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Abstract

Recent findings suggest that the dorsolateral prefrontal cortex (DLPFC), a region consistently 

associated with impulse control, is vulnerable to transient suppression of its activity and attendant 

functions by excessive stress and/or cognitive demand. Using functional magnetic resonance 

imaging, we show that a capacity-exceeding cognitive challenge induced decreased DLPFC 

activity and correlated increases in the preference for immediately available rewards. Consistent 

with growing evidence of a link between working memory capacity and delay discounting, the 

effect was inversely proportional to baseline performance on a working memory task. Subjects 

who performed well on the working memory task had unchanged, or even decreased, delay 

discounting rates, suggesting that working memory ability may protect cognitive control from 

cognitive challenge.

Introduction

The subjective value of a reward has been shown to decrease as a function of delay to 

delivery, a phenomenon known as delay discounting (DD) (van den Bos and McClure, 

2013). Delay discounting underlies the temptation to choose smaller, immediate rewards 

over larger, delayed rewards, and cognitive control has been posited to contribute to the 

ability to overcome such temptations (McClure et al., 2004; Berns et al., 2007; Peters and 

Büchel, 2011; van den Bos and McClure, 2013). In neuroimaging studies, cortical volume 

and activity in regions associated with cognitive control, such as dorsolateral prefrontal 

cortex (DLPFC) (Miller and Cohen, 2001), have been shown to predict selection of larger-

later over smaller-sooner rewards (McClure et al., 2004; Bjork et al., 2009; Kim and Lee, 

2011; Peters and Büchel, 2011; Gianotti et al., 2012; van den Bos and McClure, 2013). 

Moreover, disorders associated with impulsivity, such as gambling and addiction, have been 

associated with increased rates of delay discounting (Bickel et al., 2007) and impaired 

cognitive control (Goldstein and Volkow, 2011).

Converging lines of investigation have revealed that the DLPFC is vulnerable to transient 

suppression of its activity and attendant functions, including cognitive control, by excessive 
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stress (Arnsten et al., 2012) or cognitive demand (Yun et al., 2010; Friese et al., 2013). 

Furthermore, it has been suggested that the capacity for self-control is limited and 

vulnerable to temporary depletion by excessive loads (Muraven and Baumeister, 2000). 

Studies investigating the effects of cognitive demand and stress on delay discounting have 

yielded mixed results (Hinson et al., 2003; Haushofer et al., 2013). Hinson and colleagues 

(2003) found that maintaining longer strings of digits in memory was associated with greater 

discounting of delayed rewards. However, a reanalysis of the data revealed that increased 

discount rates could be accounted for by increased random responding likely induced by the 

distraction of having to perform the memory task simultaneously (Franco-Watkins et al., 

2006). Haushofer et al. (2013) found that neither subjective stress ratings, nor free cortisol 

levels assayed from salivary samples, were associated with changes in discount rates.

A fundamental cognitive function strongly associated with DLPFC activity is working 

memory (Braver et al., 1997; Yun et al., 2010) and a growing body of evidence has 

highlighted a potential link between working memory capacity and impulse control (Nichols 

and Wilson, 2015). Recent studies have demonstrated substantial overlap of prefrontal 

regions implicated in delay discounting and working memory (Wesley and Bickel, 2014), 

while working memory capacity has been shown to be inversely proportional to discount 

rates (Shamosh et al., 2008). Furthermore, Bickel and colleagues found that working 

memory training was associated with decreased impatience (Bickel et al., 2011).

Using functional magnetic resonance imaging (fMRI), we investigated the role of cognitive 

control in delay discounting using a task that has been shown to induce decreased DLPFC 

activity and function, in association with increased amygdala activity (Yun et al., 2010). The 

amygdala is thought to play an important role in mediating the effect of emotion on 

cognitive processing (Simpson et al., 2000; Dolcos and McCarthy, 2006). In previous work, 

we found that amygdala activity following cognitive challenge was associated with impaired 

cognitive performance (Yun et al., 2010). In the current study, participants completed blocks 

of delay discounting trials involving binary choices between monetary reward options that 

varied in magnitude and delay to delivery (Fig. 1). Half of the delay discounting blocks 

followed a high-load working memory block (4-back), while the other half followed a low-

load block (1-back). The 4-back task was intended to exceed working memory capacity, 

leading to increased negative affect and stress, as well as impaired cognitive control. We 

