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Abstract

Imaging flow cytometry has been applied to address questions in infection biology, in particular, 

infections induced by intracellular pathogens. This methodology, which utilizes specialized 

analytic software makes it possible to analyze hundreds of quantified features for hundreds of 

thousands of individual cellular or subcellular events in a single experiment. Imaging flow 

cytometry analysis of host cell-pathogen interaction can thus quantitatively addresses a variety of 

biological questions related to intracellular infection, including cell counting, internalization score, 

and subcellular patterns of co-localization. Here, we provide an overview of recent achievements 

in the use of fluorescently labeled prokaryotic or eukaryotic pathogens in human cellular 

infections in analysis of host-pathogen interactions. Specifically, we give examples of 

Imagestream-based analysis of cell lines infected with Toxoplasma gondii or Mycobacterium 
tuberculosis. Furthermore, we illustrate the capabilities of imaging flow cytometry using a 

combination of standard IDEAS™ software and the more recently developed Feature Finder 

algorithm, which is capable of identifying statistically significant differences between researcher-

defined image galleries. We argue that the combination of imaging flow cytometry with these 

software platforms provides a powerful new approach to understanding host control of 

intracellular pathogens.
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1. Introduction

Intracellular bacteria and protozoans include symbionts and pathogens that live in the 

cytoplasm, cytoplasmic vacuoles or nuclei of host eukaryotic cells, which are integral to the 

biology, pathology and evolution of infection in their hosts [1]. Among them are major 

infectious agents of humans such as Mycobacterium tuberculosis (MTb), and other 

intracellular pathogens, where humans serve as the intermediate host, such as Toxoplasma 
gondii (T.gondii). The molecular mechanisms that allow these pathogens to invade 

intracellular spaces invasion and manipulate host cell machinery are critical to understand 

host control of infection and the unique niches that support for developmental cycles of 

invading parasites.

Parameters that describe the interaction of intracellular pathogens with host cells are 

traditionally quantitated on a cellular population level. However, intracellular replication is 

heterogeneous, and infection of host cells with a clonal population of intracellular pathogen 

frequently results in variable numbers of bacterial or protozoan pathogens in each host cell 

[2–5]. Microscopic analysis reveals heterogeneity during intracellular pathogen 

internalization and intracellular replication by interaction of a variety of host- and pathogen-

depending factors. To study host-pathogen interaction heterogeneity on the single cell level 

requires techniques capable of analyzing thousands of cellular images in a short period of 

time. Imaging flow cytometry (IFC) provides a very powerful tool for researching 

intracellular pathogens. First, IFC allows quantification of morphological cellular features as 

well as spatial distribution of numerous fluorescent markers in single cells and in 

heterogeneous cellular populations [6–7]. Second, IFC allows direct visualization of cells 
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and fluorescently labeled pathogens and makes it possible to correlate acquired cellular 

images with events on bivariate dotplots (one dot for one cellular event). Third, IFC 

instruments such as the Imagestream platform (Amnis-Merck, USA) provide the opportunity 

of acquisition and quantitative analysis of tens and hundreds of thousands of cells in a short 

period of time (Inspire™ acquisition software and IDEAS™ analysis software (Amnis-

Merck, USA) for Imagestream platform). Finally, in complex multiple-labeling imaging 

experiments, IFC allows quantitation and compensation for spectral crosstalk on a pixel-to-

pixel basis using personal computer and specialized software. The use of fluorescent 

markers successfully incorporated by intracellular pathogens has proven to be an especially 

powerful tool in combination with IFC technology.

Notably, detection and quantification of fluorescent signals using IFC can be performed 

using live cells without fixation (with appropriate biosafety guidelines). In the emerging era 

of systemic and synthetic biology, IFC coupled with genetic-tagging technologies is 

becoming the powerful instrument to visualize dynamic components of the cellular system. 

We discuss recent advances in the use of fluorescent proteins for analysis of host-pathogen 

interaction markers and show examples of sophisticated IFC analysis of T.gondii and MTb 

internalization.

2. Use of external and internal fluorescent reporters for intracellular 

pathogens

Use of image-based platforms such as fluorescent (confocal) microscopy, intravital 

multiphoton microscopy and IFC (see Table 1 for comparison of IFC and other techniques 

for cell analysis) significantly expanded the understanding of complex diseases induced by 

intracellular pathogens For example:1) internalization and phagocytosis of intracellular 

pathogens; 2) differentiation intracellular forms of pathogens and survival inside phagocytes; 

3) replication inside phagocytes and multiplication of pathogens(see ref. [8–9] and [6] for 

review).

