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Abstract

Residual noise in the BOLD signal remains problematic for fMRI – particularly for techniques 

such as functional connectivity, where findings can be spuriously influenced by noise sources that 

can covary with individual differences. Many such potential noise sources – for instance, motion 

and respiration – can have a temporally lagged effect on the BOLD signal. Thus, here we present a 

tool for assessing residual lagged structure in the BOLD signal that is associated with nuisance 

signals, using a construction similar to a peri-event time histogram. Using this method, we find 

that framewise displacements – both large and very small – were followed by structured, 

prolonged, and global changes in the BOLD signal that depend on the magnitude of the preceding 

displacement and extend for tens of seconds. This residual lagged BOLD structure was consistent 

across datasets, and independently predicted considerable variance in the global cortical signal (as 

much as 30–40% in some subjects). Mean functional connectivity estimates varied similarly as a 

function of displacements occurring many seconds in the past, even after strict censoring. Similar 

patterns of residual lagged BOLD structure were apparent following respiratory fluctuations 

(which covaried with framewise displacements), implicating respiration as one likely mechanism 

underlying the displacement-linked structure observed. Global signal regression largely attenuates 

this artifactual structure. These findings suggest the need for caution in interpreting results of 

individual difference studies where noise sources might covary with the individual differences of 

interest, and highlight the need for further development of preprocessing techniques for mitigating 

such structure in a more nuanced and targeted manner.
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1. INTRODUCTION

Analysis of BOLD data is predicated on the idea that the signals of interest can be separated 

from noise, so that reliable and meaningful conclusions about brain activity can be drawn. 

Accurate removal (i.e., “cleanup”) of non-random noise is particularly important for model-

free, data-driven, techniques such as functional connectivity MRI (fcMRI) that seek to 

capture underlying structure in data. Because sources of residual noise can covary with 

individual differences of interest (e.g., Wilhelm, Trabert, & Roth, 2001; Siegel et al., 2016), 

these artifacts can produce spurious findings of group differences and may contribute to 

inconsistent results across studies when not properly addressed (Power et al., 2012; 

Satterthwaite et al., 2012; Van Dijk, Sabuncu, & Buckner, 2012; Deen & Pelphrey, 2012; 

Power et al., 2014; Tyszka, Kennedy, et al., 2014; Siegel et al., 2016; Satterthwaite et al., 

2017). Understanding structured (e.g. non-random) residual noise is therefore critical both in 

order to assess how such noise might influence conclusions, and also to develop more 

effective cleanup methods.

But while preprocessing methods and recommendations are advancing at a remarkable rate, 

approaches for quantifying structured residual noise – a necessary first step before it can be 

addressed – are still largely lacking. It is widely known that many noise sources are not 

adequately modeled and removed from BOLD data (Birn, 2012; Uddin, 2017; Power et al., 

2017a, 2017b) – in part because the mechanisms giving rise to fMRI noise are complex, 

often with temporally extended relationships between noise sources and effects. For 

instance, head motions can sometimes have effects on the BOLD signal that persist much 

longer in time than addressed by many existing preprocessing practices (Satterthwaite et al., 

2013; Power et al., 2014; 2017; 2017a). Another example is respiration, which can produce 

structured noise at short timescales as chest movements modulate the magnetic field and at 

longer lags as the vasodilatory effects of changes in arterial CO2 concentration (and 

concomitant changes in cerebral blood flow and volume) modulate the BOLD signal (Hu et 

al., 1995; Wise et al., 2004; Chang & Glover, 2009; Birn et al., 2006; 2008; 2014; Liu, 

Nalci, & Falahpour, 2017). Although methods for modeling and removing respiratory 

variance from fMRI datasets using respiratory belt recordings have been extensively 

developed (e.g., Glover, Li, & Ress, 2000; Birn et al., 2006, 2008; Chang & Glover, 2009; 

Falahpour, Refai, & Bodurka, 2013), such respiratory effects frequently remain unaddressed. 

These methods rely on models of respiration that are, like all models, imperfect, potentially 

leaving unmodeled respiration-related variance remaining in the data (Birn et al., 2006, 

2008, 2012; Falahpour, Refai, & Bodurka, 2013; Power et al., 2017a) – and many existing 

datasets do not include respiratory belt recordings, precluding the use of these methods 

entirely.

Toward this end, here we present a new method for quantifying temporally extended noise 

artifact. Our approach is general and can be used to investigate temporally extended residual 

structured noise associated with any nuisance signal, and at any spatial scale. Here, we 

primarily focus on the framewise displacement trace (FD; an index of frame-to-frame head 

movement that is derived from image realignment estimates), for two reasons. First, it is 

available in all fMRI datasets, in contrast to physiological recordings (e.g., respiratory belt 

and pulse oximeter measurements) that are frequently unavailable and when collected are 
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prone to acquisition difficulties and artifacts (Power et al., 2017a). Second, framewise 

displacements are likely to reflect numerous contributing sources and not only head motion 

per se (Power et al., 2012, 2014), and recent reports (Etzel, 2016; practiCALfMRI, 2016; 

Power, 2017; Power et al., 2017a) suggest that for multiband, high temporal resolution fMRI 

data, framewise displacements may partially index physiological noise – raising the 

possibility that framewise displacement traces might serve as a proxy or surrogate for 

assessing some effects of physiological noise in datasets even where those traces are 

unavailable. Here, we focus primarily on the global cortical (e.g., gray matter) BOLD signal, 

as many noise sources including motion and respiration can have widespread cortical effects 

(Wise et al., 2004; Satterthwaite et al., 2013; Power et al., 2014; 2017; 2017a).

Our general approach is to ask whether there is any common structure in the BOLD epochs 

immediately following all similar instances of the nuisance signal – specifically, following 

all framewise displacements within a particular range of values – using a construction 

similar to a peri-event time histogram. If there is any systematic covariance shared by BOLD 

epochs that follow similar displacements (within and/or across subjects), such a pattern 

reflects residual displacement-linked noise that should not be present in a perfect cleanup – 

regardless of the underlying sources of that noise. This is an extension of the logic of 

standard preprocessing, in which any relationship between the BOLD signal and a nuisance 

signal of no interest (typically, motion parameters) across the entire run is considered to be 

noise and removed in preprocessing (Friston et al., 1996).

Using this method, we find a characteristic pattern of structured BOLD artifact following 

even extremely small framewise displacements, including those that fall well within typical 

standards for data inclusion. These systematic FD-linked patterns of noise persist for 

temporally extended epochs – on the order of 20–30 seconds – following an initial 

displacement, with the magnitude of signal changes varying systematically according to the 

initial magnitude of displacement. This lagged BOLD structure seems to be impervious to 

many different methods of preprocessing, including some state of the art practices, and 

patterns are consistent across two independent datasets. This consistency allows us to model 

this artifact using one dataset and apply the model to individual FD traces in the other 

dataset, generating customized traces reflecting the cumulative effects of this artifact across 

each run. Using this approach, we find that the lagged BOLD structure following framewise 

displacements explains considerable variance in the global cortical BOLD signal. 

Importantly, global functional connectivity estimates also vary as a function of preceding 

framewise displacements. Disentangling the mechanisms underlying the observed residual 

noise is beyond the intended scope of this manuscript. However, physiological traces are 

available for a subset of scans analyzed, and exploratory analyses of these traces suggest the 

involvement of respiratory processes – because lagged BOLD structure is also apparent 

following respiratory (but not cardiac) fluctuations, and because respiratory and framewise 

displacement traces are themselves related. Removing a global BOLD signal during 

preprocessing minimizes the lagged structure following displacements, both in the BOLD 

signal and in functional connectivity. To allow others to examine their data in this manner, 

and to facilitate the development of preprocessing methods for addressing artifactual lagged 

structure, we have made a script available for use as a novel quality assessment tool for 

visualizing lagged structure associated with any nuisance measure.
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2. METHODS

2.1. Datasets and data collection

We examined two fMRI datasets, one collected in-house at Indiana University (IU) and 

described here, and one publicly available from the Human Connectome Project (HCP; 

described in Smith et al., 2013). IU dataset acquisition parameters were chosen to be similar 

to Human Connectome Project (HCP) parameters, although there were slight differences 

(e.g. IU TR = 813 ms; HCP TR = 720 ms).

2.1.1. IU Dataset—Participants in this dataset included 25 high-functioning adults with an 

autism spectrum disorder (ASD; mean age 24.2; range 17–54; 6 female) and 29 age- and IQ-

matched controls (NT; mean age 24.5; range 19-37; 5 female), recruited from the 

Bloomington, IN area. We have made a subset of this data publicly available as part of the 

Autism Brain Imaging Data Exchange II (ABIDE II) initiative (Di Martino et al., 2017). We 

excluded very little data a priori due to our interest in noise-associated BOLD structure, but 

we did exclude three ASD participants’ data due to consistently poor quality on all runs. In 

this report, we did not consider diagnosis and collapsed across groups, leaving a final sample 

of N=51 (41 male). All subjects provided written informed consent; all experimental 

procedures were approved by the Indiana University Institutional Review Board.

The study design consisted of two scanning sessions separated by approximately one week 

(mean 9.3 days between scan sessions, SD 6), with an optional third scanning session 201.6 

days (approximately 6.7 months) later (SD 78.3 days). Each scanning session consisted of 

two approximately 16-minute resting state scans (interleaved with two scans where subjects 

watched videos, to be reported elsewhere). Subjects were instructed to move as little as 

possible and remain awake with eyes open. No visual stimulus was provided. Wakefulness 

was monitored via an MR-compatible video camera; scans in which participants fell asleep 

were excluded from analysis (6 scans total; 4 from 3 ASD participants and 2 from 1 NT 

participant). One additional scan was excluded due to a technical issue. The final sample 

analyzed included multiple scans for most participants (261 scans analyzed, mean 4.83 (SD 

1.66) resting state runs per participant). Anatomical images were acquired after (session 1 

and 2) or in between (session 3) resting state functional runs, during which participants 

watched a video in the scanner.

