagosome formation. (Right) During 

LC3-associated phagocytosis (LAP), engagement of the PRRs during uptake of a pathogen 

triggers the recruitment of the Class III PI3K complex, comprised of VSP34, Beclin 1, 

UVRAG, and Rubicon, to the single membraned LAPosome. This complex is required for 

sustained and localized production of PI3P, which is needed for the recruitment of the 

downstream LAP machinery (like ATG5, ATG12, ATG16L, and ATG7) and stabilization of 

the NOX2 complex for ROS production. Both ROS and PI3P are required for successful 
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LC3-PE decoration of the LAPosome. In both scenarios, LC3-PE is required for fusion to 

the lysosome and subsequent degradation of its contents.
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Table 1

Pathogens associated with the autophagic machinery

Bacteria Autophagic machinery Description References

Mycobacterium Tuberculosis (Mtb) ATG5, miRNA125a

Induction of autophagy promotes clearance; unique 
role for ATG5, but not other autophagy proteins, in 

PMN during infection in vivo [20, 21, 47, 
75]MtB infection elevates expression of 

miRNA-125a-3p (miR-125a) and targets UVRAG to 
inhibit autophagy and phagosomal maturation

Mycobacterium bovis ATG5 Induction of autophagy promotes clearance [20, 75]

Burkholderia pseudomallei LC3

LAP required for clearance

[76, 77]Bacterial Bsa T3SS effector proteins, bopA and 
bipD, increases bacterial survival by decreasing 

LC3 accumulation

Group A Streptococcus (GAS) ATG5, NDP52, p62, NDR1
LC3 decorated autophagosome containing SpeB 

cysteine protease degrades the ubiquitin-LC3 
adaptor proteins NDP52, p62, and NDR1

[17, 20, 77, 
78]

Listeria monocytogenes p62, ATG5, Rubicon

Macroautophagy and LAP induced; mediates 
inflammatory responses to pathogen

[58, 79, 80]
LLO blocks maturation of autophagosome and 

evades into cytosol by releasing ActA

Bacteroides fragilis ATG16L1, Rubicon Outer membrane vesicles (OMVs) activate LAP for 
protection from colitis [52]

Salmonella enterica serovar 
Typhimurium

NDP52, TBK1, OPTN, 
ATG9, ATG16L1

Delivery of ubiquitinated bacteria or bacterial 
substrates for degradation [28, 37]

Shigella flexneri ATG5, NBR1, NDP52

Secretes VirG which binds to ATG5 and activates 
autophagy; delivery of ubiquitinated bacteria or 

bacterial substrates for degradation [19, 77, 80]

IcsB secreted by Shigella competes with ATG5

Legionella pneumophila Beclin 1, LC3

Inhibition of Beclin 1 restricts autophagosome 
initiation and elongation.

[17, 81, 82]

RavZ and LegA9 secreted from T4SS uncouples 
LC3 from autophagosome membrane and inhibits 

autophagosome elongation and maturation.

L. pneumophila secretes effector protein, SGPL1 
targets host sphingolipid metabolism, inhibit 

autophagosome formation and causes starvation-
induced autophagy for intracellular survival

Adherent & invasive Escherichia coli 
(AIEC) ULK1, LC3 HIF1α-mediated retention in LC3-II+ vesicles and 

induces phosphorylation of ULK1
[83]

Uropathogenic E. coli ATG16L1 Required for clearance [84]

Yersinia Pseudotubercul osis ATG5 Defect in acidification of the LC3+ autophagosome-
like vacuoles containing pathogen.

[17, 20]

Yersinia pestis LC3 Resides in LC3+ vesicles, yet prevents vacuole 
acidification

[17, 85]

Citrobacter rodentium ATG16L1 Required for clearance [86]

Pseudomonas aeruginosa ATG7, Beclin 1 Autophagy mediated clearance [87]

Klebsiella pneumoniae ATG7 Autophagy mediated clearance [88]

Franscisella tularensis
NOX2, Beclin 1, ATG5, 

ATG12, ATG16L, ATG7, 
ATG4

Disruption of NOX2-mediated ROS; 
downregulation of autophagy genes [89]
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Bacteria Autophagic machinery Description References

Coxiella burnetii Varies
Recruits autophagosomes to acquire nutrients or 
other factors that may trigger differentiation, and 
delays fusion with lysosomes for viral replication

[90, 91]

Brucella abortus ULK1, Beclin 1, ATG14, 
VPS34

Selectively recruits autophagy proteins to subvert 
clearance [48, 49]

Viruses Autophagic machinery Description References

HBV Rubicon, ATG5

Rubicon reduces IFN production and binds to 
NEMO to suppress ubiquitination, delays 

autophagosome maturation and allows viral 
replication; autophagy inhibits viral clearance

[64]

VSV Rubicon, ATG5, ATG12
Rubicon reduces IFN production and binds to 

NEMO to suppress ubiquitination and allows viral 
replication; autophagy inhibits antiviral response

[63, 64, 92]

IAV Beclin 1, Rubicon

Influenza virus matrix protein 2 causes inhibition of 
beclin1 restricts autophagosome initiation and 

elongation.
[50, 63, 64]

Rubicon reduces IFN production and bind to 
NEMO to suppress ubiquitination and allows viral 

replication

HSV-1 Beclin 1 HSV inhibition of Beclin 1 to restrict autophagy [50, 93]

Kaposi’s sarcoma herpes virus Beclin 1 BCL2-like proteins cause inhibition of Beclin 1 and 
restricts autophagy [50, 94]

HIV Beclin 1 Accessory protein Nef binds/inhibits Beclin1 
restricts autophagosome initiation and elongation [50, 95]

Zika Virus mTOR NS4A and NS4B destabilize mTOR signaling [96]

Sindbis Virus ATG5, Beclin 1

Defects in ATG5 impairs CNS clearance of Sindbis 
virus capsid

[50, 97]Ectopic Beclin 1 expression in Sindbis virus-
infected neurons suppresses viral replication in the 

brain and reduces mouse mortality.

Fungi Autophagic machinery Description References

Aspergillus fumigatus Rubicon, NOX2, LAP 
machinery

LAP-mediated degradation of and immune response 
to A. fumigatus [14, 98]

Candida albicans ATG5, Rubicon, NOX2
Rubicon binds to CARD9 and NEMO to suppress 

ubiquitination and allows for increased fungal 
burden

[62, 99]

Saccharomyces cerevisiae ATG7 LAP required for fungal clearance [27]

Cryptococcus neoformans ATG5 ATG5 aids in delivering C. neoformans in LC3+ 

autolysosome
[99]

Parasites Autophagic machinery Description References

Toxoplasma gondii ATG14, ATG9, ATG5, 
ATG7, ATG12, ATG16L1

Autophagy is required for targeting and degradation 
of T. gondii [28, 77]

Plasmodium vivax Beclin 1, VPS34, ATG5 LAP required for parasite control [100]

Pathogens (Bacteria, viruses, fungi, and parasites) with known links to components of the canonical and non-canonical autophagic machinery. 
Descriptions highlighted in green represent scenarios where pathogen clearance requires components of the autophagic machinery. Descriptions 
highlighted in red represent scenarios where autophagic components impede pathogen clearance.
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