2.1 Fluorescent protein palette for fluorescence-based techniques and IFC

Recent advances in the development of fluorescent sensors has increased and diversified the 

utility of fluorescent protein (FP) for analysis of intracellular parasites and bacteria in vitro 
and in vivo. In the case of parasites, green fluorescent protein (GFP) originally purified from 

the jellyfish (Aequoria victoria) has been successfully expressed in several protozoan 

intracellular parasites such as Leishmania species [10–12], Trypanosoma [13–14], 

Enatomoeba [15], Plasmodium [16] and Toxoplasma [17], and more recently as a dual 

combination with other fluorescent reporters (for example with mCherry) to follow the 

developmental stages of T. gondii [18]. FPs have been also successfully used for deciphering 

pathogenesis of bacterial intracellular infection (some examples are given in [19–24]). In 

these cases, the FP-tag sequence is fused to the DNA sequence of a known protein-of-

interest in an expression vector that is translated as a fusion protein in the bacteria. The 

discovery of GFP homologues that emit not only in green light spectrum, but in all parts of 

the light spectrum, provided a significant boost in imaging host-pathogen research [25–26]. 

A particular interest is geared toward the novel group of red fluorescent proteins (RFPs). 
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These RFPs-based sensors provide an advantage of reduced autofluorescence compared to 

GFP, and relatively low light scattering and minimal absorbance at the longer wavelengths 

[27–29] (summarized in Table 2). Also, near-infrared FPs are now emerging group due to 

high transparency of mammalian tissues and whole animals to light in 650 nm to 900 nm 

“optical window”and to low autofluorescence/light scattering advantage of this type of FP 

for in vivo molecular imaging [30].

Dimeric (d) and monomeric (m) RFP proteins such as dTomato, mOrange and mCherry have 

also been employed for labeling intracellular parasites. These proteins were chosen based on 

relatively high brightness and low maturation time (time from FP expression to the point 

where FP becomes functional) [31]. The tandem version of dimeric Tomato (tdTomato) is 

the brightest FP, but its usage is limited by a relatively large molecular size of tdTomato, 

which may interfere with fusion-protein packaging [32]. In general, under optimal cellular 

growth conditions the expression of monomeric FPs by bacterial or protozoan cells does not 

have a detectable effect on growth of transfected cells. However, adding a fluorescent tag 

may lead to toxicity in the case of high-copy-number FP expression plasmids for bacterial 

cells, when fusion proteins are expressed at a concentration that significantly exceeds 

expression of endogenous protein [33]. Another concern is that the introduction of a plasmid 

expressing FP to a bacterial cell may lead to a reduced intracellular infection [34].

Recently, a wide spectrum of FP-broad-range-expressing plasmids was developed for 

bacterial research [35]. Authors reported a set of 12 different FPs covering a wide range of 

excitation (ex.) and emission (em.) wavelengths (ex. 399–610 nm; em. 476–649 nm), and 

emphasized the importance of selecting appropriate FPs for specific fluorescence-based 

application such as confocal microscopy or molecular imaging. Thus, the authors 

recommended using E2-Crimson FP (ex./em. 611/646 nm), due to its low photobleaching, 

fast maturation and relatively high brightness for instruments with green-yellow (561 nm) 

and red laser (633–640 nm) excitation wavelengths. Furthermore, the authors also analyzed 

the usefulness of their plasmids for conventional flow cytometry and microscopy, as well as 

for in vivo imaging, but not for IFC.

In IFC technology relative brightness is one of the most important characteristics, and 

tdTomato excited at 561 nm and determined with 610/20 em. filter will be the primary 

candidate for intracellular pathogen research. Alternatively, mCherry monomeric protein 

with less brightness but suitable for 561 nm ex. is a popular choice at IFC applications. In 

the Table 2 we summarized existing publications on IFC exploiting different FP fusions, and 

the majority of publications reported using mCherry and tdTomato as well as the classic 

EGFP.

2.2 IFC in the studies of bacterial infection of host cells

Conventional flow cytometry analyses allowed facile visualization of bacterial association 

with target host cells. Cell-pathogen associations have been evaluated by i) labeling bacteria 

externally (with antibodies against bacterial cell membrane components conjugated with 

fluorochromes or fluorescent dye) or by ii) expressing FPs in bacterial cells and analyzing 

host cells infected with fluorescently labeled pathogen, via conventional flow cytometer. 

This latter method has been used by a number of researchers and correlated with standard 
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colony forming units (CFU) assays to study host cell association with for example, the 

pathogens Chlamydia psittaci [48], Mycobacterium bovis [49] etc. A functional FP such as 

EGFP or mCherry can be expressed in diverse bacterial systems and have minimal effect on 

the interactions of pathogens with their respective host cells [20]. However, the 

quantification of intracellular particles and/or bacteria using traditional flow cytometry is 

complicated by extracellular bound bacteria that make it technically challenging to 

discriminate between intracellular and extracellular bacteria. See Table 3 for a summary of 

applications of IFC for intracellular pathogens research.