MRI images were acquired using a 3 Tesla whole-body MRI system (Magnetom Tim Trio, 

Siemens Medical Solutions, Natick, MA) with a 32-channel head receive array. Both raw 

and prescan-normalized images were acquired; raw images were used at all preprocessing 

stages and in all analyses unless specifically noted. During functional scans, T2*-weighted 

multiband echo planar imaging (EPI) data were acquired using the following parameters: 

TR/TE = 813/28 ms; 1200 volumes; flip angle = 60°; 3.4 mm isotropic voxels; 42 slices 

acquired with interleaved order covering the whole brain; multi-band acceleration factor of 

3. Preceding the first functional scan, gradient-echo EPI images were acquired in opposite 

phase-encoding directions (10 images each with P-A and A-P phase encoding) with identical 

geometry to the EPI data (TR/TE = 1175/39.2 ms, flip angle = 60°) to be used to generate a 

fieldmap to correct EPI distortions, similar to the approach used by the Human Connectome 

Project (Smith et al., 2013). High-resolution T1-weighted images of the whole brain 
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(MPRAGE, .7 mm isotropic voxel size; TR/TE/TI = 2499/2.3/1000 ms) were acquired as 

anatomical references.

2.1.2. HCP Dataset—This dataset was comprised of a subset of 73 participants (34 male) 

from the “100 Unrelated Subjects” Public Data release of the Human Connectome Project 

(http://www.humanconnectome.org). Participant recruitment and consent is described in 

(Van Essen et al., 2013). In the current sample, participant age groups were as follows: 11 

22-25 years, 27 26-30 years, 34 31-35 years, 1 36+ years. As for the IU dataset, very little 

data was excluded a priori, but we did exclude one subject with consistently poor data 

quality, leaving a final sample of N = 72 (33 male). MRI data acquisition and preprocessing 

is detailed in (Smith et al., 2013; Glasser et al., 2013) and briefly summarized here.

Subjects participated in four resting state scans across two sessions (2 scans per session), 

each approximately 15 minutes long (1200 TRs). In the current sample analyzed, 4/4 runs 

were available for 40 subjects and 2/4 runs were available for 33 subjects (due to an 

interrupted data download) for a total of 226 runs. Participants were instructed to remain 

awake with eyes open. MRI images were acquired using a customized 3 Tesla Siemens 

Skyra with 32-channel head coil. Parameters for T2*-weighted resting state scans were as 

follows: TR/TE = 720/33.1 ms; 1200 volumes; flip angle = 52°; 2 mm isotropic voxels; 72 

slices; multi-band acceleration factor of 8. High-resolution T1-weighted images of the whole 

brain were also acquired (MPRAGE, .7 mm isotropic voxel size; TR/TE/TI = 

2400/2.14/1000 ms) as anatomical references.

2.2. MRI Data Preprocessing

2.2.1. IU Dataset—Data were preprocessed with an in-house pipeline using FEAT (v6.00) 

and MELODIC (v3.14) within FSL (v. 5.0.8; FMRIB’s Software Library, 

www.fmrib.ox.ac.uk/fsl), Advanced Normalization Tools (ANTs; v2.1.0) (Avants et al., 

2011), and Matlab_R2014b.

Individual anatomical images were bias-corrected and skull-stripped using Advanced 

Normalization Tools (ANTs), and segmented into gray matter, white matter, and CSF partial 

volume estimates using FSL FAST. From 20 randomly selected anatomical images (10 NT; 

10 ASD), a midspace template was constructed using ANTs’ buildtemplateparallel tool, and 

then skull-stripped. Composite (affine and diffeomorphic) transforms warping each 

individual anatomical image to this midspace template, and warping the midspace template 

to the Montreal Neurological Institute MNI152 1mm reference template, were obtained 

using ANTs.

The initial five volumes (~4 s) of each functional run were discarded to minimize 

magnetization equilibration effects. Framewise displacement traces for this raw (trimmed) 

data were computed using fsl_motion_outliers. Five parallel preprocessing streams were 

used to assess robustness of results: FIX, conventional GLM, conventional GLM including 

global signal regression (GSR), conventional GLM followed by mean cortical signal 

regression (equivalently, mean grayordinate time series regression or “MGTR”, following 

Burgess et al., 2016) in a second step (GLM+MGTR), and finally FIX followed by mean 

cortical signal regression in a second step (FIX+MGTR). Common preprocessing steps 
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included rigid-body motion correction, field map-based geometric distortion correction, and 

non-brain removal, but not slice-timing correction (due to the fast TR; Smith et al., 2013). 

Initial preprocessing also included weak highpass temporal filtering (> 2000s FWHM) to 

remove slow drifts (as in Smith et al., 2013) but no spatial smoothing. Off-resonance 

geometric distortions in the EPI data were corrected using a fieldmap derived from two 

gradient-echo EPI images collected in opposite phase-encoding directions (P-A and A-P) 

using FSL topup (similar to Smith et al., 2013). The FIX and FIX+MGTR preprocessing 

streams employed FSL-FIX (Salimi-Khorshidi et al., 2014) and regressed out independent 

components classified as noise by a classifier trained on independent but similar data and 

validated on hand-classified functional runs. For the FIX preprocessing stream, these 

residuals were analyzed as the “cleaned” data. In conventional GLM, GSR, and GLM

+MGTR preprocessing streams, nuisance signals were linearly regressed from the 

preprocessed data, and the residuals were analyzed as the cleaned data. In all 3 streams, 

nuisance signals included the mean time course for the eroded white matter and CSF masks, 

their temporal derivatives, as well as the 6 rigid-body motion parameters and their temporal 

derivatives. In GSR preprocessing only, nuisance signals also included two additional 

nuisance regressors: the global signal (the mean time course for the whole brain mask) and 

its derivative. In both the GLM+MGTR and FIX+MGTR preprocessing streams, the mean 

cortical signal (the mean BOLD signal across the individuals’ gray matter partial volume 

estimate obtained from FSL FAST) was regressed from the residuals (following 

conventional GLM or following FIX) in a second step (as in Burgess et al., 2016), and the 

resulting residuals were analyzed as the cleaned data.

Subsequent preprocessing steps were identical for each preprocessing stream. Registration 

of cleaned functional data occurred as follows. An affine transformation matrix registering 

the mean prescan-normalized functional image to each subject’s skull-stripped T1-weighted 

anatomical image was obtained using Boundary-Based Registration (BBR) via epi_reg 
within FSL. (The mean prescan-normalized images yielded more accurate alignment than 

the raw functional images, due to the reduced contrast in fast-TR EPI data; see also Smith et 

al., 2013.). Next, each subject’s functional images were transformed to the MNI152 

reference all in one step, using ANTS to apply a concatenation of this affine transformation 

matrix with the composite (affine+diffeomorphic) transforms mapping between the subject’s 

anatomical image, the midspace template, and the MNI152 reference.

For this dataset, we examined these residuals at two spatial scales. For most analyses, we 

analyzed the mean cortical BOLD signal, computed as the mean of the cleaned BOLD signal 

across the individuals’ gray matter partial volume estimate (obtained from FSL FAST). For 

functional connectivity analyses, we also obtained region of interest timeseries using the 

Harvard-Oxford Atlas distributed with FSL. Here, individual region of interest masks were 

created for each subject from the product of the individuals’ gray matter partial volume 

estimate and the region of interest mask (as in Tyszka, Kennedy, et al., 2014). The weighted 

mean signal across each individual region of interest mask was then extracted from the 

cleaned BOLD signal for each functional run. These time courses together formed the basis 

for all subsequent analyses.
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2.2.2. HCP Dataset—Preprocessing for the HCP dataset is extensively described by Smith 

and colleagues (2013). We analyzed primarily the “Resting State fMRI FIX-Denoised” 

release, as well as the “minimal” preprocessing release (both as described in Smith et al., 

2013; Glasser et al., 2013). We also conducted an additional preprocessing step, FIX

+MGTR, by regressing out the mean cortical signal (and its derivative) from the FIX-

denoised residuals in a second step (as described in Burgess et al., 2016). Framewise 

displacement traces based on the movement parameters distributed with the data were 

computed via in-house MATLAB scripts following Power and colleagues (2012).

As for IU data, we examined the resulting residuals at two spatial scales, mean cortical and 

ROI-level, as well as at a third finer scale of grayordinates (surface-based gray matter 

vertices; Glasser et al., 2013). ROI-level analyses used the parcellation introduced by 

Glasser and colleagues (2016). For mean cortical and ROI-level analyses, the time courses to 

be analyzed were extracted by computing the mean across the corresponding grayordinates.

For this dataset only, physiological recordings were available for some runs (N = 182), 

downloaded from the “900 Subjects Release” from the Human Connectome Project. 

Following Power et al., (2017a) the respiratory belt traces were preprocessed as-provided, 

without manual inspection for artifacts. The pulse oximeter traces were also preprocessed 

as-provided, without inspection, as they were not the primary focus of this project. 

Physiological records were preprocessed using the PNM (“Physiological Noise Modelling”) 

tool distributed with FSL (Brooks et al., 2008) to generate 34 physiological regressors: 32 

RETROICOR-style regressors (Glover et al., 2000) including 8 cardiac regressors (up to 4th 

order), 8 respiratory regressors (up to 4th order), and 8 interaction regressors (up to 2nd 

order), and as well as heart rate and respiration volume per time (Birn et al., 2006).

We also used PNM-generated regressors in one additional preprocessing method further 

detailed in Supplemental Methods.

