
Received:
22 October 2017

Revised:
3 February 2018

Accepted:
23 February 2018

Cite as: Shimpei Morimoto,
Koji Yahara. Identification of
stress responsive genes by
studying specific relationships
between mRNA and protein
abundance.
Heliyon 4 (2018) e00558.
doi: 10.1016/j.heliyon.2018.
e00558

https://doi.org/10.1016/j.heliyon.2018

2405-8440/� 2018 The Authors. Pub

(http://creativecommons.org/licenses/b
Identification of stress
responsive genes by studying
specific relationships between
mRNA and protein abundance

Shimpei Morimoto a, Koji Yahara b,∗

aDivision of Biostatistics, Kurume University School of Medicine, Fukuoka, Japan

bAntimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan

∗Corresponding author.

E-mail address: k-yahara@nih.go.jp (K. Yahara).
Abstract

Protein expression is regulated by the production and degradation of mRNAs and

proteins but the specifics of their relationship are controversial. Although

technological advances have enabled genome-wide and time-series surveys of

mRNA and protein abundance, recent studies have shown paradoxical results,

with most statistical analyses being limited to linear correlation, or analysis of

variance applied separately to mRNA and protein datasets. Here, using recently

analyzed genome-wide time-series data, we have developed a statistical analysis

framework for identifying which types of genes or biological gene groups have

significant correlation between mRNA and protein abundance after accounting

for potential time delays. Our framework stratifies all genes in terms of the

extent of time delay, conducts gene clustering in each stratum, and performs a

non-parametric statistical test of the correlation between mRNA and protein

abundance in a gene cluster. Consequently, we revealed stronger correlations

than previously reported between mRNA and protein abundance in two

metabolic pathways. Moreover, we identified a pair of stress responsive genes

(ADC17 and KIN1) that showed a highly similar time series of mRNA and

protein abundance. Furthermore, we confirmed robustness of the analysis

framework by applying it to another genome-wide time-series data and
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identifying a cytoskeleton-related gene cluster (keratin 18, keratin 17, and mitotic

spindle positioning) that shows similar correlation. The significant correlation

and highly similar changes of mRNA and protein abundance suggests a

concerted role of these genes in cellular stress response, which we consider

provides an answer to the question of the specific relationships between mRNA

and protein in a cell. In addition, our framework for studying the relationship

between mRNAs and proteins in a cell will provide a basis for studying specific

relationships between mRNA and protein abundance after accounting for

potential time delays.

Keywords: Bioinformatics, Computational biology, Mathematical biosciences, Cell

biology

1. Introduction

Protein expression is known to be regulated by the production and degradation of

mRNAs and proteins, but details about their specific relationships are controversial

[1]. Although technological advances have enabled genome-wide and time-series

surveys of mRNA and protein abundance that should deepen our understanding

of the relationships, recent studies using cells under non-steady state (perturbed

by biological stress) have instead shown paradoxical results [2, 3, 4].

For example, in a study of time-dependent changes of the transcriptome and prote-

ome in Saccharomyces cerevisiae (yeast) subjected to osmolarity stress, the authors

found that the maximum mRNA and protein levels were well correlated for the up-

regulated genes, but not for the downregulated ones [5]. Another study examined the

correlation between mRNA and protein abundance changes in yeast in response to

rapamycin, an anticancer and immunosuppressive drug, where it was found that

most of the proteins that had decreased in abundance were correlated with a decrease

in mRNA expression, although 26 of 56 proteins increasing in abundance were not

correlated with an mRNA increase [6]. These studies indicate that the relationships

between mRNA and protein abundance vary depending on gene categories.

In addition, the rapamycin treatment study [6] reported a temporal delay in the cor-

relation of mRNA and protein expression among 328 genes, where mRNA expres-

sion levels at 1 and 2 h were the most highly correlated with protein expression

changes after 6 h of the treatment. The study also conducted a clustering analysis

of genes based on distance in terms of mRNA and protein time-series profiles,

and defined 12 patterns of correlation between mRNA and protein expression

changes, indicating that such expression relationships between mRNA and protein

are not linear [6]. Another study focused on the time-delayed correlation and nonlin-

earity, and took an approach based on Spearman’s rank correlation to investigate the
on.2018.e00558
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global coordination between mRNAs and proteins in the cell using transcriptome

and proteome data measured across the life cycle of Plasmodium falciparum (a ma-

laria parasite). They detected statistically significant correlations in 1840 genes,

1408 of which showed time-delayed correlations [7].