The introduction of high-throughput fluorescence microscopy made tremendous progress in 

quantitation of image features using proprietary as well as open image analysis software 

such as ImageJ program (originally NIH Image)[72], and more recently CellProfiler 

platform [73]. IFC differs from the fluorescent microscopy since the first method utilizes 

images of individual cells or small groups of cells in the stream, while the microscopy deals 

with cells attached to the coverslip. In the IFC it is fairly easy to separate images of single 

cells or cell groups, while in microscopy such separation (based on image segmentation) is 

less feasible and is typically performed by investigator. However, the difficulties of proper 

segmentation of the images and the absence of an algorithm for the identification of 

statistically significant differences between series of images manually picked by the 

investigator continue to remain key challenges in the development of semi-automatic 

algorithms of image analysis in high-throughput microscopy.

IFC analysis by Imagestream (Amnis-Merck, USA) employs powerful image analysis 

software (IDEAS™) with more than hundred fluorescence and morphology-based features. 

Recently, commercially available IDEAS™ software was upgraded with a Feature Finder 

algorithm (Fig.1) which utilizes the IFC advantage of single cell analysis. Furthermore, 

IDEAS™ Feature Finder algorithm provides a researcher with a scored table of statistically 

significant differences of multiple parameters derived from comparing two panels of 

manually picked image galleries. For example, Fig.1 illustrates, how to identify critical 

parameters differentiating T.gondii-infected cells inside large cellular terminal apoptotic 

“bubbles” from infected, but appearing morphologically normal cells, by comparing two sets 

of cellular images with and without large cellular “bubbles”.

2.3 IFC in research of protozoans expressing fluorescent proteins

IFC techniques with FPs have been used for different applications such as detection and 

quantitation of intracellular pathogens, phagocytosis, colocalisation with membrane dyes 

and subcellular organelle markers (summarized in Table 3). Specifically, FPs have been 

successfully expressed in several Toxoplasma, Plasmodium, Trypanosoma and Leishmania 
species [12]. Some of them produce FP only in replicative stages of the parasite living cycle; 

for example, epimastigotes and amastigotes of Trypanosoma cruzi [13], making FPs useful 

for the detection of proliferating parasites. Recently, functional and genetically modified 

parasite strains with dual expression of fluorescent tags under control of stage-specific 

promoters (BAG1-GFP; SAG1-mCherry) were developed for T. gondii [18]. However, in 

parasitic protozoans FP-based tagging is mostly restricted to aerobic protozoans or their 

oxygenated stages of the life cycle because of the oxygen requirement for the maturation of 
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FPs. Recent alternative to GFP-protein fusion is tagging of parasites with biarsenical-

tetracysteine FPs (either FISsH-EDT(2) or ReAsH-EDT(2)), which has been successfully 

used in a variety of cell models including Dictyostelium [74]. IFC techniques are using FPs 

for different applications such as detection and quantitation of intracellular pathogens, 

phagocytosis, colocalisation with membrane dyes and subcellular organelle markers 

(summarized in Table 3).

2.4 Fluorescent staining of intracellular pathogens with external reporters

Similar to fluorescent microscopy, IFC employs staining with specific antibodies to 

simultaneously immunophenotype host cells, identify intracellular pathogen and/or 

organelles, transcription factors and other subcellular components [54; 63; 66]. Though 

fluorescent reporters are commonly used to detect intracellular parasites, in the absence of 

the specific fluorescent tag, it is possible to follow parasites using membrane cell tracking 

dyes [52; 59]. A fluorescent membrane cell-tracking dye such as carboxyfluorescein 

diacetate succinimidyl ester (CFSE) has been extensively used in the last few years to 

quantitate mammalian cell divisions [75]. The same correlative approach of membrane dye 

(PKH26) dilution with cell division can be applied to measure the rate of bacterial 

replication in vitro through conventional flow cytometry [76]. For example, Gibson-Corley 

et al. [52] labeled Leishmania amazonensis promastigotes with CFSE dye and quantitated 

the number of parasite-positive spots in infected cells using an Imagestream instrument 

(Amnis-Merck, USA). Similarly, Yason and Tan [59] labeled protistan parasite Blastocystis 
with CFSE dye and described the shape, size, granularity and nuclear arrangement in a 

variety of morphological forms of Blastocystis by IFC technique. Furthermore, Dupont et al 

[44] used a combination of an external staining of T. gondii parasites with CellTrace Violet 

(pH sensitive dye) and internal fluorescent tag mCherry (pH independent) to follow the fate 

of T.gondii in vivo via conventional flow cytometry and high throughput IFC. This report 

emphasized the importance of dual fluorescent reporters to track the parasite and distinguish 

different ways for parasite to infect cells.