2.3. Data Analysis

2.3.1. Overview—Our objective is to characterize structured patterns in the preprocessed 

BOLD signal following framewise displacements (or other nuisance measurements) of 

various magnitudes. To do this, we use an approach similar to a peri-event time histogram, 

and analyze a collection of time courses aligned by some shared event. But rather than 

aligning BOLD time courses based on an external stimulus presentation event, we instead 

consider framewise displacements as an “event” and examine the BOLD signal during the 

65 time points that follow. Framewise displacements are measured continuously, and so one 

1200 TR resting state run for one subject contains 1135 (1200-65) displacement “events” 

together with the immediately following 65 TR segments of the BOLD signal. We aggregate 

all such BOLD segments (within and across subjects) with similar displacements, and then 

ask whether the magnitude of initial displacement predicts any common pattern later in the 

BOLD segment. For example, we can ask whether there is any common structure in the 

BOLD signal 5, 20, or 30 time points following a displacement of approximately 0.4mm.

Our general approach can be applied to investigate BOLD time courses at any spatial scale. 

Here we primarily examine the mean of the preprocessed BOLD signal across the entire 
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gray matter (cortical signal) across resting state scans, due to recent reports of prolonged 

consequences of larger framewise displacements that are largely global throughout the 

cortex (Satterthwaite et al., 2013; Power et al., 2014; 2017; 2017a). We also examine the 

preprocessed BOLD signal at each “grayordinate” (Glasser et al., 2013), to examine whether 

patterns observed are truly global.

Then, we examine individual subjects and individual runs. We begin by using this same 

general approach to aggregate the cortical BOLD signal for all scans within an individual, to 

ask whether the group-level structure observed is also visible within individual subjects. We 

then ask how well this lagged BOLD structure predicts the global cortical BOLD signal for a 

given scan. To do this, we use the pattern of lagged BOLD structure in one dataset as a 

model, apply that independent model to individual FD traces in the other dataset, and ask 

how much variance in the global cortical BOLD signal has been explained.

Next, we examine whether global functional connectivity estimates computed across short 

sliding windows also vary according to preceding displacements – specificially, whether 

functional connectivity might vary as a function of temporal distance from displacement and 

displacement magnitude. (For instance, whether functional connectivity computed across 

windows beginning 5 TRs after a ~0.4 mm displacement differed from functional 

connectivity computed across windows beginning 20 TRs later, and whether these FC 

estimates differed from FC estimates following ~0.2mm displacements.)

Finally, to gain some initial hints into the mechanisms underlying the patterns we observe, 

we also examined lagged structure associated with physiological recordings where available, 

for a subset of runs in the HCP dataset.

The details of each of these analyses are provided in the following sections.

2.3.2. Main approach—We first z-scored the mean cortical BOLD signal (GM signal) 

computed from the preprocessed BOLD data for every resting state scan. Next, we extracted 

all epochs of 66 TRs from this z-scored signal. We chose 66 TRs (~50 seconds) because 

based on prior reports, we expected displacement-linked effects on the BOLD signal to 

largely dissipate before then (Satterthwaite et al., 2013; Power et al., 2014; 2017; 2017a) and 

to limit computational demands.

For a single 1195 TR resting state scan, this yielded 1130 (1195-66-1) epochs. We excluded 

the initial epoch (corresponding to the first TR of each preprocessed scan, which has 0 

displacement by definition), yielding 1129 epochs per 1195 TR scan (for IU data, and 1134 

epochs for the 1200 TR scans in the HCP dataset). We then combined these epochs across 

subjects and across resting state scans (except when noted), resulting in 294669 epochs in 

total for the IU dataset and 256284 for HCP.

As described earlier, we conceptualized framewise displacement as an “event” and we were 

interested in whether similar displacements at the beginning of an epoch were linked with 

any structure later in the epoch. We defined similar displacement ranges as follows: 0-0.05 

mm, 0.05-.1 mm, .1-.15 mm, .15-.2 mm, .2-.25 mm, .25-.3 mm, .3-.35 mm, .35-.4 mm, .4-.

45 mm, .45-.5 mm, .5-.55 mm, .55-.7 mm, .7-.9 mm, .9-1.5 mm. Wider ranges for the larger 
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displacements were chosen to increase sample sizes, which are listed in Supplemental Table 

1. BOLD epochs beginning with displacements exceeding 1.5mm were rare (see 

Supplemental Table 1) and were excluded from analysis.

For each displacement range, we report the mean z-scored cortical BOLD signal across all 

the epochs that begin with a framewise displacement within that range. (For instance, for 

displacements of ~0.4mm, the mean signal across every timepoint that occurs 1 TR after a 

~0.4mm displacement, the mean across every timepoint that occurs 2 TRs after a ~0.4mm 

displacement, and so on.) We note that an alternative approach is a finite impulse response 

analysis, as employed by Satterthwaite and colleagues (2013), which deconvolves closely 

spaced events (see also Birn et al., 2008, for a related approach). Our approach, in contrast, 

captures the natural statistics of displacements as they occur in the scanner. We also 

conducted this main analysis using medians rather than means, with no appreciable 

differences, so only means are reported here. We repeated this main cortical BOLD signal 

analysis for each preprocessing method considered and for each dataset.

We also conducted this main analysis at the fine spatial scale of grayordinates 

(corresponding to gray matter surface vertices; Glasser et al., 2013) using the HCP dataset. 

For 15,000 randomly selected cortical grayordinates, we repeated the main analysis using 

the preprocessed BOLD signal at that grayordinate rather than the mean cortical BOLD 

signal. To limit computational demands, this analysis (only) was restricted to the subset of 

40 HCP subjects where all 4 runs were available.

We also conducted this main analysis at the individual subject level, using the mean cortical 

BOLD signal, and aggregating across all runs available for that subject. Due to the smaller 

sample sizes, we omitted displacement ranges that did not have at least 20 instances.

All analyses were conducted in TR space, but because TR differed slightly between IU and 

HCP datasets (813 ms vs. 720 ms), we present all results converted into seconds for easier 

comparison between datasets.

2.3.3. Alternative explanations—Because our main approach introduces some structure, 

we conducted a number of checks to ensure the patterns documented were not inadvertently 

introduced by our method or explained by other factors. These secondary analyses were all 

conducted using the mean cortical BOLD signal, for both datasets.

Check 1: We permuted the association between BOLD signal and FD traces, such that one 

subject’s BOLD data for a given run is associated with another subject’s FD trace for that 

same run, 1000 times, repeating the main analysis for each permutation. The expectation is 

that the average pattern across these iterations should not show any displacement-BOLD 

relationship.

Check 2: Our approach averages together potentially overlapping epochs, which could 

introduce additional autocorrelation above and beyond what is typical in fMRI data. 

Accordingly, we repeated the complete main analysis but only averaged over epochs that 

were at least 20 TRs apart, so that adjacent TRs are never directly averaged together. We 
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conducted this analysis 20 times, to sample the data exhaustively. The expectation is that the 

average pattern observed across these iterations resembles the original pattern obtained in 

the main analysis.

Check 3: We conducted the original analysis upon epochs of FD traces rather than the 

BOLD signal. The expectation is that any structure observed in the FD traces is dissimilar to 

the patterns observed in the BOLD signal.

Check 4: We conducted the main analysis using 100 data-derived displacement ranges, each 

range including 1% of displacement magnitudes. Ranges are presented in Supplemental 

Figure 6. The expectation is that the pattern obtained resembles the primary pattern observed 

using the original displacement ranges, which would indicate that the pattern is not an 

artifact of displacement range choices.

2.3.4. Modeling the global cortical BOLD signal using lagged structure 
following displacements—We used the lagged BOLD structure following displacements 

in one dataset (i.e., either IU or HCP) as a model for independently predicting the mean 

cortical BOLD signal in the other dataset based on displacements alone. To do this, we first 

linearly interpolated the lagged patterns observed in each dataset from the native TR space 

to the TR space of the other dataset. 57 TRs post-displacement were available for both 

datasets (65 HCP TRs ≈ 57 IU TRS). Next, for a given FD trace, for the displacement 

magnitude at a given TR, we obtained the expected (based on the other dataset) lagged 

BOLD structure following that displacement for the next 57 TRs, and iteratively summed all 

such expected structure across the entire scan. We then used these resulting customized 

models of lagged post-displacement structure to predict the mean cortical BOLD signal for 

that same run. To establish a null distribution, for each scan, we conducted 1000 

permutations in which we linked the mean cortical BOLD signal for that scan with 

customized models of lagged post-displacement structure from scans from different subjects 

and conducted the same regressions. We established empirical p-values for individual runs 

by comparing the actual R2 obtained against the R2 obtained by all permutations of that 

subject’s data against unrelated customized models. For comparison, we also conducted the 

same regressions and null distributions using raw FD traces rather than the customized 

models of lagged post-displacement structure.

We were also interested in how many TRs post-displacement the customized models should 

include to achieve the best predictions possible. To assess this, we varied the number of 

post-displacement TRs included in the model, t, from 1 to 57. For each such t we conducted 

the same regressions as above across all runs, predicting the global cortical signal as a 

function of customized lagged displacement models including t post-displacement TRs.

As above, we converted results to be a function of seconds post-displacement rather than 

TRs post-displacement, for clearer comparison across datasets.

2.3.5. Examining functional connectivity—We finally examined whether functional 

connectivity estimates differ as a function of time elapsed since displacement and the 

magnitude of that displacement. To do this, we used the z-scored mean preprocessed BOLD 
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time courses computed across the 96 cortical ROIs of the Harvard-Oxford Atlas for the IU 

dataset and across the 360 cortical ROIs of the Glasser parcellation (Glasser et al., 2016) for 

the HCP dataset. We strictly censored all TRs with FD >= .2 mm. We then computed 

cortical functional connectivity as the fisher-z transformed pairwise correlations among 

segments of these ROI time series – specifically across short overlapping sliding windows of 

about 20 seconds (25 TRs for IU, 28 TRs for HCP). Sliding windows that were more than 

50% censored were excluded entirely. Based on the results of the main analysis regarding 

the global nature of the patterns observed, we restricted our primary FC analysis to global 

FC levels (i.e., the mean computed across an entire FC matrix).