measured discount rates and neural activity after exposure to high- and low-load working 

memory challenge. We hypothesized that the cognitive challenge imposed by the 4-back 

would transiently persist into subsequent delay discounting task blocks, increasing amygdala 

activity and decreasing DLPFC recruitment. Moreover, we hypothesized that the degree to 

which amygdala activity increased, and DLPFC activity decreased, following 4-back 

exposure, would reflect depletion of cognitive control, and hence, would be associated with 

greater discount rates following the 4-back task. Finally, we hypothesized that individual 

differences in baseline cognitive capacity, as measured by working memory task 

performance, would be reflected in individual differences in the effects of cognitive 

challenge on delay discounting.
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Materials and methods

Participants

Nineteen subjects were recruited to participate in the experiment, including 14 males. The 

mean age was 33.6 years (SD = 9.3). The Structured Clinical Interview for DSM-IV (SCID) 

(First et al., 2002) was used to confirm that subjects had no history of significant psychiatric 

illness. Informed consent was obtained using a consent form and procedures approved by the 

Institutional Review Board at the University of California, San Francisco. Subjects were 

recruited using an online bulletin board.

Delay discounting-working memory task

While undergoing fMRI scanning, participants performed a delay discounting-N-back 

working memory (DD-WM) task, which employed a mixed block and event-related design 

with 4 block types: 0-back, 1-back, 4-back, and delay discounting blocks (Fig. 1). The 0-

back working memory condition was included as a low-demand condition to prevent 

participant fatigue. Participants completed four runs of the DD-WM task, with each run 

composed of 10 blocks (2 blocks of each working memory N-back load condition and 4 

delay discounting blocks). The delay discounting blocks were presented directly after low 

(post-1-back) or high (post-4-back) N-back working memory loads. The order of blocks was 

counterbalanced across task runs with the constraint that delay discounting blocks always 

followed either 1-back or 4-back working memory blocks. We measured delay discounting 

behavior and neural activity after exposure to high (4-back) and low (1-back) working 

memory challenge.

The delay discounting trial items involved binary choices between monetary rewards varying 

by reward magnitude and time of delivery (Fig. 1C). The delay discounting trial items were 

constructed using an approach very similar to our previous studies (McClure et al., 2004, 

2007). The magnitude of rewards was determined in the following manner: representative 

hyperbolic discounting parameter estimates from the literature were used to produce a range 

for constructing choices (0.0008–0.0714). A set of 32 candidate discounting parameter 

values was generated using an evenly spaced sequence across this range. The larger-later 

dollar amount was randomly drawn from a Gaussian distribution with mean $40 and 

standard deviation $10 that was clipped at $30 and $50. This value was used to calculate the 

smaller-sooner reward amount according to a discounting parameter (k) value randomly 

drawn (without replacement) from the set of candidate k values. The same set of candidate k 
values was used for both post-1-back and post-4-back delay discounting conditions and all 

participants faced the same 128 intertemporal choice pairs. The delay to the smaller-sooner 

reward was either “Today”, 2 weeks, or 4 weeks. The delay between the smaller-sooner and 

larger-later rewards was either 2 weeks or 4 weeks. In order to ensure incentive 

compatibility, one trial was randomly chosen following the experiment and paid to the 

participant, at the delay specified in the trial, in the form of a (post-dated) check.

Data analysis

Behavioral dependent variables of interest were i) 4-back performance accuracy, defined as 

the overall percentage of targets that were correctly identified, and ii) the discount rate. 
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Within-subjects estimates of the discount rate were obtained using maximum likelihood 

estimation to fit participants' choice behavior with the hyperbolic discounting function, 

which assumes that the subjective value (V) of a reward of magnitude r available after delay 

t is given by

(1)

where k is the individually determined discounting parameter. Larger values of k indicate 

greater rates of delay discounting (i.e., greater impatience). To model trial-by-trial behavior, 

we employed a logistic (softmax) choice rule, which computes the probability (PSS) of 

choosing the smaller-sooner (SS) option on any given trial as a function of the difference 

between VSS and VLL:

(2)

where the sensitivity parameter m > 0 quantifies the extent to which the model's choice is 

determined by the difference in subjective value for options SS and LL. When m = 0, choice 

behavior is random. Increasing values of m indicate increasingly consistent, less “noisy” 

responding. This approach allowed us to test for evidence of an increase in noisiness of 

responding following cognitive challenge. In our study, there was no significant difference 

between average estimates of m for post-4-back DD vs. post-1-back DD (paired t-test, p = 