3. IFC applications in intracellular pathogen research

3.1 Quantification and internalization of intracellular pathogens

The standard approach to quantify intracellular pathogen burden is mainly cell culture-

based, time-consuming and expensive (by for example colony forming unit (CFU) 

determination). Moreover, analysis is usually hampered by low infection rates (less than 2% 

in some models) [77] and may require complicated methods to monitor intracellular 

development such as quantitative RT-PCR (qRT-PCR) techniques [78–79]. Alternatively, 

counting of intracellular pathogens involves direct quantification of pathogen viability and 

development of microscopy applications. Light microscopic analysis of pathogen or 

pathogen-induced cellular inclusions can be carried out with a variety of dyes such as a 

Giemsa stain [80–82], or staining with acridine orange, RNA and DNA probes, or specific 

immunofluorescent staining. Light microscopy yields very good qualitative [82] and 

quantitative [89] results, however, it is limited by sampling of one-several hundreds of events 

and might be prone to subjective variations between observers.
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Conventional flow cytometry offers a statistically robust alternative for the quantitation of 

thousands of fluorescently labelled parasites and bacteria [83], and has been intensively used 

during the last twenty years. It may employ the staining of intracellular pathogens with 

nonspecific nuclear dyes such as propidium iodide (PI) or acridine orange [84], 

immunofluorescent staining with specific antibodies to intracellular pathogens [85–86], and 

counts of fluorescently tagged bacteria and protozoans [87]. However, there are some 

constraints that limit the use of flow cytometry in the quantitation of intracellular pathogens. 

Specifically, it is possible, yet technically challenging to differentiate between attached and 

internalized parasites using conventional flow cytometry [87]. Another obstacle is cellular 

and parasite aggregation which could have a significant effect on counting results. Besides, 

flow cytometry cannot address the question on intracellular localization of pathogens that is 

important for studies on pathogens development.

The use of fluorescence-based methods such as fluorescent microscopy and/or conventional 

flow cytometry to study intracellular pathogens became a common approach with the 

introduction of intracellular pathogens expressing FPs [3; 74; 88]. The IFC offers more 

information than just counting viable intracellular parasites. It allows researcher to combine 

intracellular parasite counting with the quantitation of a multitude of subcellular 

morphological and fluorescence features (Table 3), as well as robust statistics. The good 

example provides “Similarity Score” - a log-transformed Pearson's correlation coefficient 

between the pixel values of two image pairs, used in IDEAS™ software to evaluate a degree 

of colocalisation [89]. This feature as well as IFC use of Rd value – shift in the statistical 

distribution between two populations (eg. “treated” vs. “untreated”) described in details by 

Maguire et al. [90]. This multi-parametric multi-color approach is actively pursued in 

parallel with IFC by high-content microscopy, generally using 10× and 20× magnification 

[91–92]. For example, Maudet et al [92] employed a fluorescence-based screen to study a 

library of miRNA mimics in the molecular interplay between intercellular Salmonella 
enterica GFP-expressing strain and host cells. The authors successfully used a high-content 

screening fluorescent microscope (Molecular Devices, USA) at ×20 magnification and 

classified cells positive and negative for Salmonella, depending on the total area of GFP-

fluorescence in the cell. Furthermore, GFP fluorescent intensities in the cell were used as a 

surrogate marker for the amount of intracellular bacteria [92]. However, high-throughput 

microscopy approach is limited by analysis of adhesive cells growing as monolayers, when 

segmentation algorithm to define single cells prior to analysis is mandatory. Imagestream-

based IFC analysis, on the other hand, can be applied to hundred thousands of single events 

without segmentation: either cells (growing in suspension or detached), cell clusters, or cell 

fragments (one dot on dotplot corresponds to single event and vice versa) at ×60 

magnification.

3.1.1 Quantification and internalization of Toxoplasma gondii—For the 

determination of intracellular pathogens ingested in each cell, IFC offers spot count (Fig.2) 

and internalization features. The spot count approach to quantitate intracellular pathogens by 

IFC can be illustrated by this figure adopted from Muskavitch et al. [2] (Fig. 2). We used the 

IDEAS™ software Spot count feature to calculate the number of independent green vesicles 

(corresponding to GFP+ Toxoplasma inclusions) determined in each single cell [2]. More 
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sophisticated IFC analysis based on an internalization score or spot count feature includes 

the development of a mask based on a BrightField cell surface. The mask is eroded by 3–5 

pixels to exclude the cell membrane and signals associated with the cell surface. The 

resulting Eroded mask is applied to a fluorescence channel (FP channel: for example, GFP 

or mCherry) and the internalization score is then calculated using the Internalization feature 

provided by IDEAS™ software (Amnis-Merck, USA). Internalization is represented as a 

log-scaled ratio between fluorescent intensity in the intracellular space versus fluorescent 

intensity of the entire cell. Cells that internalized FP-labeled intracellular pathogen typically 

have positive scores, whereas cells with parasites only attached to the plasma membrane 

have negative scores. Furthermore, co-localization of internalized intracellular parasites with 

intracellular compartments (for example, lysosomes or endosomes) can be calculated using 

the Bright Detail Similarity (BDS) feature. This feature quantifies the correlation between 

the bright details of the GFP+ Toxoplasma and fluorescent organelle markers. High values of 

similarity scores indicate that the fluorescence of intracellular pathogen and organelle 

marker colocalises in the same place.