Our process was as follows: for a given scan and a given TR with an associated framewise 

displacement value, we compute global FC across a sequence of overlapping sliding 

windows spanning a total of around 54 seconds (66 windows for IU dataset, 75 for HCP). 

The first sliding window is taken entirely before the displacement in question. Windows are 

moved forward in time in 1 TR increments. For each displacement range, all such peri-

displacement-event global FC window sequences were averaged first within subjects and 

then across subjects. Sample sizes for this analysis are listed in Supplemental Table 3.

To rule out alternative explanations, we also permuted the association between BOLD signal 

and FD traces, such that every subject’s BOLD data is associated with a different subject’s 

FD trace, repeating this FC analysis for each permutation. We conducted 500 such 

permutations for each dataset.

2.3.6. Structure associated with physiological recordings—To gain insights into 

potential mechanisms underlying the structure observed, we applied our main analytic 

method to examine structure associated with the physiological recordings that were available 

(for a subset of the HCP dataset only), with a more comprehensive examination beyond the 

intended scope of this manuscript. We examined 34 physiological regressors generated by 

FSL PNM based on these recordings. Regressors were z-scored and then used to define 14 

percentile-based ranges, from the lowest to the highest values observed (across subjects), for 

each type of regressor. Note that we chose 14 ranges for consistency with prior analyses, but 

the pattern of results was similar across numerous range choices.

We examined these regressors in two ways. First, we repeated the main analysis, but instead 

of examining epochs of the BOLD signal as a function of displacement ranges, we examined 

BOLD epochs as a function of the ranges obtained for each of the nuisance signals 

examined. Second, to better understand relationships between displacement and each 

physiological regressor, we conducted an analogue of Check 3, except instead of examining 

epochs of FD traces as a function of displacement ranges, we examined epochs of each type 

of physiological trace as a function of those same displacement ranges.
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3. RESULTS

3.1. Framewise displacements are followed by residual lagged structure in the global 
cortical BOLD signal

We found that a robust, temporally-extended relationship between framewise displacement 

and the mean cortical BOLD signal remains following many common preprocessing 

methods. Figure 1a (left) depicts this relationship within the IU dataset after FIX 

preprocessing. It presents the mean cortical BOLD signal taken across all epochs that begin 

with displacements within each of the ranges examined. The epochs that are combined for 

this analysis are taken from different times, different runs, and different individuals during a 

resting state protocol, and thus share nothing in common except initial framewise 

displacement magnitude. Although a perfect cleanup would eliminate any covariance 

between displacement and the later BOLD signal, it is evident from Figure 1a (left) that 

residual structure following displacement remains, and varies systematically with the 

severity of initial displacement.

Structure is evident in the BOLD epochs following most of the displacement ranges 

examined. Extrema are observed at around 2-3 seconds following the initial displacement 

and again after around 10-14 seconds. Peak amplitudes are largest for both extremes of the 

displacement ranges considered – for the very smallest displacements as well as for the 

larger displacements, and scale parametrically with displacement magnitude. Very small 

displacements are followed by an initial BOLD depression and a later BOLD elevation, 

while large displacements are followed by an initial BOLD elevation and later depression. 

For most displacement ranges, the BOLD signal returns to baseline around 25-30 seconds 

post-displacement. Supplemental Figure 1a presents the mean cortical BOLD signal along 

with 95% confidence intervals for each initial displacement range separately, for closer 

examination of the patterns and range of variability. Supplemental Figure 2a presents a 

censored version of Figure 1a, with all TRs with FD >= 0.2mm censored, indicating that the 

pattern is not driven by excessive motions occurring after the initial displacement.

3.2. The pattern of lagged structure following displacements is consistent across datasets 
and preprocessing streams

As Figure 1b (left; see also Supplemental Figure 1b) demonstrates, a very similar pattern of 

results is present when the same analyses are conducted using the HCP dataset (FIX 

preprocessing), despite differences in sites, populations, and protocols. Initial framewise 

displacements are associated with cortical BOLD signal elevations and depressions 

extending far after the initial displacement. Although there are some numerical differences 

across datasets in the amplitudes and temporal properties of the mean cortical BOLD signal 

for the different displacement ranges, the overarching structure is largely the same: two 

opposite-signed extrema separated by around 10 seconds and then an eventual return to 

baseline with amplitudes increasing systematically with displacement magnitude.

This pattern is not specific to just one commonly used preprocessing method. Figure 1a 

(right; see also Supplemental Fig. 1c) show the same analyses conducted using conventional 

GLM preprocessing in the IU dataset; Figure 1b (right; see also Supplemental Fig 1d) show 
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the same analyses conducted using the minimal preprocessing release of the HCP dataset. In 

all cases, the patterns are largely the same.

3.3. The pattern is not accounted for by several alternative explanations

To establish that the pattern truly covaries with displacements rather than arising due to 

some other aspect of our analytic procedure, we conducted a number of checks. First (Check 

1), we repeatedly permuted the association between the BOLD signal and framewise 

displacement traces, such that BOLD data from one subject was associated with framewise 

displacement from another subject. The results are presented in Figure 2a (IU FIX) and 2b 

(HCP FIX) and the characteristic structure observed in Figure 1 is absent.

Second, our analytic approach introduces autocorrelation above and beyond what is 

normally found in fMRI data, because it averages together all BOLD epochs for a given 

displacement range, which could include neighboring timepoints within a run. (For instance, 

if framewise displacements at TR 2 & 3 are equivalent for a given scan, the BOLD epoch 

from TR 2-67 and the epoch from TR 3-68 would be among the epochs averaged together.) 

To ensure that this additional autocorrelation is not driving our pattern of results, we 

conducted a downsampled version of the same analyses, in which we only averaged together 

epochs that were separated by at least 20 TRs (Check 2). We repeat this analysis 20 times, to 

fully sample the data, and present the average patterns across iterations in Supplemental 

Figure 5. The structure is highly similar to the original pattern of results, indicating this 

pattern is not driven by autocorrelation among neighboring data points.

Third, framewise displacement is of course measured continuously throughout the scan, and 

displacements at every time point (and not only at the onset of each epoch) have the 

potential to influence the BOLD signal. As our approach does not attempt to deconvolve 

adjacent displacement “events” (as in e.g. Satterthwaite et al., 2013), we must ask whether 

the pattern observed in the BOLD signal following displacement might be explained by 

similar systematic patterns in subsequent displacements. To do this (Check 3), we repeated 

the main analysis, but instead of examining epochs of the BOLD signal, we examined 

epochs of the FD trace itself. Figure 3 presents the mean FD trace for each displacement 

range. Larger initial displacements tend to be associated with somewhat larger 

displacements across the entire epoch, with remarkably similar patterns across datasets. 

However, the pattern observed in the FD traces is quite distinct from the pattern observed in 

the BOLD data. Although these ongoing displacements will surely contribute to the BOLD 

patterns observed, they are not sufficient to fully explain them.

Finally, in both datasets, sample sizes varied across displacement ranges. To ensure that the 

structure observed was not influenced by the base rates of displacements within each range, 

we repeated the same analyses using percentile-based displacement ranges. The results are 

presented in Figure 4 (left), in which each line plotted shows the mean pattern across each 1 

percentile of displacement magnitudes for IU (4a) and HCP (4b) datasets using FIX 

preprocessing. (The displacement ranges are provided in Supp. Fig. 6). Similarity to the 

original pattern of results in Figure 1 is high, indicating that the pattern does not arise due to 

our original selection of displacement ranges, and similarity of the pattern across datasets is 

remarkable.
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3.4. The pattern is largely consistent across the whole cortex

We began with the mean cortical BOLD signal based on reports of temporally lagged effects 

of displacements that were widespread across the brain. To assess whether the specific 

patterns we observed in the mean cortical BOLD signal are accurately characterized as 

global patterns, we asked whether similar patterns were observable across the cortex at a 

finer scale. To do this, using the HCP dataset, we repeated the main analyses using the 

BOLD signal for a given grayordinate rather than the mean cortical BOLD signal. Figure 5 

depicts the mean signal for each displacement range for a randomly selected subset of 

15,000 cortical grayordinates, with the global pattern from Figure 1b (left) superimposed. It 

is clear from the figure both that the pattern is found at individual grayordinates and is 

largely homogeneous across grayordinates. Thus, the lagged BOLD structure we observe 

following displacements is indeed largely global.

3.5. The pattern is observed within many individual runs

The analyses conducted thus far have aggregated data together across subjects and runs. To 

ask whether displacements are followed by this lagged BOLD structure within individual 

subject data, we repeated the main analysis but aggregated together all runs available for a 

given subject. Figure 6 (Column 1) show the results of this analysis within several example 

subjects from both datasets. As is clear from the figure, the original pattern is observable 

within many – but not all – individual subjects, and some individual variability in peak 

onsets and amplitudes is apparent. To roughly quantify correspondence between the main 

analysis (aggregated across subjects) and individual subject analyses, we correlated patterns 

observed in individual subjects for each displacement range with the patterns observed in the 

main analysis re-run with that subject left out. Mean correlations within individual subjects 

ranged from r = −.17-.87 (mean .49; SD .25; one-sided t(50)=13.93, p << .0001, Cohen’s d 
= 1.95) for the IU dataset and from r = −.02-.86 (mean .37; SD .20; one-sided t(71)=15.38, p 
<< 0.0001, Cohen’s d = 1.81) for the HCP dataset.