A more recent study introduced the SWATH-MS method and demonstrated its abil-

ity to efficiently generate reproducible, consistent, and quantitatively accurate mea-

surements of a large fraction of a proteome (over 2500 proteins) across multiple

samples, by investigating cell cultures in biological triplicates at six time points

following osmolarity stress [8]. The study examined the correlation between the pro-

teome data obtained by SWATH-MS and their corresponding transcript profiles by

using a transcriptome dataset that had been previously generated for yeast treated un-

der similar experimental conditions [5]. As a result, 50% of the protein profiles

measured for two of the four most regulated pathways showed no clear correlation

between the protein abundance and their corresponding RNA profiles (i.e., e0.5 <

Pearson’s correlation coefficient <0.5), which may be mainly due to a slight delay

observed for the protein response compared with the mRNA response [8].

Although these previous studies revealed the nonlinearity and complexity of the rela-

tionship between mRNA and protein abundance, most of their statistical analyses

were limited to linear correlation, or analysis of variance applied separately to

mRNA and protein datasets [9]. Another study introduced above [7] was based on

non-parametric rank correlation rather than linear correlation, but only reported

the overall correlation or the proportion of genes showing statistically significant

correlations. However, all of these studies have not specifically identified the kind

of genes or biological gene groups that have significant correlation between

mRNA and protein abundance after accounting for the potential time delay. In the

present study, we have used recently analyzed genome-wide time-series data in yeast

cell responding to the osmolarity stress [8] and developed a statistical analysis

framework for the identification of such genes. First, we stratified all genes in terms

of the extent of time delay of the correlation between mRNA and protein abundance

changes by using a method originally developed for the relationships of gene expres-

sion levels [10]. Second, we conducted gene clustering in each stratum in terms of

concordance of the time course of mRNA and protein abundance changes. Third, for

each gene group found by the clustering, we performed a non-parametric statistical

test of the correlation between mRNA and protein abundance after accounting for

natural correlations among repeated measures in a time series, similar to what was

done in the previous study [7]. Furthermore, we confirmed robustness of the analysis

framework by applying it to another genome-wide time-series data in mammalian

cells responding to stress of the endoplasmic reticulum (ER) [4].

Our study revealed stronger correlations between mRNA and protein abundance in

two metabolic pathways than that found without the stratification in terms of the
on.2018.e00558
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extent of time delay. In addition, we identified a pair of stress responsive genes

(ADC17 and KIN1) that showed a highly similar time series of mRNA and protein

abundance, particularly their evident increase within 30 min after the osmolarity

stress. Furthermore, analysis of the other dataset identified a cluster of three genes

related to cytoskeleton that similarly increased mRNA and protein abundance until

8 h after the ER stress. The significant correlations and highly similar changes of the

mRNA and protein abundance of these genes provide an answer to the question of

the specific relationships between mRNA and protein in a cell.
2. Materials and methods

2.1. Datasets and software

We used the proteome and transcriptome datasets that were combined and analyzed in

a previous study [8]. They consist of data on the genome-wide mRNA and protein

abundance in yeast cells measured at six time points following osmolarity stress

(NaCl added to the culture). The proteome dataset, consisting of 2589 proteins,

was obtained by the SWATH-MS method at 0, 15, 30, 60, 90, and 120 min following

the osmolarity stress (shown in the red box in Fig. 1). The SWATH-MS technique for

proteome measurements is a MS strategy that mines the complete fragment ion maps

(spectra) generated using a data-independent acquisition method, and vastly extends

the number of peptides/proteins quantified per sample [8, 11]. The transcriptome data-

set, consisting of 6674 transcripts, was originally obtained at 0, 30, 60, 90, 120, and

240 min in another study that used a microarray experiment to treat yeast cells under a

similar condition [5] (shown in the blue box in Fig. 1). The samples for transcriptome

measurements were hybridized to custom Nimblegen tiled arrays after RNA extrac-

tion, RNA purification and cDNA synthesis. Arrays were scanned and analyzed

with a GenePix4000 scanner (Molecular Devices, Sunnyvale, CA), and signal was

extracted with the program NimbleScan [5]. These two datasets combined, consisting

of a total of 2586 genes observed at 0, 30, 60, 90, and 120 min following the osmo-

larity stress (in magenta in Fig. 1), were provided to us by the author [8]. These data-

sets are available in the compressed supplementary data file “Dataset1.zip”

The data provided to us are the log2 ratios of abundance changes relative to the first

time point (e.g., 0 at the first time point). In this study, to make the values more intu-

itive, we converted them into relative expression values that were specified to be 1 at

the first time point. In the following analyses, the relative expression values of the

mRNA and protein of gene g at the t-th time point (t¼ 1, 2, 3, 4, and 5 corresponding

to 0, 30, 60, 90, and 120 min, indicated by tt) are denoted as aðmÞg;tt and aðpÞg;tt ,
respectively. (For simplicity, the subscript g is omitted in the equations below.)