0.34). This is of particular relevance because a reanalysis of the results of a highly cited 

behavioral study that investigated the role of working memory load on delay discounting 

with a different paradigm (Hinson et al., 2003) revealed that increased estimates of 

discounting could be accounted for by increased random responding likely induced by the 

distraction of having to perform the secondary task (Franco-Watkins et al., 2006). We 

followed the convention in the literature of normalizing the k estimates using the natural 

logarithm (Kirby, 1997). Five subjects chose only one of the options on all or nearly all 

trials. These ceiling/floor results prevented estimation of the relevant parameter for these 

subjects and, as a result, these subjects were excluded from analyses involving the parameter 

estimates. Estimation of the discounting parameter was carried out with custom MatLab 

code. Changes in delay discounting following cognitive challenge were calculated as post-4-

back log(k) − post-1-back log(k).

MR data acquisition and processing

fMRI data were acquired at the University of California, San Francisco Neuroscience 

Imaging Center on a Siemens 3 Tesla TIM Trio scanner with a 12-channel head coil. 

Functional images were collected along an oblique axial plane defined by the anterior 

commissure–posterior commissure line with the following echoplanar sequence: TR = 2 sec, 

TE = 29 msec, flip angle = 75°, FOV = 240 mm, 64 × 64 matrix, 32 slices acquired in a 

sequential ascending sequence with a 1 mm interslice gap. Acquired voxel dimensions were 

3.75 × 3.75 × 3.50 mm. To mitigate non-equilibrium effects, images corresponding to the 
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first 4 TRs of each run were discarded from analysis. High-resolution T1-weighted structural 

scans were acquired in the sagittal plane using an MP-RAGE sequence with the following 

parameters: TR = 2.3 sec, TE = 2.95 ms, flip angle = 9°, FOV = 256 mm, voxel dimensions 

were 1.0 × 1.0 × 1.2 mm, for 160 slices acquired.

Image processing was performed with Statistical Parametric Mapping (SPM8) (http://

www.fil.ion.ucl.ac.uk/spm/software/spm8/). Image preprocessing included motion 

correction (INRIAlign; http://www.fil.ion.ucl.ac.uk/spm/ext/#INRIAlign) via affine 

registration of all runs, where the first image of each run was realigned to the first image of 

the first run, and then re-alignment proceeded within each run. Images were then slice-time 

corrected with respect to the middle slice. The Artifact Detection Tools (ART) toolbox 

(http://www.nitrc.org/projects/artifact_detect) was then used to identify outlying volumes in 

the time series based on global image intensity values (>Z = 3) and head motion (>2 mm 

translational movement in x, y, or z plane or >0.02 degree rotation in yaw, pitch, or roll).

Next, aCompCor (Behzadi et al., 2007), a principal components-based approach to noise 

reduction of BOLD time series data, was applied. ACompCor is based on a spatial principal 

components analysis (PCA) of BOLD time series data from noise regions of interest (ROIs), 

defined from spatially eroded masks of the participant's white matter and cerebrospinal fluid 

(CSF) tissue compartments. The white matter and CSF masks were derived by segmentation 

of the participant's high-resolution T1-weighted structural scan using SPM8. In order to 

minimize partial voluming of these noise ROIs with gray matter, the white matter mask was 

eroded by first applying a >.99 threshold followed by erosion by 2 voxels in X, Y, and Z 

directions, and subsequent further exclusion of gray matter voxels by subtracting out any 

voxels falling within a gray matter binary mask. The gray matter binary mask was derived 

from the Talairach–Daemon-based Wake Forest University PickAtlas (Maldjian et al., 2003) 

and was reverse normalized into the subject's native space using the inverse of the 

transformation matrix generated by normalization of the participant's high-resolution T1 

scan to the MNI 152 brain template. The CSF mask was eroded by first applying a >0.90 

threshold, then applying a 3-dimensional 2-voxel nearest-neighbor criterion that dropped 

CSF voxels with less than 2 CSF nearest neighbors. A binary union mask of these noise 