The application of Eroded mask to T. gondii-infected cells (THP-1 cell line) allows to 

exclude from quantitation attached but non-internalized parasites, which otherwise will 

compromise counting (Fig.3 A, B). In our IFC experiments invasion of T.gondii parasites led 

to single and/or multiple inclusions in the infected cells (Fig. C, D), and had retained 

sensitivity to the actin polymerization inhibitor cytochalasin B (CytB) (Fig. 3E). In the 

presence of CytB (inhibits formation of actin filaments network), the percentage of invaded 

parasites was reduced to less than 5%. These results are consistent with previous publication 

where penetration of T. gondii was shown to be actin-dependent [93–95].

3.1.2 Internalization and quantification of MTb—To understand how intracellular 

pathogen such as MTb survives inside potentially hostile cells, such as macrophages, it is 

especially important to understand the processes allowing pathogen internalization, 

interaction with cellular host factors and, in case of MTb, phagosome maturation. Recently, 

Ranjbar et al. demonstrated that the interferon (IFN)-induced transmembrane (IFITM) 

proteins, particularly IFITM3 is a host restriction factor for MTb [90]. As part of this study, 

the group used IS-X Mark II (Amnis-Merck, USA) and performed a quantitative analysis 

investigating the impact of knockdown of IFITM1–3, or the impact of overexpression of 

IFITM3 on MTb growth. Using the IDEAS™-guided algorithm, the study distinguished 

between internalized and non-internalized MTb bacteria (IDEAS™, Amnis-Merck, USA). 

An example of this approach is presented in Fig. 4A, which shows quantification of 

internalized TB bacteria and external bacteria binding to the cell membrane (Fig. 4A; the 4-

pixel eroded mask is shown on the left for both panels).

About 1% of cells in which bacteria were binding to the cell membrane were excluded from 

our analysis based on internalization mask (Fig. 4B, Table). The percentage of infected cells 

was comparable to results of flow cytometry analysis performed previously [90]. IFITM 

shRNA cell cultures presented significantly higher infected cells with H37Rv-mCherry 

compared to the control (see Figure 4A based on data presented in Ranjbar et al. [90]). 

These results were consistent with conventional CFU assay, which showed a significant 

increase (p<0.01) in MTb infection at days 2 and 3 post-infection in IFITM shRNA cells 
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compared to control shRNA cells [90]. Notably, the IFC assay also allows capturing 

numerous images from infected cells that can be used for further analysis.

3.2 Subcellular characterization of intracellular pathogens by IFC

MTb has developed elegant strategies to avoid both the innate and adaptive immune 

responses [96–97]. One of the mechanisms used by MTb to survive in macrophages is 

manipulation of host phagosome/endosome pathways and inhibition of phagosome-

lysosome fusion [98]. One cause of the phagosomal arrest is attributed to altered Rab7 

function [99–102] coupled with retention of Rab5 (an early endosome marker) [99].

3.2.1 MTb localization in early endosome or late endosome compartments—
Since IFC is capable of quantitating co-localization of intracellular parasites with different 

subcellular compartments [63], this technology was used to show that internalized bacilli 

were restricted to early endosome or late endosome compartments co-localized with IFITM3 

[90]. In the study by Ranjbar et al., IFC showed that that internalized bacilli were restricted 

to early endosome or late endosome compartments co-localized with IFITM3 [90].

Here, we performed the same experiment in THP-1 cells that did not contain overexpressed 

tagged IFITM3, and MTb-mCherry-infected cells were acquired by IS-X Mark II (Amnis-

Merck, USA). Results were then analyzed with IDEAS™ software (Amnis-Merck, USA) as 

described above in section 3.1.2. Internalized bacteria were selected and followed by the co-

localization wizard to attribute bacteria to early or late endosomal compartments. The 

IDEAS™ feature Bright Detail Similarity (BDS) was used to measure co-localization 

between two signals. A BDS score of 2 or greater represents a high degree of overlap. 

Representative images of co-localization of MTb-mCherry bacilli within the early (Rab5 

positive) endosomal compartment and in the late (Rab7 positive) endosomal compartment 

are shown respectively in Fig. 5A and Fig. 5B. BDS coefficients are indicated in the merged 

images.

To further characterize the MTb localization in infected cells that were labeled with Rab5, 

the cells were also labeled with LAMP1 (CD107 conjugated antibody, lysosome marker). As 

shown in a new analysis presented in Fig. 5, which recapitulates work in Ranjbar et al [90], 

H37Rv-mCherry bacilli were co-localized to a greater degree at LAMP1/CD107 late 

endosome/lysosome and Rab7 associated late phagosome compartment as compared to the 

Rab5 associated early phagosome (Fig. 5C). Thus the study by Ranjbar et al., demonstrated 

the ability of IFC to produce a statistically robust evaluation of colocalization of MTb with 

various cellular compartments and to compare the trafficking of MTb in cells where 

IFITM1–3 had been knocked down [90].