3.6. The pattern explains a considerable range of variance in the global cortical BOLD 
signal

The pattern we observe is global and found within many individual subjects’ aggregated 

data. This suggests that it could potentially be used to predict a non-negligible component of 

the mean cortical BOLD trace for an entire individual scan. To assess this, we used the main 

patterns for each displacement range (Fig. 1a & 1b, left) to a model the expected temporally 

extended BOLD structure for the epoch following a given framewise displacement. Then, 

we simply summed this predicted structure following each displacement in a given FD trace 

– in effect, convolving the pattern for each displacement range with each displacement trace 

– and z-scored the result. This process generated a customized model of the expected 

cumulative lagged BOLD structure following the unique displacements within each 

individual scan. Here, to ensure independence, we used the pattern observed in one dataset 

(interpolated to match sampling rates) to predict the lagged BOLD structure following FD 

traces in the other dataset – e.g. we use HCP BOLD data to predict the structure following 

IU FD traces, and vice versa.
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Figure 6 (Column 2) shows these customized models of lagged structure following 

displacements for one scan from the example subjects depicted in Figure 6 (Column 1), 

along with the global cortical BOLD signal and framewise displacement trace. As can be 

seen in these examples, in many – but not all – cases, the customized model corresponds 

remarkably well with the global cortical signal. It is worth underscoring that these 

customized models are generated only as a function of framewise displacements. Thus, a 

sizeable component of the global cortical BOLD signal reflects noise that is linked with 

indices of displacement.

To quantify the correspondence between the global cortical BOLD signal and these 

customized models of lagged structure following displacements, we ran linear regressions 

predicting the global cortical BOLD signal for each run as a function of the customized 

model for that run. R2 values ranged from 0 to .41 (mean .08; SD .08) for IU data, and from 

0-.32 (mean .07, SD .07) for HCP data. Beta weights for customized models ranged from - 

0.09 to 0.6 for IU data (mean .25, SD .14) and from −0.16 to .57 for HCP data (mean .2, 

SD .16), exceeding chance for both datasets (IU: one-sided t(260)=27.09, p << .0001, 

Cohen’s d = 1.7; HCP: t(221) = 19.5, p << .001, Cohen’s d = 1.31). And consistent with the 

previous section, for most but not all individual scans (70% for IU dataset; 58% for HCP 

dataset; α=0.05), the customized model explains more variance than expected by chance 

based on a permuted null distribution established by regressing out customized models for 

other subjects’ scans. For comparison, using raw FD traces (instead of the customized 

models) to predict the global cortical BOLD signal yielded negligibly small R^2 values (IU 

data: 0-.009, mean .0007, SD .001; HCP data: 0-.008, mean .0007, SD .001), smaller than 

for the customized model regressions (IU data: t(260) = 16.3, p << 0.0001, Cohen’s d = 

1.41; HCP data: t(221) = 13.15, p << 0.0001, Cohen’s d = 1.24). Thus, for many runs, 

considerable variance in the global cortical BOLD signal can be explained as a function of 

displacement traces alone – and specifically as a function of the temporally extended 

structure following framewise displacements. (However, we do not suggest using these 

customized models for confound regression as an alternative preprocessing strategy; see 

Discussion.)

The next question that arises is how long following displacement needs to be modeled to 

achieve this level of prediction – in other words, for how long does the lagged structure 

following framewise displacements contribute to the global cortical signal? To answer this 

question, we varied the length of time post-displacement included in the model, and then 

repeated the same regressions as above. The results are presented in Figure 7. For both 

datasets, additional variance in the global cortical BOLD signal is explained as more time 

post-displacement is included in the customized lagged displacement models, up to about 20 

seconds. These results further corroborate that framewise displacements are followed by 

temporally extended BOLD changes that contribute significantly to the global cortical 

BOLD signal.

3.7. Functional connectivity estimates vary similarly

It is generally accepted that functional connectivity (FC) estimates can be influenced by 

large displacements in immediately preceding timepoints; this is the reason censoring/
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scrubbing (Power et al., 2012, 2014) is now a standard procedure. One implication of the 

current findings is that FC estimates may be influenced not only by immediately preceding 

large displacements, but also might vary as a function of displacements that are farther in the 

past and potentially smaller.

To examine this possibility, we estimated FC across short sliding windows and examined 

whether FC varied as a function of the magnitude of displacement events and the temporal 

distance between the displacement and the sliding window (e.g., whether a given 

displacement occurred at the end, beginning, or even before the beginning of a sliding 

window). We focused on global FC (the mean across an FC matrix) because the lagged 

residual BOLD structure observed was largely global (see Fig. 5), and we chose short sliding 

windows (~20 seconds, around half the duration of Fig. 1), in order to be able to detect any 

associated modulations in FC. Time series were censored at the strictest threshold in current 

use (0.2mm; Power et al., 2014; Ciric et al., 2017) before computing FC. We averaged 

together global FC for all sliding windows with the same temporal distance from 

displacement events of same range – for instance, for all sliding windows with onset 4 

seconds following a ~0.5mm displacement – first within subjects and then across subjects. 

The question is whether global FC estimated across these sliding windows – which are 

combined together only on the basis of the displacement events in their vicinity – will be 

effectively uniform or instead might vary systematically.

Figure 8 presents the mean global FC across each sliding window for each displacement 

range for the IU (a) and HCP (b) datasets. For illustrative purposes, example mean 

functional connectivity matrices for the IU dataset are also presented in Figure 9. As these 

figures make clear, FC estimates vary according to the magnitude of displacement and the 

temporal distance between the sliding window and the displacement event. Displacement 

magnitude appears to be associated with a baseline shift, such that global FC in the vicinity 

of a larger displacement is consistently higher, across windows, than global FC calculated in 

the vicinity of a small displacement. Perhaps more importantly, for most displacement 

ranges, global FC levels vary across sliding windows – by as much as 17% and 35% for 

larger displacements in the IU and HCP datasets, respectively. These displacement-

associated modulations are not limited to the largest displacements – for many displacement 

ranges, including some of the smallest, global FC can fluctuate 5% or more across sliding 

windows – and can take tens of seconds (or longer) before appearing to plateau.

To ensure that these modulations truly covary with framewise displacements, as before (see 

Figure 2), we repeatedly permuted the association between the BOLD signal and framewise 

displacement traces such that every individual’s BOLD data was linked with another 

individual’s framewise displacement trace, and conducted this same sliding window FC 

analysis. The mean results across permutations are presented in Figure 10 and the 

modulation of global FC levels across sliding windows observed in Figure 8 is absent (cf. 

Fig. 8a to 10a; Fig. 8b to 10b). Thus, FC estimates vary as a function of prior framewise 

displacements that occurred many seconds in the past.
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3.8. The patterns observed following displacements are related to respiration

We have found thus far that framewise displacements, especially very small and very large 

displacements, are followed by global modulations in the BOLD signal, and functional 

connectivity estimates fluctuate similarly. The next natural question pertains to the 

mechanisms that might produce such modulations. This question is beyond the original 

scope of this manuscript – because most datasets do not have physiological recordings, we 

focused on the framewise displacement traces that are available in all fMRI datasets. 

However, to gather some initial hints into the potential mechanisms contributing to these 

displacement-linked patterns in the BOLD signal, we conducted some exploratory analyses 

of the physiological recordings that are available for many runs in the HCP dataset, although 

we note that a full disentangling of contributing noise sources would need to be the topic of 

a different investigation.

To do this, we apply our main analytic method to examine the BOLD signal as a function of 

physiological regressors rather than framewise displacements, binning values of the 

regressor into 14 percentile-based ranges for consistency with prior analyses. We examined 

34 physiological regressors generated by FSL PNM (“Physiological Noise Modelling” tool), 

including 32 RETROICOR-style regressors (Glover et al., 2000) modeling cardiac and 

respiratory frequencies and their interactions, as well as regressors reflecting heart rate and 

respiration volume per time (RVT; Birn et al., 2006). Some example regressors are presented 

in Supplemental Figure 8, for the same individuals whose data is presented in Figure 6. 

Again, a comprehensive examination of these noise sources and their interrelationships is 

beyond the intended scope of the current work, but we summarize some initial insights here 

(see also Supplemental Table 3 and Supplemental Figure 9-13).

Figure 11 presents lagged BOLD structure associated with two example physiological 

regressors – respiration volume per time (RVT; Fig. 11a) and heart rate (HR; Fig. 11b; 

lagged BOLD structure associated with all regressors examined is presented in 

Supplemental Figure 10 for the interested reader. In general, we found minimal lagged 

structure associated with any of the cardiac regressors and their interactions. To quantify the 

extent of structure apparent in the main analysis, we examined the absolute value of the peak 

amplitude observed for each range (i.e., the extreme value of the mean z-scored BOLD 

signal across the epochs beginning with nuisance values in each range). The largest such 

peak for any of the cardiac regressors and their interactions was 0.083 (Fig. 11b), with a 

mean largest peak of 0.032 across regressors (SD = 0.015), compared to 0.44 for the original 

displacement-based pattern observed (Fig. 1b). In contrast, considerably more lagged 

structure was associated with the respiratory regressors (mean largest peak 0.19, SD = 

0.098), especially (but not exclusively) respiratory volume over time (Fig. 11a; see also 

Supplemental Figure 10 for lagged structure associated with other respiratory regressors). 

The lagged BOLD patterns associated with respiration are not the same as the lagged 

patterns associated with displacements, but their similar temporal and parametric properties 

are suggestive of the possibility that respiratory mechanisms may underlie some of the 

displacement-linked lagged structure in the BOLD signal (see also Supp. Fig. 9).

If this is true, there must be a systematic relationship between respiratory traces and 

framewise displacements, examples of which have emerged recently in fast-TR datasets 
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(Etzel, 2016; practiCALfMRI, 2016; Power, 2017; Power et al., 2017a). Mean cross-

correlations between raw framewise displacement traces and the respiratory regressors, 

across lags from −21 to 21 TRs, were generally low: the largest mean cross-correlation 

across available runs (for any respiratory regressor and lag) was 0.1, with a mean across all 

regressors and lags of 0.00093 (SD = .015) (see also Supplemental Table 3). However, low 

similarity between nuisance traces spanning an entire run could obscure a more nuanced 

relationship between traces at smaller timescales. Toward that end, we used our method to 

examine epochs of the respiratory regressors as a function of the same initial framewise 

displacement ranges used in the prior analyses (similar to the earlier Check 3 analysis). As is 

evident in Figure 12, which depicts RVT as a function of initial framewise displacements, 

considerable structure is present. (Supplementary Figure 11 presents this same analysis for 

all physiological regressors examined). Very small displacements are followed by an 

increase in RVT, while larger displacements tend to precede a large decrease in the RVT 

trace. These patterns are suggestive of the possibility that the BOLD signal modulation 

following very small displacements (Fig. 1b) may be largely due to inspiration, while 

exhalation may play a role in the BOLD signal modulation following larger displacements.