All analyses described below were performed using R ver. 3.2.2, and the source code

and data are available at https://github.com/Shimpeim/time_delayed_2017.
on.2018.e00558
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Fig. 1. Overview of the analysis framework. Each circle indicates a set of genes, and the numbers in each

circle indicate the number of genes in the set. [A] and [B] indicate flows of “Analysis of genes of two

metabolic pathways” and “Genome-wide analysis” in Results, respectively.
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2.2. Normalization

The values of aðmÞg;tt and aðpÞg;tt are normalized as follows so that they can be readily

compared between genes:
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ð1Þ
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�
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�
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�
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 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP5
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�
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP5
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�
aðpÞtt � aðpÞ

�2
5
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ð3Þ

We call xðmÞtt and xðpÞtt the “normalized relative expression” of the mRNA and

protein, respectively.
2.3. Inference of the extent of time lag between the time series of
mRNA and protein abundance changes

For each gene, we detected the extent of time delay of the correlation between

mRNA and protein abundance changes on the basis of a “local clustering” algorithm

originally developed for the relationships of gene expression levels in a previous

study [10]. We applied the algorithm to the mRNA and protein abundance changes

between the time points, denoted as dðmÞti and dðpÞtj , respectively:

dðmÞtihxðmÞti � xðmÞti�1 ; i¼ f2;3;4;5g ð4Þ

dðpÞtjhxðpÞtj � xðpÞtj�1 ; j¼ f2;3;4;5g ð5Þ

We defined a matrixM for each gene as the direct product of d(m)ti and d(p)tj (Fig. 2b

and e). The element (i, j) in a matrixM is denoted asMi,j.M1_andM_1 are fixed to be 0,

as in the previous study [10]. Next, a matrix E is defined as follows (Fig. 2c and f):

Ei;jh

�
max

�
0;Ei�1; j�1 þMi; j

�
; i; j˛f2;3;4;5g

0; i¼ 1 or j¼ 1
ð6Þ

If the maximum Ei0,j0 in the matrix E is off-diagonal (for example, Fig. 2f), then the

time series of mRNA and protein abundance changes have a time-delayed relation-

ship, with a time lag extent of i0 e j0 (an example of a gene with time lag of 1 and

corresponding matrices M and E are shown in the lower in Fig. 2). Otherwise, there

is no time lag between the two time series.

The rationale is as follows:Mi,j becomes positive when d(m)ti and d(p)tj have the same

sign. In other words,Mi,j is interpreted as a score of concordance of mRNA and pro-

tein abundance changes at ti and tj from one time point before. The maximum Ei0,j0 is

obtained by taking the summation of the score along the main or shifted diagonal that
on.2018.e00558

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00558
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. Algorithm to infer the extent of the time lag between mRNA and protein abundance changes. The

algorithm explained in the section “Inference of the extent of time lag between the time series of mRNA

and protein abundance changes” is illustrated. (a) and (d) are time courses of mRNA and protein abun-

dance changes with time lags of 0 and 1, respectively. The red-dotted lines in (b) and (e) represent multi-

plication, and all elements in the matrix are products calculated in the same way. The red arrows in (c)

and (f) show the direction of summation. The matrices were filled according to the summation.
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maximizes the concordance (red dashed arrows in Fig. 2). The extent of the shift cor-

responds to that of the time lag between the time series of mRNA and protein abun-

dance changes.
2.4. Stratification of genes

The genes were stratified by time-lag extent, as defined by the method in the previ-

ous section. For genome-wide analyses, they were further stratified by clustering on

the basis of the time-course distance of mRNA and protein abundance changes be-

tween genes. For that purpose, we used the E matrix (explained in the previous sec-

tion) to define the distance between genes (g and g0):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX5
i¼1

X5
j¼1

�
EðgÞi; j �Eðg0Þi; j

�2vuut ð7Þ

Using this distance, we conducted hierarchical gene clustering using the Ward’s

method.
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We evaluated the confidence of each gene cluster using bootstrap probability (BP)

[12]. In addition, we calculated the approximately unbiased (AU) p-value [13] devel-

oped for reducing the known bias of the BP test. If a cluster has an AU p-value of

>0.95, then the hypothesis that “the cluster does not exist” is rejected with a signif-

icance level of 0.05. In this study, we focused on clusters of genes with BP >0.80

and AU >0.95 as being reliable clusters. We used BP in addition to AU because we

sometimes saw considerable differences between these two values in a cluster, which

seemed to be unreliable.