The strategies to analyze phagosome maturation in infected by MTb cells were further 

expanded by Johansson et al [41]. In order to develop small-scale screening strategy for 

chemical compounds that enhance phagosome maturation in MTb-infected cells, the group 

used fixable (CD63) and non-fixable (LysoTracker Deep Red) lysosome markers, and 

introduced custom-designed “phagosome-maturation score” [41]. Essentially, the analysis 

strategy was to quantify an extent to which the lysosomal marker is enriched in phagosome 

comparing with the whole body of the cell. The use of “phagosome-maturation score” (ratio 
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of mean pixels values) is based on the mean rather than the total intensity of lysosomal 

marker and therefore is less sensitive to the size of phagosome and cell comparing with 

standard approach based on the total intensity of lysosomal marker in the cell [41]. To 

validate the new approach authors imported images obtained using IS-X and quantitated 

phagosome maturation by techniques well-established in microscopy analysis [104–105].

Despite several decades of intensified research, the mechanisms involved in the protective 

immune response against MTb are not well understood. Use of multi-parametric and 

statistically robust IFC, and providing morphometric and fluorescence-based assessment of 

colocalization of MTb with different subcellular compartments will be beneficial in studying 

host-pathogen interactions in MTb infection and disease progression.

3.3 IFC and host-pathogen communication studies

IFC has also been used to study the dynamic of interaction between intracellular parasites 

and host cells. Bargieri et al. [37] quantified the invasion of PKH26-stained erythrocytes 

with GFP+ merozoites of P.berghei using co-localization and similarity scores to evaluate the 

efficiency of internalization of wild type and AMA1-deficient parasites. The decrease in 

invasion efficiency of AMA1-deficient merozoites was associated with altered adhesion to 

host cells [37]. The high sensitivity of Imagestream instruments allowed efficient detection 

of extracellular vesicles (EVs) in the wide size range [106–107]. Furthermore, we performed 

quantitative measurement of release of EVs of 100–400 nm size from P. falciparum 
schizont-stage parasites before egress [58], and it was possible to demonstrate that EVs 

originating from P. falciparum-infected red blood cells act as intercellular communicators 

and induce commitment of malaria parasites toward sexual differentiation. EVs released by 

infected cells could have multiple roles during infection [108–111]. Intracellular pathogen 

antigens may be transported by EVs or internalized by dendritic cells (DC), and this might 

amplify the cellular immune response [108]. EVs production is an universal cellular feature 

[112], and considered to be the major way to communicate and synchronize development 

and fate of intracellular pathogens. The application of IFC technology for research of EVs 

production by infected cells will further expand our understanding of intracellular 

pathogens.

3.4 IFC as a method to study heterogeneity and fate of intracellular pathogens

The fate of an intracellular pathogen after cell invasion depends on a variety of factors 

including type of the cell and/or pathogen, metabolic state and cell cycle stage of host cell 

(eg. professional phagocyte; endothelial cell, etc). Epigenetic factors can generate 

differentiation within genetically identical single cells of a clonal population [113] leading to 

the different fate of invading pathogen. Until recently, the technique of choice to study 

heterogeneity of intracellular pathogens and their fate in a clonal cellular population was 

flow cytometry supplemented by different variants of microscopy [114]. However, the 

statistically robust IFC technology platform allows quantification of a multitude of 

morphological pathogen forms present at the same time in the different subcellular 

compartments in a clonal cell line population leading to: 1) death of the pathogen; 2) long-

term survival as a dormant form; 3) programmed cell death of the cellular host and 
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efferocytosis; 4) proliferation inside phagocytes and multiplication of pathogen; or 5) death 

of pathogen (Fig. 6).

3.4 IFC in drug discovery

In view of the recent spreading of intracellular pathogens showing resistance to the existing 

drugs [115–117], there is an urgent need to develop new, safe, and affordable drugs [118–

119]. While several new chemicals were identified recently, they were primarily developed 

towards extracellular form of pathogens [120–121]. The biology of different parasite stages 

is important for research of intracellular pathogen response to drugs [122–124]. When 

comparing drug activity against Leishmania in vivo with drug activity against cultured 

parasites and intracellular forms in vitro, a correlation is better with the in vitro assays 

performed with drug screens using intracellular forms (amastigotes) vs. extracellular forms 

(promastigotes) [125]. However, the use of macrophage cell lines as host for intracellular 

parasites is problematic, since chemicals used to induce differentiation of macrophages in 
vitro modulate macrophage drug sensitivity [126–127].

Recent studies have suggested that IFC will be extremely helpful in screening for new drugs 

against intracellular pathogens. Recently, Lee et al. [56; 128] provided a detailed description 

of phenotype-based IFC assays to analyze a library of chemicals disrupting the integrity of 

the digestive vacuole of Plasmodium falciparum; these positive results of drug screening 

were further validated by confocal microscopy. It should be noted that these studies used 

colocalization of Fluo-4-AM and DNA dye-stained P. falciparum by IFC and demonstrated 

the capabilities of the method.