However, regardless of the underlying sources of the lagged structure apparent in the BOLD 

signal, structure that covaries with a nuisance trace is likely to be an artifact. Thus in the 

next and final section we return to lagged structure following framewise displacements 

(which can be assessed in both datasets), and present one method for minimizing these 

artifactual patterns.

3.9. Removing a global signal attenuates lagged structure following displacements in the 
BOLD signal and modulation of functional connectivity estimates

The patterns of lagged BOLD structure following framewise displacements presented thus 

far are consistent across datasets and robust across a number of preprocessing methods. 

However, given that these patterns are widespread across the cortex (cf. Fig. 5), it might be 

expected that preprocessing with global signal regression would yield a different pattern of 

results. Figure 13 depicts the results of the primary analysis (Column 1; see also Fig. 1) and 

the functional connectivity analysis (Column 2; see also Fig. 8) conducted upon data that has 

been preprocessed with global signal regression. We employed three different methods of 

global signal regression: with the whole-brain signal (and its derivative) included within 

nuisance regression (IU data, Fig. 13a, top row) and with the mean cortical signal regressed 

out as a second step following conventional nuisance regression (IU data, Fig. 13a, second 

row) and following FIX denoising (IU data, Fig. 13a, third row, HCP data, Fig. 13b).

As is clear in Figure 13, global signal regression of all forms attenuates the lagged structure 

following framewise displacements in the BOLD signal (Column 1) and in functional 

connectivity estimates (Column 2) to different degrees, with the greatest improvement for 

mean cortical signal removal following FIX denoising. Thus, preprocessing methods that 

employ global signal regression – although controversial (Murphy et al., 2009; Saad et al., 

2012; Birn, 2012; Gotts et al., 2013; Murphy & Fox, 2016; Power et al., 2017a; Liu et al., 

2017; Power et al., 2017b; Satterthwaite et al., 2017) – considerably mitigate this artifact and 

its potential for spuriously influencing conclusions.
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4. DISCUSSION

Here we introduce a tool for assessing data quality by visualizing residual lagged BOLD 

structure associated with nuisance signals of any kind. We use this tool to reveal that after 

numerous preprocessing methods, the global cortical BOLD signal contains residual lagged 

structure for 20-30 seconds following both large and small framewise displacements. This 

residual structure is robust: it is observable within many individuals’ data, consistent across 

independent datasets, and independently explains a considerable range of variance in the 

global cortical BOLD signal. Global functional connectivity estimates also vary as a 

function of displacements occurring many seconds in the past, even after very strict 

censoring. Exploratory investigations reveal that similar patterns of lagged BOLD structure 

follow respiratory fluctuations, which are in turn related to framewise displacements – 

suggesting respiration as one of the contributors to the residual displacement-linked noise 

we observe. Regardless of its underlying sources, though, lagged structure associated with a 

nuisance trace is likely to be artifactual; we find that global signal regression is one way to 

attenuate this residual lagged BOLD structure.

There are relatively few methods available for comparing effectiveness of different 

preprocessing methods and assessing their potential impact on results (see also Ciric et al., 

2017; Power et al., 2015; Turner et al., 2015); our approach is robust and results are quick 

and easy to compute, requiring no additional preprocessing or extra information beyond that 

which is easily obtainable from all fMRI datasets. Toward this end, we have made a 

MATLAB script available at github.com/socialbrainlab/lag_patterns/. It takes as input an 

array of BOLD traces at any spatial scale (i.e., global or voxel-level) from any number of 

scans along with an array of corresponding nuisance traces (framewise displacement or any 

other nuisance measure sampled at the same rate) and generates the plots depicted in Figure 

1. It can also be used to examine inter-relationships among nuisance traces, or, more 

generally, any time series. Numerous customization options are also available, allowing 

exploration of different displacement ranges and different epoch lengths. This tool allows 

researchers to evaluate how well lagged structure associated with any nuisance signal is 

eliminated in a given dataset (especially important for analyses where individual differences 

in nuisance factors could influence conclusions) and may facilitate further research into 

future alternative and ideally more nuanced approaches for removing residual structure. 

Importantly, this approach may also allow researchers to discover new patterns in their data, 

going beyond cross-correlations to reveal associations between timeseries at finer scales (c.f. 

Fig. 12). It is versatile and flexible: potential extensions include not only examining 

measures of additional noise sources but also exploring inter-relationships among network 

(or regional) timeseries during both resting and stimulus-evoked states, and potentially 

individual differences therein.

Using this approach as a discovery tool revealed seven key insights that build upon and 

extend the existing literature, which we enumerate in the next several paragraphs. We find 

that (1) lagged global BOLD structure follows framewise displacements. This is consistent 

with Satterthwaite and colleagues (2013), who documented that effects of larger 

displacements were widespread across the cortex (see also Power et al., 2014; 2017; 2017a) 

and that BOLD elevations occurred in the first seconds immediately following larger 
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displacements (Figure 3a from Satterthwaite et al., 2013; note the origin in our figures 

corresponds to x = 1 in theirs) – as well as with Power and colleagues (2014; 2017; 2017a), 

who documented that the effects of displacements can persist more than 10 seconds post-

displacement. We believe this is the first report that (2) even the smallest FD values – 

effectively, the absence of displacement – are associated with residual lagged BOLD 

structure. Further, (3) these patterns of lagged BOLD structure following displacements are 

so consistent across independent datasets that they can be used to independently predict the 

global cortical BOLD signal as a function of framewise displacement traces alone, 

explaining a considerable range of variance (up to 41%). This is consistent with reports that 

the global signal contains a substantial noise component (Chang, Cunningham, and Glover, 

2009; for review see Liu et al., 2017), with variability in nuisance factors including 

displacement predicting variability in the global signal (Power et al., 2017a), but to our 

knowledge this is the first direct prediction of the global cortical signal itself using 

displacement traces – and specifically, by modeling the temporally lagged consequences 

following these displacements (note that prediction based on raw FD traces alone was 

unsuccessful). We also find that (4) prolonged displacement-linked structure is apparent in 

global functional connectivity estimates, consistent with Power and colleagues’ (2014) 

findings that displacements can influence functional connectivity within the 10s following a 

movement as well as with recent reports (Laumann et al., 2016) that fluctuations of 

functional connectivity estimates across subsamples can be linked with data quality 

measures across those subsamples.

We also conducted an exploratory examination of lagged BOLD structure associated with 

physiological traces where available. We found that (5) lagged global BOLD structure 

follows respiratory variations, captured most clearly (but not exclusively) by respiratory 

volume per time (RVT). RVT captures changes in the envelope of respiratory changes as 

well as breathing rate (Birn et al., 2006; 2008) and is thought to reflect changes in arterial 

CO2 concentration, which has vasodilatory properties and influences the BOLD signal after 

a temporal lag, with largely global effects (Wise et al., 2004; Birn et al., 2006, 2008; Chang 

& Glover, 2009). Indeed, lagged BOLD signal modulations associated with RVT are 

sufficiently systematic that a respiratory response function (RRF) has been derived and can 

be used to explain a considerable proportion of variance in the global BOLD signal (Birn et 

al., 2008; Chang et al., 2009). In fact, we observed remarkable similarity between the RRF 

(which was derived using respiratory recordings and a cued breathing paradigm; Birn et al., 

2008) and the main pattern of lagged residual structure we observed to be associated with 

displacements (which was obtained at rest from FD traces, without physiological recordings) 

– as well as between a time-shifted RRF and the pattern of lagged residual structure 

associated with RVT (see Supp. Fig. 9). It is also worth pointing out that the patterns 

observed following the smallest possible displacements (Fig. 1, dark blue) bear striking 

similarity to BOLD activity following the release of a breath hold (Magon et al., 2009) and 

several example epochs following isolated deep breaths show a global BOLD signal 

decrease and then increase (c.f. Fig. 6 in Power et al., 2017a) that appears similar to the 

pattern we document a few seconds after larger displacements – likewise hinting at 

respiratory involvement even prior to the analysis of physiological traces (see also Burgess 

et al., 2016).

Byrge and Kennedy Page 20

Neuroimage. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The lagged patterns associated with respiration were not identical to those associated with 

displacements, and other noise sources are likely to contribute to the aggregate pattern as 

well. For instance, the effects of larger displacements on the BOLD signal are well-

documented (e.g. Hajnal et al., 1994; Friston et al., 1996; Satterthwaite et al., 2013; Power et 

al., 2015; Caballero-Gaudes & Reynolds, 2017), and, as such, head movements per se are 

one probable contributor. However, the notable similarities between the displacement-linked 

and respiration-linked patterns suggests that respiratory fluctuations – which are sampled 

more frequently in the fast-TR fMRI datasets analyzed in this report (Power et al., 2014; 

Power, 2017; Burgess et al., 2016) – are among the sources of the displacement-linked noise 

we observed. These similarities are likely to arise in part because (6) displacement and 

respiratory traces are themselves related. Although this relationship was weak across the 

length of entire scans, at finer temporal scales, small and large displacements were 

associated with distinct respiratory patterns (c.f. Fig. 12): very small displacements preceded 

an increase in respiration volume per time, while large displacements preceded a decrease. 

