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Abstract Memory Representations in the Ventromedial
Prefrontal Cortex and Hippocampus Support Concept
Generalization
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Memory function involves both the ability to remember details of individual experiences and the ability to link information across events
to create new knowledge. Prior research has identified the ventromedial prefrontal cortex (VMPFC) and the hippocampus as important
for integrating across events in the service of generalization in episodic memory. The degree to which these memory integration mech-
anisms contribute to other forms of generalization, such as concept learning, is unclear. The present study used a concept-learning task
in humans (both sexes) coupled with model-based fMRI to test whether VMPFC and hippocampus contribute to concept generalization,
and whether they do so by maintaining specific category exemplars or abstract category representations. Two formal categorization
models were fit to individual subject data: a prototype model that posits abstract category representations and an exemplar model that
posits category representations based on individual category members. Latent variables from each of these models were entered into
neuroimaging analyses to determine whether VMPFC and the hippocampus track prototype or exemplar information during concept
generalization. Behavioral model fits indicated that almost three-quarters of the subjects relied on prototype information when making
judgments about new category members. Paralleling prototype dominance in behavior, correlates of the prototype model were identified
in VMPFC and the anterior hippocampus with no significant exemplar correlates. These results indicate that the VMPFC and portions of
the hippocampus play a broad role in memory generalization and that they do so by representing abstract information integrated from
multiple events.
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Introduction
Healthy memory function involves both the ability to remember
details of individual experiences and the ability to generalize
across experiences to create new knowledge. Memory for specific

instances is known to be dependent on the hippocampus (Sco-
ville and Milner, 1957; Tulving and Markowitsch, 1998; Eichen-
baum, 2000). Generalization across experiences has traditionally
been ascribed to other memory systems, such as the striatum
(Knowlton et al., 1996), but recent research has shown hip-
pocampal contributions to some forms of generalization, includ-
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Significance Statement

Whether people represent concepts as a set of individual category members or by deriving generalized concept representations
abstracted across exemplars has been debated. In episodic memory, generalized memory representations have been shown to
arise through integration across events supported by the ventromedial prefrontal cortex (VMPFC) and hippocampus. The current
study combined formal categorization models with fMRI data analysis to show that the VMPFC and anterior hippocampus
represent abstract prototype information during concept generalization, contributing novel evidence of generalized concept
representations in the brain. Results indicate that VMPFC– hippocampal memory integration mechanisms contribute to knowl-
edge generalization across multiple cognitive domains, with the degree of abstraction of memory representations varying along
the long axis of the hippocampus.
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ing acquired equivalence (Shohamy and Wagner, 2008), concept
learning (Zeithamova et al., 2008; Kumaran et al., 2009), and
episodic inference (Preston et al., 2004; Zeithamova et al., 2012a;
Pajkert et al., 2017). In episodic inference, the hippocampus con-
tributes to generalization by interacting with the ventromedial
prefrontal cortex (VMPFC) to integrate and encode current
events in relation to prior knowledge (Schlichting and Preston,
2015). Such integrated memories then support novel inferential
judgments (Zeithamova et al., 2012b), such as inferring that two
children are siblings after seeing each of them with the same
parent on separate occasions.

The degree to which hippocampal and VMPFC integration
mechanisms identified in episodic inference contribute to other
forms of generalization, such as concept learning, is unknown.
Some evidence indicates that the hippocampus may not be criti-
cal for concept generalization, as individuals with episodic mem-
ory impairments can nonetheless learn some category structures
and generalize to new examples (Knowlton and Squire, 1993;
Filoteo et al., 2001). However, this evidence is not universally
accepted (Zaki et al., 2003a; Zaki, 2004) and does not preclude
hippocampal contributions to concept generalization in healthy
brains. Indeed, VMPFC and hippocampal activation have been
shown to track successful categorization judgments in healthy
individuals (Zeithamova et al., 2008). While hippocampal ac-
tivation during concept learning and generalization has been
sometimes interpreted as evidence for the retrieval of specific
exemplars (Koenig et al., 2008), recent evidence of generalized
representations within the hippocampus (Collin et al., 2015;
Schlichting et al., 2015) suggests that this interpretation of hip-
pocampal activation may not always be accurate.

Integrating quantitative cognitive models with fMRI (O’Doherty
et al., 2007) may help to resolve the nature of VMPFC and hip-
pocampal contributions to concept generalization. Exemplar
models posit that concepts are represented by individual in-
stances and that classifying new stimuli involves retrieval and
joint consideration of members of all relevant categories (Nosof-
sky, 1986; Kruschke, 1992). Prototype models posit that concepts
are represented by their prototypes— generalized representa-
tions of the central tendencies abstracted across category exem-
plars (Posner and Keele, 1968; Reed, 1972; Homa et al., 1973).
Fitting quantitative predictors derived from these models to neuro-
imaging data may clarify whether the hippocampus and VMPFC
contribute to generalization by maintaining item-specific represen-
tations or by forming abstract concept representations.