We calculated BP and AU using the R ver. 3.2.2 (2015-08-14) pvclust package (ver.

2.0e0).
2.5. Statistical test

We conducted a statistical test of significance on the correlation between the time

series of the normalized relative expression of mRNA and protein in each stratum

found in the previous section. The stratum-based test increases the statistical power

relative to that of the gene-based test because of the increased sample size. Taking

the natural correlation of repeated measures (so-called serial correlation [14]) in a

time series into account, we conducted a similar permutation test as done in the pre-

vious study [7] by using Spearman’s rank correlation coefficient as a test statistic. If a

stratum showed a time lag in which the mRNA preceded the protein, then the cor-

relation coefficient was calculated after shifting the time series of the normalized

relative expression of the protein to that of the mRNA according to its extent:

rðxðmÞtt ; xðpÞtt�u
Þ where u is the extent of the time lag.

The significance of the rank correlation coefficient was tested by calculating the

empirical p-value from a null distribution generated by permuting the observed

time series of mRNA and protein abundance of each gene 10000 times, respectively.

If the p-value after false discovery rate (FDR) correction (PFDR) was<0.05, then we

rejected the null hypothesis (no correlation between the two time series).

We assessed the type-I error rate of the permutation test using simulated data gener-

ated by random sampling from multivariable normal distribution. We used a

variance-covariance matrix calculated from a time series of normalized relative

expression (2586 genes across the genome, 5 time points) of mRNA and protein (de-

noted as S(m) and S(p), respectively). We randomly sampled 1000 sets of mRNA and

protein time courses (denoted as X and Y) from a five-dimensional normal distribu-

tion with mean 0s and covariance of S(m) and S(p), respectively.

XwNð0T ;SðmÞ Þ; X¼ ðxk; k ¼ 1;.;1000Þ;
on.2018.e00558
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YwN
�
0T ;SðpÞ

�
; Y¼ ðyk; k ¼ 1;.;1000Þ

where

0¼ ð0 0 0 0 0Þ;

SðmÞ ¼

2
66664
1:11 �0:73 �0:18 �0:05 �0:15

1:59 �0:11 �0:41 �0:33
0:42 �0:04 �0:09

0:37 0:12
0:43

3
77775;

SðpÞ ¼

2
66664
1:41 �0:12 �0:23 �0:44 �0:62

0:40 0:01 �0:16 �0:13
0:42 �0:14 �0:06

0:64 0:10
0:71

3
77775:

Corresponding to the gene cluster consisting of the two genes we analyzed (detailed

in Results), we sampled two xk from X and two yk from Y, calculated Spearman’s

rank correlation coefficient between them, and conducted the permutation test. We

conducted the test 500 times and counted the number of tests out of the 500 that

showed p < 0.05, resulting in estimation of the type I error rate of the permutation

test to be 5.2%.
2.6. Another dataset

For confirmation of robustness of the analysis framework, we also applied it to

genome-wide time-series data of mRNA and protein abundance in mammalian cells

responding to stress of the endoplasmic reticulum (ER) [4]. The dataset consisted of

two biological replicates of a total of 1237 genes measured at eight time points

(0, 0.5, 1, 2, 8, 16, 24 and 30 h following the ER stress), and was available in Sup-

porting information (“Dataset EV1”) [4]. The dataset is available in the compressed

supplementary data file “Dataset2.zip”. We selected genes with Pearson’s correla-

tion coefficient >0.7 between the biological replicates, and used average values of

the abundance. We then calculated the relative expression values of the mRNA

and protein of gene g at the t-th time point, and followed the procedures above.
3. Results

3.1. Analysis of genes of two metabolic pathways

First, we analyzed genes involved in the pentose phosphate pathway and the glycine,

serine and threonine metabolism pathway, for which a previous study had suggested

a potential delay of the protein response compared with the mRNA response
on.2018.e00558
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following osmolarity stress. The flowchart of the analyses is shown in [A] in Fig. 1.