4. Perspectives and Challenges

We have described here data showing that IFC technology is a dependable and statistically 

robust platform for intracellular pathogen studies. Use of IFC and other image-based 

technologies in studying of host-pathogen interactions, has expanded our understanding of 

bacterial and parasite disease pathogenesis. Recent advances in red-shifted fluorescent 

protein development, advantageous due their low autofluorescence and light scattering, 

formed a basis for multiparameter and multi-color IFC. With the introduction of the Feature 

Finder algorithm, the IFC will further advance the field of imaging analysis. The availability 

and high sensitivity of Imagestream instruments also provides powerful tool for the analysis 

of intracellular pathogen heterogeneity.

By allowing an examination of pathogen morphology and subcellular localization and co-

localization of pathogens with cytoplasmic organelles, along with statistical robustness of 

image analysis based on multi-parametric software (more than hundred morphological and 

fluorescent parameters can be combined with sequentially built customized masks), IFC 

gives novel opportunities in the analysis of the life cycle of pathogens and details of host-

pathogen interactions.

The obvious limitation of IFC is the absence of a cell sorting option on the current 

instrumentation, which we expect will be overcome in the next years. The second limitation 

is its spatial resolution that is several fold less as compared to the fluorescent microscopy. 
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However, introduction of the MultiMag option with 60× objective for Imagestream 

instrument results in a 0.3 µm pixel size sensitivity and along with the extended depth of 

focus option, makes this difference less significant.

Another challenge in the use of IFC is related to the increasing size of compounds libraries 

used in drug discovery for intracellular pathogens which have rigorous demands with respect 

to assay time and robustness. Future perspectives on drug screening may require 

compatibility of the IFC instrument with multi-well plate format (96–384 wells).

Finally, the development of IFC techniques and their recent applications to the study of 

intracellular pathogens at the single cell and population levels greatly enhances our 

understanding of the physiology of intracellular pathogens, and of the host-pathogen 

interface.
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An5 annexin V

APC antigen-presenting cells

BDS Bright detail similarity

BF bright field

CFSE carboxyfluoresceinsuccinimidyl ester

CFU colony-forming unit

CMDFA 5-chloromethylfluoresceinDiacetate

DAPI (4',6-diamidino-2-phenylindole)

DHR dihydrorhodamine

DMEM Dulbecco’s modified Eagle medium

FP fluorescent protein

EGFP enhanced green fluorescent protein

em. emission

EVs extracellular vesicles

EYFP enhanced yellow fluorescent protein

ex. excitation
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H2DCFDA 2',7'-dichlorodihydrofluorescein diacetate

IFC imaging flow cytometry

IFITM interferon-induced transmembrane proteins

IS100 Imagestream 100

IS-X ImagestreamX

IS-X MK ImagestreamX MarkII

LAMP1 lysosomal-associated membrane protein-1

MTb Mycobacterium tuberculosis

MVs microvesicles

OD optical density

PBS phosphate-buffered saline

PCD programmed cell death

PE phycoerythrin

PI propidium iodide

qRT-PCR quantitative RT-PCR

RFP red fluorescent protein

shRNA short hairpin RNA

SI staining index

SSC side scatter

TNK transmembrane kinase
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Highlights

- Imaging flow cytometry (IFC) characterize hundreds thousands of cellular 

images using hundreds of measurements of morphological and fluorescence 

cellular features.

- Complex morphology of host-intracellular parasite interaction as well as 

standard cellular features (counts, size, shape) can be quantified in 

statistically robust manner using IFC.

- Feature Finder algorithm is useful in defining statistically significant 

differences in morphological and fluorescent features of cells infected with T. 
gondii cells.

- Imaging flow cytometry technique revealed that Mycobacteria tuberculosis 
internalized bacilli were co-localized to a greater degree at late endosome/

lysosome CD107 and late endosome Rab7 compartment than Rab5 early 

endosome compartment.
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Figure 1. Feature Finder algorithm implementation for T.gondii-infected THP-1 cells (defining of 
statistically significant feature for identification of cellular “bubbles”, containing mCherry-
labeled Toxoplasma)
1A, B: Two image panels from experiment with T.gondii-infected THP-1 cells (hand-picked 

by investigator). Ch1 – bright field; Ch4 – mCherry fluorescence (mCherry-labeled 

T.gondii); Ch1/Ch4 –merged cellular and T.gondii images. Right – images show the 

intracellular T.gondii clustered in vacuoles inside the normal size cells. Left – images show 

the intracellular T.gondii in vacuoles inside swelling cells (cellular “bubbles”).

1C: Major step in Feature Finder algorithm – to define Ch1 (brightfield) and Ch4 (mCherry 

fluorescence) as channels of interest, and ALL software features as categories of interest. 
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Alternatively, categories of interest can be narrowed to “Fluorescent Intensity”category etc. 