ROIs was generated and co-registered to the mean functional scan. Before proceeding with a 

principal component analysis (PCA) of the functional time series data of voxels contained in 

this white matter/CSF noise ROI mask, voxels in the mask that showed even weak 

relationship with the task regressors (p <0.2) were excluded. Time series data for the 

remaining voxels in the noise ROI mask were then subjected to a PCA, and a number of 

noise components comprising weighted averages of white matter and CSF voxel time series 

were identified. PCA components were saved for use as nuisance regressors in the 1st level 

statistical model if their associated eigenvalues were greater than the eigenvalues generated 

by 200 PCA iterations on random normal data of equal size and rank to the noise ROI data 

matrix (p <.05). This process (PCA estimation and Monte Carlo simulation to determine 

“significant” noise components) was done separately for each run. Data were then spatially 

smoothed with a 6 mm FWHM Gaussian filter.

For individual participant (first-level) analyses, SPM's canonical hemodynamic response 

function (HRF; a double gamma function, with a temporal derivative term) was convolved 
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with task stimulus vectors denoting the onsets and durations of delay discounting trials, 

modeled as event epochs, and N-back working memory blocks, modeled as block epochs, 

yielding first-level task regressors and their temporal derivatives. Temporal derivatives of the 

task regressors were included in the first-level model to account for small latency variation 

in the hemodynamic response and its fit to the canonical HRF. Seven motion parameters, 

calculated via the ART toolbox, consisting of the temporal derivatives of the 6 motion 

parameters as well as a summary measure of total motion, were included as regressors to 

remove fluctuations in BOLD signal attributable to participant head movement. To further 

ensure that the data were optimally cleaned of noise, regressors were also included for i) 

data points identified by the ART toolbox as outliers and ii) the aCompCor noise 

components. The spatially smoothed BOLD image time series were modeled with the 

aforementioned regressors. Parameters (i.e., beta coefficients) representing the fit of each 

regressor to a voxel's time series were estimated using the general linear model after 

applying a high pass temporal filter (128 s cut-off) to remove low-frequency noise. Mean 

beta images were calculated across the task runs and contrast images for key task 

comparisons were derived by subtracting the corresponding beta images. The mean 

functional image, derived from the motion correction preprocessing step, was normalized to 

a standard neuroanatomical space (Montreal Neurological Institute's MNI-EPI template; 

http://www.bic.mni.mcgill.ca), resulting in 3 mm3 isotropic voxel dimensions, and the 

normalization parameters were applied to first-level beta and contrast images. Second-level 

analyses were then conducted on the primary fMRI contrasts of interest, 4-back − 1-back, 

post-4-back DD − post-1-back DD.

The next three sets of analyses were undertaken to examine fMRI activations during the DD-

WM task. First, fMRI activations were contrasted between high (4-back) and low (1-back) 

working memory loads in order to demonstrate activation of the well-described prefrontal-

parietal working memory network (Braver et al., 1997) by the high working memory load in 

our sample. In order to address study hypotheses regarding the impact of the cognitive 

challenge on DLPFC and amygdala functioning, a priori anatomical ROIs were generated in 

MNI space, using the Talairach-Daemon-based Wake Forest University PickAtlas (Maldjian 

et al., 2003). The DLPFC ROI was defined by combining binary masks of Brodmann Area 

(BA) 9 + BA 46, after removing medial regions of BA 9, to isolate the dorsolateral 

prefrontal cortex (DLPFC). For each participant, post-4-back DD − post-1-back DD fMRI 

mean contrast values were extracted separately from left and right DLPFC and amygdala 

ROIs for the regression analysis described below. The PickAtlas anatomical amygdala mask 

was also used for small-volume correction in the statistical testing of the 4-back − 1-back 

contrast. Type I error was controlled in working memory activation analyses via a cluster-

level family-wise error (FWE) corrected threshold of p < .001. Next, the effects of the high 

working memory load cognitive challenge on delay discounting were examined by 

contrasting activations to post-4-back DD vs. post-1-back DD via both voxel-wise and ROI-

based analyses. Type I error was controlled in delay discounting voxel-wise analyses via a 2-

step process: selection of an initial “cluster forming threshold” at the voxel-level, which in 

our case was an uncorrected voxel-wise p value = .005, followed by correction for multiple 

comparisons at the cluster level using an FWE-corrected p value = .001. We also performed 

a small-volume correction using an anatomically defined bilateral amygdala mask (see 
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above) and a voxel-wise FWE-corrected threshold of p <.05, in order to detect differences in 

amygdala activation during post-4-back delay discounting relative to post-1-back delay 

discounting. We tested for laterality of the post-4-back DD-post-1-back DD effect on 