For each gene, we inferred the extent of the time delay of the correlation between

mRNA and protein abundance changes as explained in Materials and Methods.

As a result, we found 11, 3, and 3 out of 22 genes with time lags of 0, 1, and 2,

respectively, in the pentose phosphate pathway (Fig. 3a, and grey circles at the bot-

tom left panel of Fig. 1). Similarly, we found 18, 3, and 0 out of 25 genes with time

lags of 0, 1, and 2, respectively, in the glycine, serine and threonine metabolism

pathway (Fig. 3b, and grey circles at the bottom middle panel of Fig. 1). We also

found that 18.2% of the genes involved in the pentose phosphate pathway and

12.0% of genes involved in the glycine, serine and threonine metabolism pathway

showed negative time-lag values (i.e., the change of the protein abundance pro-

ceeded that of mRNA); these genes were excluded from Fig. 3 and the subsequent

analyses because of difficulty of biological interpretation. Overall, only 31.8% and

16.0% of genes in the pentose phosphate pathway and the glycine, serine and thre-

onine metabolism pathway, respectively, had positive time-lag values, whereas the

genes without a time lag were in the majority in the two metabolic pathways.

When we did not take the time lag into account and instead calculated the global cor-

relation between mRNA and protein abundance among all genes in each pathway,

Spearman’s rank correlation coefficient was 0.13 and 0.27, respectively (upper panels

in Fig. 4). However, when we stratified the genes by the inferred time lag and per-

formed the correlation analysis in each stratum, the genes with a time lag of 0 showed

an increased correlation (0.30 in the pentose phosphate pathway, and 0.33 in the

glycine, serine and threonine metabolism pathway) (lower panels in Fig. 4).

For the strata of genes with a time lag of 1, we conducted the correlation analysis

after shifting one time point of the protein abundance values to adjust for the time

lag. As a result, the stratified genes showed a correlation coefficient of 0.31 and
Fig. 3. Distribution of inferred time lags (0, 1, 2, and 3) between time series of mRNA and protein abun-

dance changes. (a) Genes involved in the pentose phosphate pathway. (b) Genes involved in the glycine,

serine and threonine metabolism pathway.
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Fig. 4. Correlation between mRNA and protein expression before and after data stratification. Left:

genes involved in the pentose phosphate pathway. Right: genes involved in the glycine, serine and thre-

onine metabolism pathway. Upper: all genes. Lower: a subset of genes that showed the inferred time lag

of 0. Each dot corresponds to the normalized relative expression level of mRNA and protein of a gene at

each time point (0, 30, 60, 90, and 120 min).
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0.65 in the respective pathways (Fig. 5a and b), which were also larger than those of

the global correlation analysis above without the stratification (0.13 and 0.27,

respectively).

The time courses of mRNA and protein abundance of the three genes with a time lag

of 1 in each pathway are shown in Fig. 6a and b. These genes were PRS4, RPE1, and

SOL1, encoding 5-phospho-ribosyl-1(a)-pyrophosphate synthetase, D-ribulose-

5-phosphate 3-epimerase, and a protein with a possible role in tRNA export, respec-

tively, in the pentose phosphate pathway; and GCV1, TDA10, and SER33, encoding

the T subunit of the mitochondrial glycine decarboxylase complex, an ATP-binding

protein of unknown function, and 3-phosphoglycerate dehydrogenase, respectively,

in the glycine, serine and threonine metabolism pathway. Indeed, we can see the

time-delayed correlation with a time lag of 1, which is clarified as the thick lines

in the plots corresponding to the largest value in {Mi, i þ 1; i¼ 2, 3, 4} that measures

the concordance of abundance changes between mRNA and protein from one time

point before as explained in Materials and Methods. The stratified correlation ana-

lyses were not conducted for strata of genes with a time lag of �2 because of their

small sample size.