Very recent reports (Etzel, 2016; practiCALfMRI, 2016; Power, 2017; Power et al., 2017a) 

have depicted relationships between framewise displacements and the envelope of 

respiratory oscillations in multiband, high temporal resolution fMRI data; our findings 

provide a systematic description of this phenomenon and its consequences.

Finally, whatever the underlying mechanisms, we find that (7) this lagged residual BOLD 

structure and the similar modulations in functional connectivity can both be largely 

attenuated by removing a global signal. This dovetails with our findings that the global 

signal has a considerable displacement-linked component (consistent with Satterthwaite et 

al., 2013; Power et al., 2017a) and is consistent with other reports indicating that global 

signal regression may best minimize the relationship between displacement and functional 

connectivity (Yan et al., 2013; Power et al., 2014, 2015, 2017b: Burgess et al., 2016; Ciric et 

al., 2017). We note that these findings are not intended as a critique of existing 

preprocessing methods – for instance, FIX was explicitly not designed to remove global 

signals (Salimi-Khorshidi et al., 2014) – but rather to point out that further cleanup of the 

signal is possible.

We highlight four key implications of our findings here. First, the residual lagged structure 

observed has potentially serious consequences for data-driven analysis techniques that 

examine BOLD timecourses across or within individuals (e.g. correlation-based methods). 

For functional connectivity analyses, we show modulations in global functional connectivity 

across sliding windows as a function of displacement magnitude and temporal distance since 

displacement. These modulations have the greatest potential to lead to spurious conclusions 

for group and individual difference analyses, and may be most serious when comparing 

groups and individuals whose displacement or respiratory characteristics (among other 

nuisance factors) might differ, such as in comparisons between clinical and control groups or 

across different ages and health-related measures (see also Deen & Pelphrey, 2012; Power et 

al., 2012, 2017b; Satterthwaite et al., 2012; Siegel et al., 2016; Wilhelm et al., 2001; 

Pecukonis et al., 2017; Satterthwaite et al., 2017). This residual lagged structure can also 

affect within-individual analyses, producing spurious modulations of dynamic functional 

connectivity across epochs that differ in displacement and/or respiratory characteristics (see 
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also Laumann et al., 2016). For inter-subject correlation analyses (Hasson et al., 2004, 2009; 

Byrge, Dubois, et al., 2015), unique patterns of displacement and respiration across a scan 

are likely to artifactually decrease time course similarity across subjects, while similarities in 

displacement and respiration (potentially linked to stimulus properties) could artifactually 

increase BOLD timecourse similarity. It is important to underscore that the differences in 

nuisance factors that could spuriously influence such comparisons include their temporal 

characteristics and not just distributional characteristics: for instance, two subjects with 

identical distributions of framewise displacements that occur in a different order will present 

with distinct lagged BOLD structure following those displacements. This thus indicates the 

need to go beyond simply testing whether average displacements across a scan might differ 

between groups and individuals, and instead develop analysis and preprocessing strategies 

that mitigate these concerns.

Second, global signal regression remains a controversial preprocessing step (Murphy et al., 

2009; Saad et al., 2012; Birn, 2012; Gotts et al., 2013; Murphy & Fox, 2016; Power et al., 

2017a; Liu, Falci, & Falahpour, 2017; Satterthwaite et al., 2017), having costs as well as 

benefits (for extensive discussion, see Murphy & Fox, 2016; see also Satterthwaite et al., 

2013; Ciric et al., 2017; Power et al., 2017a, 2017b), and individual researchers will need to 

weigh these tradeoffs in the light of their specific questions of interest. For these reasons, 

and echoing Power and colleagues (2017a), we explicitly refrain from recommending or not 

recommending global signal regression, although we do note that global signal regression 

was the only preprocessing method we examined that attenuated lagged displacement-linked 

residual structure (see also Power et al., 2017b). For the individual difference analyses that 

may be most susceptible to spurious conclusions arising from residual lagged BOLD 

structure, researchers might decide that the benefits of removing the global signal could 

outweigh the costs. When the global signal is retained, however, our results suggest caution 

is needed in interpreting results where differences in nuisance characteristics could covary 

with the individual differences of interest (see also Power et al., 2017a, 2017b; Siegel et al., 

2016).

Third, research groups who are concerned about the costs of global signal regression for 

their specific questions might rely on censoring alone for artifact reduction. Although early 

reports (c.f. Fig. 8b in Power et al., 2014) demonstrated that censoring/scrubbing 10 seconds 

following displacements was necessary to minimize the effects on functional connectivity, in 

practice, censoring/scrubbing only the timepoint associated with displacement, or just a few 

timepoints afterward, is a much more common practice – probably because extensive 

censoring results in data loss beyond what many datasets can tolerate (see also Power et al., 

2014). Our findings make clear that such frequently-used minimal censoring practices leave 

abundant residual lagged structure in the BOLD signal. Furthermore, very small 

displacements are generally considered indicative of high-quality data and are therefore not 

considered problematic. However, we show that residual lagged structure follows even these 

very small displacements – effectively, a lack of displacement – probably because such 

moments are likely to precede an increase in respiratory volume (c.f. Fig. 12) and its 

concomitant effects on the BOLD signal. Importantly, the magnitude of residual lagged 

structure following the very smallest displacements is comparable to that which follows 0.4 

mm displacements (c.f. Fig. 1). Note also that 0.39mm has emerged as one of the data 
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quality thresholds in common use; we emphasize here that displacements of 0-0.05mm are 

followed by comparable residual BOLD structure that also need to be addressed in some 

way. However, addressing this residual structure that follows both very small and larger 

displacements for over 20 seconds by using censoring/scrubbing alone is clearly not feasible 

due to unacceptable data loss, which again highlights the need for further development of 

methods that can address such residual lagged BOLD structure without entirely removing 

the global signal.

Fourth, while the current findings suggest respiration as one of the key mechanisms 

underlying the residual lagged structure we observed following displacements, this 

respiratory-linked structure was detectable without physiological recordings, due to the 

relationship observed between respiration and displacements. Thus, framewise 

displacements can – albeit imperfectly – index the lagged BOLD effects of physiological 

noise. This is important because, as noted, physiological recordings are not available for the 

majority of existing fMRI datasets, and when collected are often unusable due to acquisition 

problems and artifacts. But the lagged BOLD structure associated with respiration has the 

potential to spuriously influence research conclusions, so this structure needs to be 

quantified and addressed, regardless of whether physiological recordings are available. 

Nearly all techniques for cleaning up physiological noise without global signal regression 

rely on physiological recordings, so being able to use framewise displacement traces – 

which are always available – as a surrogate is an important step forward and may be key in 

the development of more targeted cleanup methods for existing datasets (although, for new 

acquisitions, obtaining and using physiological monitoring information would be preferable 

when possible).

The current findings, and particularly the implication of respiratory processes, seem to 

suggest that if respiratory variance is removed from the data, a qualitatively different pattern 

of lagged residual structure linked with displacements would emerge in the cleaned data, 

providing insights into noise sources. For instance, if the structure associated with the 

smallest displacements disappeared following respiratory cleanup, but the structure 

associated with larger displacements remained unchanged, one might conclude that residual 

structure linked with very small displacements was caused by respiration and that structure 

linked with large displacements might instead be caused by head movements. The problem 

with this logic hinges on a subtle point that Power and colleagues (2017a) have recently 

emphasized: the distinction between modeled and unmodeled variance associated with a 

given process. Despite extensive and continuing development of methods for modeling and 

remove respiratory variance, models of respiratory variance (like all models) are not perfect 

(Birn et al., 2006, 2008, 2012; Falahpour, Refai, & Bodurka, 2013; Power et al., 2017a), and 

this means that only modeled respiratory variance – and not all variance caused by 

respiratory processes – can be removed from the data. Unmodeled variance of respiratory 

and non-respiratory origin will remain in the data following respiratory cleanup, and without 

additional information, it is not possible to conclusively disentangle the origins of that 

residual noise.

With those caveats in mind, we did conduct a rigorous voxel-level respiratory cleanup upon 

the subset of HCP data with physiological recordings available (see Supplemental Methods). 
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The results of the main analysis repeated upon this respiratory preprocessed data are 

included in Supplemental Figures 12 and 13. As is evident, the pattern of lagged residual 

structure is attenuated following respiratory cleanup, but qualitatively unchanged (note that 

Power and colleagues (2017a) also found residual “unwanted global variance time-locked to 

motion and respiration” after removing respiration volume per time and its convolution with 

the RRF from a different dataset). However, the conclusions that can be drawn from these 

results are limited due to the distinction just raised – and the strong similarity between the 

respiratory response function (Birn et al., 2008) and the main pattern of lagged residual 

structure following respiratory cleanup (Supplemental Figure 12b) remains suggestive of 

unmodeled respiratory variance remaining in the data. Without a targeted data acquisition 

designed to disentangle different noise contributions, discussions of mechanisms must 

remain speculative, but we believe that our analyses converge on the conclusion that 

framewise displacements can serve as an imperfect surrogate for assessing residual noise 

including that of probable respiratory origin.

We note that our approach captures lagged BOLD structure at the aggregate level (see also 

Satterthwaite et al., 2013), combining similar events across different epochs. An alternative 

approach is to consider events individually, because BOLD activity following individual 

displacements can be variable and idiosyncratic (Power et al., 2014, 2015). We believe both 

of these approaches are ultimately needed and provide complementary insights. Potential 

noise sources are of course occurring continuously throughout a scan, and because of their 

lagged effects on the BOLD signal, ongoing displacements and respiration will influence 

BOLD activity in a history-dependent manner. In other words, one contributor to the event-

level variability observed by Power and colleagues (2014; 2015) following individual 

displacement events is likely to be preceding and subsequent variation in physiological 

factors and/or ongoing displacements.