1D: Feature Finder wizard results – “Delta Centroid XY” feature provides the best statistical 

significance for two analyzed galleries of images chosen to represent T.gondii inside 

“bubble-cells” and in appearing morphologically “normal” cells.

1E, G: “Delta Centroid XY” feature applied to two initially hand-picked galleries of images. 

Dotblot axises: height of image vs Delta Centroid XY.

1F, H: “Delta Centroid XY” feature applied to single, focused cellular population of 

acquired file. The populations corresponding to initial hand-picked galleries of images are 

automatically gated on dotplot.
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Figure 2. Quantification of internalized GFP-labeled T.gondii using Spot feature of Imagestream 
(reprinted from [2] with permission from Bentham Science Publishers)
2A: Single-cell population defined by Area/Aspect ratio dotplot;

2B: Histogram of fluorescent intensity (GFP), gated on GFP+ cells;

2C: Histogram of Spot feature (IDEAS™, Amnis-Merck, USA) applied to GFP+, single, 

focused cells. Represents a quantitative distribution of cells with T.gondii-inclusions 

(distribution of GFP+-spots inside T.gondii-infected cells).

2D: Representative image galleries of cells, infected with T.gondii (cells with only one, two 

and three or more inclusions (spots)).

2E: Histogram of Spot Feature distribution (IDEAS™, Amnis-Merck, USA) representing 

GFP+ T.gondii inclusions in the infected cells after different multiplicity of infection (MOI).
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Figure 3. Quantification of internalized T.gondii
3A, B: Representative image galleries of cells, which did not internalized T.gondii 
(mCherry-labeled T.gondii attached or not attached, but located close to cells).

3C, D: Representative image galleries of cells with multiple (C) or single (D) T.gondii 
inclusions.

3E: Bar graph showing % of THP-1 cells infected with mCherry+ T.gondii cells (defined 

with a help of Eroded (3 pixel) mask). Blue: % of T.gondii-positive cells without treatment 

with inhibitor; Red: % of T.gondii-positive cells 24 hours after treatment with CytB (10 

µM).
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Figure 4. Quantification of internalized mCherry labeled MTb bacteria
4A: Left panel - Representative images of internalized MTb-mCherry acquired on IS-X 

Mark II.

4A: Right panel - external bacteria. Images shown from left to right : BF with erode mask 

(4 pixels), BF indicating cellular outline, H37Rv-mCherry+-MTb bacilli (Red), merged 

image of MTb-mCherry fluorescence and BF showing intracellular or external localisation 

of MTb-mCherry.

4B: Left - Chart showing wild type THP-1 cells, control shRNA cells, and IFITM shRNA 

cells lines number of cells being infected with mCherry-MTb, cells, internalized and 

external bacteria.

4B: Right -Bar graphs show the number of infected cells in all three cell lines, IFITM 

shRNA cells had significantly higher number of infected cells compared to control shRNA 

(p=0.0001) and wild type THP-1 (p=0.002). Histograms show the results of three separate 

experiments.
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Figure 5. Detection of H37Rv-mCherry MTb in early and/or late phagosomal compartments of 
infected human THP-1 cells
Wild type THP-1 cell were infected with H37Rv-mCherry MTb for 24 hours, fixed in 4% 

PFA, and stained with AB to Rab5 or Rab7 or Rab5 and CD107a and acquired on IS-X 

Mark II, as described in Ranjbar et al [90].

5A: Representative images of internalized MTb-mCherry in wild type THP-1 cells 24 hr 

after infection. Cells were labeled with Rab5 antibody and stained with DAPI as above. 

Images shown from left to right: BF image (Grey), DAPI (Purple), MTb-mCherry 

fluorescence (Red), Rab5 (Green), and a merged image showing colocalisation of MTb-

mCherry fluorescence and Rab5. BF similarity coefficient values are shown in yellow font.

5B: Representative images of internalized MTb-mChery in wild type THP-1 cells that were 

labeled with Rab7 and stained with DAPI as above. From left to right: BF image (Grey), 

DAPI (Purple), MTb-mCherry fluorescence (Red), Rab 7 (Blue), and a merged image of 

MTb-mCherry fluorescence and Rab7 with BF similarity coefficient shown in yellow font.

5C: Representative images of internalized MTb-mCherry in wild type THP-1 cells infected 

with MTb-mCherry and labeled with Rab5 and CD107a (LAMP1) as above. From left to 

right: BF image (Grey), MTb-mCherry fluorescence (Red), CD107a (Dark blue), Rab5 

(Green), and a merged image of MTb-mCherry fluorescence and CD107a with BF 

similarity coefficient in yellow font, a merged image of MTb-mCherry fluorescence and 

Rab5, and a merged image of MTb-mCherry fluorescence, CD107a and Rab5.
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Figure 6. IFC in intracellular pathogen studies
IFC allows to quantitate morphology and fluorescence, provides robust statistics, 

colocalization quantitation and Feature Finder capabilities.
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