In order to test the significance of the increased correlation between mRNA and pro-

tein abundance after the stratification accounting for natural correlation among

repeated measures in a time series, we conducted a permutation test for each stratum.
on.2018.e00558
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Fig. 5. Correlation between mRNA and protein expression among subsets of genes that showed a time

lag of 1. (a) Genes involved in the pentose phosphate pathway. (b) Genes involved in the glycine, serine

and threonine metabolism pathway. Different shapes and colors of the dots indicate different genes and

time points. The scatter plots were created after shifting the time series of the normalized relative expres-
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We found that the observed increased correlations in the following strata of genes

were significant: time lag of 0 (p ¼ 0.007) in the pentose phosphate pathway, and

time lags of 0 (p ¼ 0.002) and 1 (p ¼ 0.018) in the glycine, serine and threonine

metabolism pathway (Fig. 7). Only the stratum with a time lag of 1 in the pentose

sion of the protein to that of the mRNA.
on.2018.e00558
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Fig. 6. Time courses of the normalized relative expression of genes that showed a time lag of 1. (a)

Genes involved in the pentose phosphate pathway. (b) Genes involved in the glycine, serine and threo-

nine metabolism pathway. The bold lines correspond to the largest value in {Mi, i þ 1; i ¼ 2, 3, 4}

(as explained in Materials and methods) to clarify the time lag.
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phosphate pathway was tested to be not significant (p ¼ 0.176, Fig. 7, bottom left

panel).

In summary, we first identified the time-delayed correlation between mRNA and

protein abundance in the two metabolic pathways that was suggested in a previous

study. In addition, we were able to reveal clearer and significant correlations between

the time series of mRNA and protein abundance by the stratification and statistical

tests that accounted for the inferred time lag.
on.2018.e00558

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).
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Fig. 7. Null distributions and observed values of the rank correlation statistics. The red values on the

x-axes are observed rank correlation coefficients. The black vertical lines are the 95 percentiles in the

null distributions. (a) Genes with a time lag of 0 involved in the pentose phosphate pathway, (b) genes

with a time lag of 1 involved in the pentose phosphate pathway, (c) genes with a time lag of 0 involved in

the glycine, serine and threonine metabolism pathway, and (d) genes with a time lag of 1 involved in the

glycine, serine and threonine metabolism pathway.
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3.2. Genome-wide analysis

Next, we conducted similar analyses on the 2586 genes across the genome that had

time-course data of both mRNA and protein abundance ([B] in Fig. 1). In 40.8% of
on.2018.e00558

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
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the genes, the time lags between mRNA and protein abundance changes were inferred

to be 0, whereas 40.5% of the genes showed positive inferred time-lag values (Fig. 8).

The remaining genes showed negative inferred time-lag values, and were not included

in Fig. 8 and the subsequent analyses because of difficulty of biological interpretation.

After stratification of the genes by the inferred time lags, we conducted hierarchical

clustering on each stratum with time lags of 0, 1, and 2 (gray circles in [B] in Fig. 1),

respectively. Among a total of 1920 gene clusters across the strata, we identified 34

clusters that satisfied BP > 0.80 and AU p-value> 0.95. Among them, we excluded

3 clusters that showed negative correlation between mRNA and protein abundance

because of difficulty of biological interpretation. The genes in these 31 clusters are

listed in Table S1.

Among them, we found only one cluster that showed a statistically significant cor-

relation between mRNA and protein abundance (Spearman’s rank correlation coef-

ficient ¼ 0.81 in Fig. 9a; PFDR ¼ 0.022 by the permutation test). Two genes were

included in this cluster: translation machinery-associated protein (TMA17) also

known as ADC17, and serine/threonine protein kinase (KIN1).

ADC17 encodes a chaperone for proteasome assembly during stress response that is

vital for cells to survive conditions such as an accumulation ofmisfolded proteins, and

has recently gained attention as a key protein in maintaining proteasome homeostasis

in yeast cells [15, 16]. Its absence aggravates proteasome defects [15] that are asso-

ciated with numerous diseases in humans [17]. Cells generally increase proteasome
Fig. 8. Distribution of inferred time lags (0, 1, 2, and 3) between the time series of mRNA and protein

abundance changes in the genome-wide data.
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Fig. 9. Examination of the gene cluster that showed statistically significant correlation between the

mRNA and protein abundance. (a) Scatter plot expression. (b) Time courses.
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abundance when demand increases upon environmental stress, and the abundance of

Adc17 also increases upon the stress condition [15].KIN1 plays a central role in regu-

lating cell polarity and exocytosis [18], and in the unfolded protein response in the

endoplasmic reticulum (ER), a process that resolves the unfolded and misfolded pro-

teins during ER stress [19]. KIN1 is related to cellular sensitivity to stress in fission

yeast, and its deletion makes cells hypersensitive to several stress conditions,

including upward shifts in osmotic pressure [20]. Recently, Kin1 and its homolog

Kin2 were reported to play a role in the unfolded protein response in the ER, a process

that resolves unfolded and misfolded proteins during ER stress [19, 21].