As we have noted, our approach might facilitate the development of future cleanup methods 

that address this lagged residual variance in a more targeted manner, without entirely 

removing the global signal. However, it is important to emphasize that our customized 

models of lagged structure for individual scans (Fig. 6) are not sufficiently refined that they 

can be offered as an alternative preprocessing strategy without further development. Indeed, 

we attempted such an alternative cleanup, using these customized models as confound 

regressors, and found that the lagged residual structure was insufficiently mitigated. (We 

note in passing that this highlights one strength of our approach: examining residual 

structure pre- and post- cleanup to assess effectiveness). This initially counterintuitive 

finding arises in part from a combination of the event-level variability just discussed and our 

epoch-based modeling being used to model the length of an entire scan. Consider a scan, 

where, for instance, some of the displacement events are followed by the stereotyped lagged 

BOLD pattern we document, but the other displacement events are followed by idiosyncratic 

BOLD patterns. For such a scan, the subsequent customized models of lagged structure (e.g. 

pink lines in Fig. 6) may have little relationship with the BOLD data across the entire scan, 

and removing such a confound regressor from the data would have little effect, with the 

variance associated with both the stereotyped and idiosyncratic BOLD patterns remaining in 

the data alike. Nonetheless, with more sophisticated modeling, potentially at the individual 
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subject level and using multiple confound regressors, it is possible that our approach could 

inform a future alternative to global signal regression.

Inter-relationships among potential fMRI noise sources are very complicated (see also 

Power et al., 2017a) but can also be informed by the current approach. An important 

direction for future research is a better understanding of these relationships and how they 

might vary within and across individuals, which might relate to individual differences in the 

response functions associated with physiological noise (Falahpour et al., 2013), as well as in 

the overall dominance of physiological noise in the BOLD signal (Birn et al., 2014). 

Furthermore, while a systematic deconstruction of noise factors is beyond the intended 

scope of the present work, another important future direction is to tease apart the distinct 

contributions of head movement per se, chest movement due to cardiac and respiratory 

cycles, changes in CO2 and cerebral blood flow and volume due to respiration, among other 

potential physiological noise sources, to the aggregate lagged structure we observe. Different 

preprocessing strategies (e.g. bandpass filtering, orders of preprocessing steps) also have the 

potential to differentially influence the contributions of these factors as well as the general 

appearance of artifactual structure across datasets. Finally, it is important to note that not all 

lagged structure in resting state fMRI data is artifactual: recent work has established non-

artifactual physiological temporal lag structure at shorter timescales than examined here 

(Mitra et al. 2014, 2015, 2016; Matsui et al. 2016) that would not be expected to covary with 

displacements or other nuisance measures.

5. CONCLUSIONS

In sum, here we introduce a novel discovery and quality assessment tool. We use it to find 

that framewise displacements – even very small displacements – are followed by predictable 

changes in the global cortical BOLD signal that extend for tens of seconds and are likely to 

be at least partially the consequences of respiration. Regardless of its underlying sources, 

this residual lagged BOLD structure has the potential to spuriously influence conclusions of 

functional connectivity and other correlation-based analyses. Removing a global signal 

mitigates this risk. Our script is publicly available for use as a benchmark for comparing 

preprocessing methods within and across studies, and to encourage development of more 

targeted approaches for addressing these kinds of residual lagged structure. Ultimately, such 

methodological improvements in detecting and handling artifacts will enhance our ability to 

separate brain signal from noise (Uddin, 2017; Power et al., 2017b), allowing more accurate 

and confident measurement of variation in brain data and advancing the science of 

individual differences (see also Dubois & Adolphs, 2016).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mean cortical BOLD signal following framewise displacements of similar magnitudes. (a) 

IU dataset, FIX (left) and GLM (right) preprocessing. (b) HCP dataset, FIX (left) and 

Minimal (right) preprocessing. The BOLD signal for each run was z-scored before dividing 

into epochs, combining across runs and across subjects, and averaging. See also 

Supplemental Figure 3 for a version of Fig. 1a (right) conducted using slice time correction, 

and Supplemental Figure 4 for a version of Fig 1b (left) conducted in the WM and CSF.
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Figure 2. 
Mean patterns across 1000 permutations of BOLD-FD relationships in (a) IU and (b) HCP 

datasets with FIX preprocessing (Check 1). The structure observed in Figure 1 is absent. 

Note that the same 14 displacement ranges are plotted as in Figure 1 but cannot be visually 

distinguished.
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Figure 3. 
Main analysis performed using epochs of FD traces instead of BOLD signal (Check 3). 

Figure depicts mean FD across epochs following similar initial displacements for (a) IU and 

(b) HCP dataset with FIX preprocessing. Larger initial displacements tend to be associated 

with larger displacements throughout the epoch, but the structure differs from the pattern 

observed in the BOLD data.
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Figure 4. 
Mean cortical BOLD signal following data-derived displacement ranges, each corresponding 

to 1 percentile of displacements for (a) IU and (b) HCP datasets. Displacement ranges for 

each dataset are presented in Supplemental Figure 6; the smallest displacements are in blue 

while the largest displacements are in yellow.
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Figure 5. 
Main analysis performed at individual grayordinates for HCP data with FIX preprocessing. 

Each raster contains 15,000 rows; each row corresponds to one randomly-selected 

grayordinate and depicts the mean BOLD signal following similar framewise displacements 

at that grayordinate, from 0 to 46 seconds post-displacement. Each of the 14 rasters depicts 

the same 15,000 randomly selected cortical grayordinates in the same order. The mean 

cortical BOLD signal for each displacement range (previously presented in Fig. 1b, left) is 

superimposed in color. See also Supplemental Figure 7 for this same analysis repeated in 

white matter and CSF voxels.
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Figure 6. 
Example subject-level and run-level results for (a) IU and (b) HCP datasets with FIX 

preprocessing. Left: Pattern observed within individual subject data. Displacement ranges 

with fewer than 20 instances are omitted. Mean rLOO is the mean of the correlations between 

this subject’s pattern as displayed here and the aggregate pattern for the remaining subjects, 

across all displacement ranges. Right: Global cortical signal (black), customized models of 

lagged structure following displacements (pink), and framewise displacement traces (blue) 

for one scan from the subject whose data is depicted at left. R2 values refer to regressions 

independently predicting global cortical signal from lagged structure following 

displacements, for the scan depicted.
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Figure 7. 
Predicting the global cortical BOLD signal as a function of customized models constructed 

from individual FD traces. Models vary in the length of time they include post-displacement 

(x axis). The y axis depicts the mean R2 across all scans along with 95% confidence 

intervals of the mean (for visualization), for (a) IU and (b) HCP datasets with FIX 

preprocessing.
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Figure 8. 
Mean global functional connectivity taken across sliding windows associated with 

displacements in a given range for (a) IU and (b) HCP datasets with FIX preprocessing. 

Sliding windows are approximately 20 seconds long; window 0 (purple) spans the ~20s 

immediately prior to displacements in a given range; each subsequent window advances 

forward in time by 1 TR. Global FC is the mean of the FC matrix for a sliding window. 

Strict censoring at FD >= 0.2mm was conducted before all FC estimates were computed. For 

each displacement range, all such peri-displacement-event global FC window sequences 

were averaged first within subjects and then across subjects. Three example windows are 

shown to illustrate how the FC is sampled from the BOLD data. Note that the number of 

ROIs differs between datasets: a relatively coarse parcellation of 96 ROIs for IU data (a) and 

more fine-grained parcellation of 360 ROIs for HCP data (b), and this is likely to contribute 

to differences in global functional connectivity baselines across the datasets. See Figure 9 

for example mean functional connectivity matrices that correspond to the points plotted in 

Figure 8a.
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Figure 9. 
Example mean functional connectivity matrices corresponding to points plotted in Figure 8a, 

for IU dataset with FIX preprocessing, for each displacement range and for every 5th sliding 

window. Functional connectivity is computed across a ~20 second sliding window after 

strict censoring at FD >= 0.2mm; all corresponding FC matrices are averaged within 

subjects first and then the across-subject average is depicted here. For example, the upper 

left matrix depicts depicts functional connectivity computed across ~20 second sliding 

windows immediately prior to all displacements under 0.05mm, averaged first within 

subjects and then across subjects. See Figure 8 for further explanation of sliding window 

analysis.
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Figure 10. 
Mean global functional connectivity taken across sliding windows associated with 

displacements in a given range for (a) IU and (b) HCP datasets with FIX preprocessing, after 

500 permutations of BOLD-FD relationships (see Methods). Strict censoring at FD >= 

0.2mm is used. Plots are on the same scale as Figure 8; the structure observed in Figure 8 is 

absent here. (Although some structure is present due to complicated interactions between 

decreased sample sizes and increased censoring as displacements increase, patterns are 

substantially reduced relative to Figure 8.)
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Figure 11. 
Mean cortical BOLD signal (a) following initial respiration volume per time (RVT) values 

of similar magnitudes and (b) initial heart rates (HR) of similar magnitudes, both for HCP 

dataset with FIX preprocessing.
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Figure 12. 
Mean Respiration Volume per Time (RVT) trace following framewise displacements of 

similar magnitudes, for HCP dataset with FIX preprocessing. Each RVT trace is z-scored 

before combining across runs and averaging.
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Figure 13. 
Results when a global signal is removed in preprocessing, either by including the mean 

whole-brain signal in nuisance regression (IU data: a, top row) or by regressing out the mean 

cortical BOLD signal in a second step following conventional GLM preprocessing (IU data: 

a, second row) and following FIX preprocessing (IU data: a, third row; HCP data: b). 

Column 1: Main pattern of lagged BOLD structure following framewise displacements. 

Column 2: Mean global functional connectivity taken across sliding windows associated 

with displacements in each range, after strict censoring. Window 0 spans the ~20s 

immediately prior to a given displacement, and each window slides forward in time in 1 TR 

increments. Differences in global functional connectivity baselines across rows are likely to 

arise due to differences in preprocessing methods (e.g., differences in ROI coarseness). Y-

axis ranges for both columns were selected to be as comparable as possible to original 

analyses (Figure 1; Figure 8).
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