DLPFC using contrast values extracted from the anatomically defined left and right DLPFC 

ROIs, via a paired t-test (alpha = .05). Lastly, change in log(k) was regressed on 

anatomically defined right DLPFC and bilateral amygdala ROI post-4-back DD—post-1-

back DD contrast values, with 4-back performance accuracy included as a regressor to 

control for variation in working memory performance (alpha=.05). Given that least-squares 

regression is sensitive to outliers (Fox, 1997), we subsequently fit the same model using the 

robust regression function lmrob available in R version 3.0.0 (The R Foundation for 

Statistical Computing, http://www.R-project.org); the results did not change appreciably.

Results

Imaging results

Consistent with prior literature (Braver et al., 1997; Yun et al., 2010), DLPFC and regions in 

parietal cortex implicated in working memory were more strongly activated when 

participants were engaged in the 4-back task than the 1-back task (Fig. 2A), indicating that 

the cognitive challenge recruited the prefrontal target areas as intended. We next measured 

the impact of the cognitive challenge on subsequent activity. Consistent with our hypothesis, 

post-4-back delay discounting blocks were associated with decreased activation in right 

DLPFC (rDLPFC; Fig. 2B) and increased activation in bilateral amygdala, relative to post-1-

back delay discounting blocks (Fig. 2C). Our analysis did not reveal an impact of cognitive 

challenge on activity in the left DLPFC (Fig. 3).

Our primary interest was in measuring the effect of DLPFC suppression on delay 

discounting behavior. We did this by testing whether post-4-back activity in rDLPFC and/or 

amygdala predicted changes in discount rates following cognitive challenge (post-4-back 

log(k) − post-1-back log(k)). Mean contrast values (post-4-back DD−post-1-back DD) were 

extracted from anatomically defined rDLPFC and amygdala ROIs for each subject and were 

included as predictors in a multivariate linear regression. As mentioned above, since we 

anticipated that individual variation in cognitive capacity would influence measured effects 

of cognitive challenge, we included 4-back performance as a predictor to control for 

individual differences in working memory capacity. As shown in Table 1, greater rDLPFC 

activation decreases and amygdala activation increases were independently associated with 

larger increases in discount rates from post-1-back to post-4-back DD blocks, controlling for 

4-back performance.

Behavioral results

Paired t-tests confirmed that average 0-back accuracy (81%) was significantly greater than 

1-back accuracy (74%, p < 0.0001), which was greater than 4-back accuracies (67%, p = 

0.0012). We measured delay discounting preferences at the individual level using the single-

parameter hyperbolic discounting function; higher values of the parameter indicate greater 

impatience. 4-back accuracy was negatively correlated with impatience (post-1-back log(k); 

Pearson's r = −0.83, p < 0.0005; Fig. 4A).
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With respect to the effect of cognitive challenge on discount rate, we first tested for a simple 

mean difference in discount rate (log(k)) from post-1-back to post-4-back delay discounting 

blocks and found no evidence for an effect across all subjects (paired t-test, p = 0.98). In 

fact, several participants' responses were consistent with decreased impatience following 

cognitive challenge (Fig. 4B). We next analyzed the influence of individual variation in 

working memory capacity on the impact of cognitive challenge by measuring the correlation 

between 4-back performance and change in discount rate from post-1-back to post-4-back 

delay discounting blocks. Here we saw a significant effect, with poorer 4-back performance 

significantly correlated with greater increases in discount rate from post-1-back to post-4-

back delay discounting blocks (Pearson's r = −0.62, p = 0.02; Fig. 4B). As can be seen in 

Fig. 4B, the participants with decreased discount rates following cognitive challenge were 

more likely to have performed well on the 4-back than those with increased discount rates. 

Taken together, these results suggest that the effect of a cognitive challenge on the discount 

rate depends crucially on individual-level variation in cognitive capacity.