The time courses of mRNA and protein abundance changes for these two genes are

shown in Fig. 9b. Clearly, the abundance changes after the osmotic stress are highly

similar without time lag across the two genes, suggesting a concerted role of these

genes in cellular stress response (see Discussion).
3.3. Application to another dataset

Furthermore, we confirmed robustness of the analysis framework by applying it to

another genome-wide time-series data in mammalian cells responding to stress of

the endoplasmic reticulum (ER). As a result, we identified two gene clusters, consist-

ing of genes with time-lag of 0 and 2, respectively, which showed a statistically sig-

nificant correlation between mRNA and protein abundance. Spearman’s rank

correlation coefficient was 0.75 (PFDR ¼ 0.003, the permutation test) and 0.66

(PFDR ¼ 0.022, the permutation test), respectively.
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The cluster of genes with time lag of 0 was interpretable, and consisted of three

cytoskeleton-related genes: keratin 18 (KRT18), keratin 17 (KRT17), and mitotic

spindle positioning (MISP). KRT18 and KRT17 encodes the type I intermediate fila-

ment chain keratin 18 and 17, respectively. The protein encoded by MISP, mitotic

spindle positioning, is an actin-bundling protein involved in determining cell

morphology and mitotic progression.

Time courses of mRNA and protein abundance changes for these three genes are

shown in Fig. 10, indicating highly similar increase until 8 h after the stress. That

is a period in which the previous study [4] reported enrichment of mRNA expression

changes of genes for apoptosis. Indeed, at least keratin 18 and keratin 17 are known

to be related to apoptosis (see Discussion).
4. Discussion

In the present study, we first showed the existence of a time-delayed correlation be-

tween mRNA and protein abundance changes among genes of two metabolic path-

ways. Although such correlation was suggested in a previous study [8], we verified it

here by inferring the time-lag extent for each gene. Stratification of the genes in

terms of the inferred time lag enabled us to find a higher correlation between the

mRNA and protein abundance. Second, we extended our analysis to the genome-

wide data, and performed the stratification in terms of the inferred time lag, followed

by gene clustering in terms of time-course concordance of the mRNA and protein

abundance changes. As a result, we identified a cluster consisting of a pair of genes

that showed a statistically significant correlation between mRNA and protein abun-

dance (PFDR ¼ 0.022). This is the first report that has revealed specifically which

genes increased their mRNA and protein abundance in a concerted manner after os-

molarity stress. We consider that it provides an answer to the question of the specific

relationships between mRNA and protein in a cell [1].

The pair of genes was ADC17 and KIN1. The Adc17 protein, which is crucial for

maintaining homeostatic proteasome levels, is known as a stress-induced regulatory

particle assembly chaperone protein (RAC) that increases upon proteasome stress.

Cells have mechanisms to adjust proteasome assembly when demands increase,

with the Adc17 protein being a critical effector of this process [15]. An increase

in Adc17 leads to upregulation of the proteasome, which would increase amino

acid pools and permit the translation of proteins important for survival [22]. With

regard to its regulation, it was recently reported that increases in the abundance of

Adc17 and of the proteasome in yeast were caused by inhibition of the central stress

and growth controller, target of rapamycin complex 1 (TORC1) kinase [16].

The Kin1 protein was recently reported to play a role in the unfolded protein

response in the ER [19, 21]. The unfolded protein response is a signal transduction
on.2018.e00558
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Fig. 10. Time courses of mRNA and protein abundance in the gene cluster that showed statistically sig-

nificant correlation in the data of mammalian cells. The gene cluster consists of the three cytoskeleton-

related genes: keratin 18 (KRT18), keratin 17 (KRT17), and mitotic spindle positioning (MISP).
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cascade that allows eukaryotic cells to respond to changing conditions, and resolves

unfolded and misfolded proteins during ER stress by regulating the targeting,

splicing, and translation of HAC1 mRNA [19, 23]. The Hac1 protein is a key tran-

scription activator that binds to the promoter of unfolded protein response-regulated

genes [24], such as KAR2, PDI1, EUG1, and FKB2. These genes encode enzymes

that help to catalyze the correct folding of proteins [23, 25, 26]. In the absence of

ER stress, ribosomes are stalled on unspliced HAC1 mRNA. ER stress is sensed

by Ire1, which initiates the nonconventional splicing of HAC1 mRNA, thereby al-

lowing synthesis of Hac1 protein from the spliced mRNA [23, 27, 28]. Although

the Hac1 protein was not included in the dataset that we analyzed, we confirmed

that the mRNA abundance of three out of the four unfolded protein response-

regulated genes (PDI1, EUG1, and FKB2) had increased after the Kin1 protein’s

abundance peak (30 min after the osmotic shock, Fig. 11), which is consistent

with the known function of this protein [19].The ADC17 and KIN1 genes are located

in the same chromosome IV, but are approximately 430 kb distant from each other.

Further studies are warranted to investigate what kind of mechanism enables the

genes to be expressed in a quite similar manner upon exposure to osmotic stress

both at mRNA and protein levels. It could be a novel common transcriptional regu-

lation in these genes that are distantly located in the same chromosome.

The present study spotlighted the pair of genes that showed a statistically significant

correlation between mRNA and protein abundance. On the other hand, clear major-

ity of genes did not show the statistically significant correlation, suggesting that pro-

tein abundance often could not be simply explained by the changes in mRNA but

rather might be regulated by unknown mechanisms. An example is shown in

Fig. 12 for SRM1 (nucleotide exchange factor that controls RNA metabolism and

transport, involves in yeast pheromone response pathway, and required for mRNA

and ribosome nuclear export) and UTP14 (a component of the small subunit

(SSU) processome that is required for the maturation of the pre-18S rRNA) genes.

After 30 min from the osmotic stress, both genes showed time-courses of protein

abundance that were quite different from those of mRNA. Further studies are also

warranted to deepen understanding of such relationships between mRNA and pro-

tein abundance that were not focused in the present study.

We confirmed robustness of the analysis framework by applying it to another

genome-wide time-series data in mammalian cells responding to stress of the endo-

plasmic reticulum (ER) and identifying the cytoskeleton-related gene cluster: keratin

18 (KRT18), keratin 17 (KRT17), and mitotic spindle positioning (MISP). Time

courses of mRNA and protein abundance changes for these three genes (Fig. 10),

indicated highly similar increase until 8 h after the stress in which the previous study

[4] reported enrichment of mRNA expression changes of genes for apoptosis. It was

reported that the keratin 8/18 intermediate filaments are required for the apoptosis-

promoting function of eIF3k (the subunit k of eukaryotic initiation factor 3) [29]. In
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Fig. 11. Time series of mRNA and protein abundance of unfolded protein response (UPR)-regulated

genes. The asterisks indicate peaks of mRNA abundance of the UPR-regulated genes (PDI1, KAR2,

EUG1, and FKB2) at 30 or 60 min after the increase in Kin1 protein expression.
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apoptotic cells, eIF3k colocalizes with keratin 8/18-containing inclusions and pro-

motes the release of active caspase 3 from the insoluble compartment via a keratin

8/18-dependent manner. Studies in keratin 17-null mice uncovered several roles

including resistance to TNFa-induced apoptosis [30]. MISP functions as a single

actin-binding effector of cell morphology [31] and could be related to the morpho-

logical modifications of the apoptotic cell. The results suggest a concerted role of

these genes in apoptosis after the ER stress in mammalian cells.

We inferred the extent of the time lag between mRNA and protein abundance

changes, using an algorithm that was originally proposed to assess staggered rela-

tionships between the mRNA expression of pairs of genes in gene-regulation

network analysis [10]. In this study, we used the algorithm for gene stratification

by considering the extent of inferred time lags between mRNA and protein abun-

dance changes. Namely, we applied the method to data of mRNA and protein abun-

dance of the same gene rather than those of different genes [10].
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Fig. 12. Examples in which protein abundance could not be simply explained by the changes in mRNA.

Upper: SRM1 gene; Lower: UTP14 gene.
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We tested the statistical significance of the correlation between the time series of

mRNA and protein abundance by using a permutation test, with Spearman’s rank

correlation as a test statistic, as was done in the previous study [7], in order to

take natural correlations among repeated measures in a time series [14] into account.

We assessed this permutation test by a simulation and confirmed that the type-I error

rate was only slightly higher than 0.05. We conducted the permutation test for each

stratum identified by gene clustering rather than for each gene, which increased the

sample size and statistical power (note that any statistical test at the gene level was

impossible because data were available only at the five time points).

Based on the extension, utilization, and improvement of the analysis methods, the

present study provides a framework to study specific relationships between the

mRNAs and their proteins in a cell, the details for which up to now have been contro-

versial [1, 3]. Our framework provides a basis for identifying the kinds of genes or

biological gene groups that have significant correlation between mRNA and protein

abundance after accounting for potential time delays.
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