Discussion

Previous research on delay discounting has led to the hypothesis that the ability to delay 

gratification in the face of immediate temptation relies on DLPFC function (McClure et al., 

2004, 2007; Figner et al., 2010; Kim and Lee, 2011; Peters and Büchel, 2011; van den Bos 

and McClure, 2013), and DLPFC function appears to be vulnerable to suppression by 

excessive stress and/or cognitive demand (Yun et al., 2010; Arnsten et al., 2012; Friese et al., 

2013). Furthermore, it has been suggested that the capacity for impulse control is a limited 

resource vulnerable to temporary depletion (Muraven and Baumeister, 2000), though results 

from the limited number of studies that have tested the impact of cognitive challenge on 

delay discounting behavior have led to mixed results (Hinson et al., 2003; Haushofer et al., 

2013). Taken together, our results support the hypothesis that prefrontally mediated 

cognitive control is fundamental for delay discounting and provides further evidence for the 

role of rDLPFC in self-control (Kerns et al., 2004; Knoch and Fehr, 2007; Aron, 2011; van 

den Bos and McClure, 2013). We find evidence that cognitive challenge can lead to impaired 

self-control in delay discounting, but the effect of a given cognitive challenge is likely 

moderated by baseline cognitive capacity. We believe the novel contributions of this study 

include (1) that the effect of cognitive challenge on discount rates was correlated with the 

effects on DLPFC and amygdala activity. We found that DLPFC suppression and increased 

amygdala activity following cognitive challenge predicted greater increases in discount 

rates. (2) The impact of cognitive challenge on discount rates depended on working memory 

ability. Lower accuracy on the N-back was associated with greater increases in discount 

rates following cognitive challenge.

Although the cognitive challenge posed by the 4-back task was clearly sufficient to induce 

increases in amygdala activity and reduced DLFPC recruitment, it did not lead to a 

significant mean increase in the discount rate frompost-1-back to post-4 back delay 

discounting blocks. However, there were substantial individual differences in working 

memory capacity across participants that likely moderated the impact of the 4-back working 

memory challenge on discount rates. As mentioned above, working memory capacity has 

been shown to predict individual differences in discount rates (Shamosh et al., 2008), while 
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working memory training has been demonstrated to decrease discounting (Bickel et al., 

2011). Furthermore, working memory capacity has been correlated with other aspects of 

impulsive choice, such as response inhibition (Nichols and Wilson, 2015). Using 4-back 

performance accuracy as a measure of individual working memory capacity, we observed a 

similar relationship in the current study. Specifically, lower 4-back accuracy was associated 

with higher discount rates in the post-1-back delay discounting control condition (Fig. 4A). 

Moreover, poorer performance on the 4-back task predicted greater increases in log(k) 

following 4-back exposure, suggesting that the 4-back task had a greater subsequent impact 

on delay discounting in those participants for whom it was most challenging (Fig. 4B). 

These findings are consistent with recent evidence suggesting that greater working memory 

capacity may “protect” DLPFC function from acute stress (Otto et al., 2013) and may help 

explain why past studies have yielded mixed results. One method for clarifying this 

phenomenon further would be to tailor the cognitive challenge to the individual participant's 

abilities using adaptive experimental design optimization (Cavagnaro et al., 2009).

Our results may shed light on the mechanism by which excessive cognitive challenge may 

increase impatience. As has been suggested previously, high levels of catecholamine release 

during exposure to stress may disrupt DLPFC function and cognitive control (Arnsten et al., 

2012). Given the well-established link between amygdala activity and the stress response 

(Sprengelmeyer et al., 1999; Hurlemann et al., 2009; Feinstein et al., 2011), the significant 

relationship between increased amygdala activity following 4-back exposure and impatience 

in our experiment is consistent with this mechanism, though we are precluded from making 

strong claims given that we did not directly assay stress levels. It is worth noting that an 

inverse relationship between activity in amygdala and DLPFC has been a frequent finding in 

emotion regulation studies (Ochsner et al., 2002; Heatherton and Wagner, 2011). Haushofer 

et al. (2013) tested the hypothesis that increased stress induces impatience using a social 

stress test and both self-report and physiological stress measurements. Utilizing a variety of 

delay discounting measures, they found no evidence of an effect. Given our finding that 

cognitive challenge may affect discounting by interfering with prefontally mediated 

cognitive control, it may be the case that Haushofer et al. did not find evidence for an effect 

because the particular stressor they employed did not suppress cognitive control adequately.

As noted above, one reason for an absence of mean increase in discount rate following 

cognitive challenge was that a number of subjects who performed well on the 4-back showed 

decreased impatience following cognitive challenge. This finding is consistent with the 

growing body of evidence supporting a “priming” effect of sub-capacity demands on 

DLPFC, in contrast to the “depleting” effect of excessive demands. Based on nonhuman 

primate research, Amy Arnsten and colleagues have proposed an “inverted-U” effect of 

catecholamines on DLPFC function (Arnsten, 2010; Arnsten et al., 2012; Arnsten and Jin, 

2014). According to this model, moderate levels of catecholamine release during alert 

waking states may strengthen DLPFC function, while excessive catecholamine release 

during stress may impair DLPFC function. They suggest that this occurs because varying 

levels of catecholamine release stimulate different receptor types, with lower levels of 

norepinephrine (NE) engaging higher affinity alpha-2 adrenergic receptors, while higher 

levels of NE release engage lower affinity alpha-1 and beta adrenergic receptors. Consistent 

with this model, a recent primate study found that animals that received guanfacine, an 

Aranovich et al. Page 9

Neuroimage. Author manuscript; available in PMC 2018 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



alpha-2 adrenergic receptor agonist, showed decreased impatience in a delay discounting 

experiment (Kim et al., 2011). For our purposes, the key finding is that cognitive control 

varies following cognitive challenge in a manner that is reflected in DLPFC activity and 

rates of delay discounting.

Of note, a limitation of our study is the relatively small sample size, which may have 

interfered with the detection of relationships with small effect sizes, and increases the value 

of future replication of the study findings. In addition, the absence of self-report or 

physiological stress measures means that uncertainty remains regarding the true emotional 

impact of our cognitive challenge.

In conclusion, we found that a cognitive challenge led to decreased rDLPFC activity and 

correlated increases in impatience on a delay discounting task, controlling for working 

memory performance. Taken together, these results support the hypothesis that prefrontally 

mediated cognitive control is fundamental for delay discounting, and provide further 

evidence for the role of right prefrontal cortex in self-control (Kerns et al., 2004; Knoch and 

Fehr, 2007; Aron, 2011). Increased amygdala activity following cognitive challenge was also 

associated with increased impatience, consistent with a role of increased levels of stress 

causing impaired prefrontally mediated cognitive control. Contrary to expectations, a 

number of subjects who performed well on the working memory task showed decreased 

impatience following cognitive challenge, which may reflect a “priming” effect of sub-

capacity cognitive challenge.
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Fig. 1. 
Experimental design. A) Sample 1-back task. B) Sample 4-back task. C) Sample delay 

discounting trial. D) Task structure. Participants completed 4 runs with counterbalanced 

order of 4-back and 1-back.
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Fig. 2. 
fMRI Results. A) Increased activity in DLPFC and lateral parietal cortex during 4-back 

relative to 1-back (p <0.001, cluster-level FWE-corrected). B) Contrast of post-1-back DD> 

post-4-back DD showing decreased DD-related rDLPFC activity following 4-back exposure 

(p < 0.001, cluster-level FWE-corrected). C) Contrast of post-4-back DD > post-1-back DD 

shoing increased DD-related bilateral amygdala activity following 4-back exposure (p < 

0.05, small volume corrected).
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Fig. 3. 
Hemispheric lateralization of change in DLPFC activation for post-4-back DD contrast. 

Figure shows mean fMRI contrast values for left and right DLPFC (anatomically defined 

ROIs) with 95% confidence intervals (*p < 0.05).
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Fig. 4. 
Relationship between 4-back performance and delay discounting. A) Correlation between 4-

back accuracy and discount rate (post-1-back log(k)). B) Correlation between 4-back 

accuracy and change in discount rate (post-4-back log(k) − post-1-back log(k)) (*p < 0.05; 

**p < 0.001).
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Table 1

Linear regression model predicting change in delay discounting following cognitive challenge. For each 

change measure, change is calculated as post-4-back DD − post-1-back DD. Change in delay discounting = 

post-4-back log(k) − post-1-back log(k). rDLPFC and amygdala ROIs were defined anatomically and mean 

contrast values were used as regressors.

Predictors Standardized beta
coefficients

Change in DLPFC (right) activation −0.412*

Change in amygdala (bilateral) activation 0.675**

4-back accuracy −0.669**

— —

Adjusted R2 0.696***

*
p < 0.05 significance.

**
p < 0.01 significance.

***
p < 0.005 significance.
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