Few studies to date have used model-based fMRI to specify
representations underlying concept generalization (Nomura and
Reber, 2012; Mack et al., 2013; Davis et al., 2017). Of particular
relevance, Mack et al. (2013) found exemplar model correlates in
lateral occipital and posterior parietal cortices, indicating that
these regions contribute to categorization by representing indi-
vidual category exemplars. Neither the hippocampus nor the
VMPFC tracked either model, and no prototype correlates were
identified. However, the lack of prototype correlates in that study
could be driven by the category structure used: some exemplars
were more similar to the prototype of the opposing category than
to their own, making extraction of category prototypes difficult
and less useful for task performance (Medin and Schaffer, 1978;
Lamberts, 1995). Studies using training exemplars with more fea-
tures and/or stronger coherence around prototypes have shown
better prototype model fits (Smith and Minda, 1998; Minda and
Smith, 2001), making them better suited for probing potential
generalized representations in the hippocampus and VMPFC. In
the present study, we aimed to elucidate the contributions of the

VMPFC and hippocampus to concept generalization, using
model-based fMRI in conjunction with a concept generalization
task that engages these regions (Zeithamova et al., 2008) and
where behavior indicated prototype formation.

Materials and Methods
Participants
Forty-two volunteers were recruited from the University of Oregon and
the surrounding community and participated for financial compensa-
tion. Thirteen subjects were excluded from analyses for failing to com-
plete the task (2 subjects), below-chance performance at the end of
training and/or at categorization (5 subjects), structural abnormality (1
subject), and movement in excess of 2 mm within a run (5 subjects). This
left 29 subjects (18 females; age, 18 –28 years; mean age, 20.8 years; SD,
3.2 years) reported in all analyses. All participants provided written in-
formed consent, were right handed, had learned English before 7 years of
age, and were screened for neurological conditions and medications
known to affect brain function. All experimental procedures were ap-
proved by Research Compliance Services at the University of Oregon.

Materials
Stimuli consisted of cartoon animals (Bozoki et al., 2006) that differed
along the following eight binary dimensions: color (yellow/gray), shape
of feet (clawed/webbed), shape of body (squared/circular), shape of tail
(devil tail/feather tail), orientation of dots on body (vertical/horizontal),
pattern on neck (stripes/thorns), head shape (with beak/with horn), and
orientation of the head (forward/up; Fig. 1A). One stimulus was chosen
randomly for each subject from a set of four possible prototypes to be the
prototype of category A. The stimulus that shared no features with the
category A prototype served as the category B prototype. The two possi-
ble versions of each feature can be seen on the two prototypes shown in
Figure 1A. Physical distance between all stimuli was defined based on the
number of differing features. Category A stimuli were those that share
more features with prototype A than with prototype B. Category B stim-
uli were those that share more features with prototype B than with pro-
totype A. Stimuli equidistant from the two prototypes were not used in
the study.

Training set. The training set included four stimuli per category, each
differing from the category prototype by two features (Table 1, training
set structure; prototypes themselves were not presented during training).
The general structure of the training set with respect to the category
prototypes was the same across subjects, but, because the prototypes
varied across participants, the specific stimuli and feature– category label
associations also differed across participants.

Generalization set. Stimuli in the generalization phase included 58
unique stimuli. Eight new items were selected randomly at each distance
from the category prototypes (e.g., eight items that were one feature from
prototype A and thus seven features from prototype B, eight items that
were two features from prototype A and thus six features from prototype
B), excluding those equidistant from the two prototypes (four features
from each). The generalization set also included the previously unseen
prototypes and all training items. All training items were two features
from their respective prototypes. Training items and category prototypes
were each presented twice during generalization, whereas all other items
were presented once. We repeated training items and prototypes to en-
sure dissociable predictions for the prototype and exemplar models for
neuroimaging analyses as trials with old stimuli are particularly impor-
tant under the assumptions of the exemplar model and the prototypes are
particularly important under the assumptions of the prototype model.
Given that there were only two prototypes, repeating prototypes also
reduces noise in accuracy estimates for prototype classification (Kéri et
al., 2001; Smith et al., 2008).

Experimental design
Participants first completed a feedback-based training session outside the
scanner. Participants were told that they would learn to categorize mem-
bers of two families of cartoon animals by sorting them and receiving
feedback (Fig. 1B). Participants viewed individual stimuli on a computer
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screen for 1 s, after which the prompt (“Guess which family this guy is
from”) and response options (“Romeo’s” or “Juliet’s”) appeared on the
screen under the stimulus, and participants made a self-paced judgment.
Participants were then given feedback as to whether they were correct or
wrong, and the correct family was displayed (e.g., “Correct”, “This one
was from Romeo’s family”). There were five blocks of training, each
containing six repetitions of all training items with self-paced breaks
between the blocks. The order of stimuli was randomized within each
block with the constraint that no more than three items of the same
category could be presented consecutively.

Participants entered the scanner shortly after training. They first com-
pleted a resting scan lasting 5 min followed by two runs of passive viewing
of training items and new items (data from these scans are not reported in
this manuscript). Four runs of the concept generalization task followed
(Fig. 1C). Each run consisted of 17 trials with a 5 s stimulus presentation
and 7 s intertrial interval (ITI). Participants classified each item into one
of the two categories (labeled Romeo’s and Juliet’s) using a button press
while the stimulus was on the screen. Anatomical images were collected
following categorization. Following the scan, participants were asked

Figure 1. Prototype-learning task. A, Example stimuli. The leftmost stimulus is the prototype of category A and the rightmost stimulus is the prototype of category B, sharing no features with
prototype A. All stimuli in category A share more features with prototype A than the prototype B and vice versa. B, Participants underwent feedback-based training outside of the scanner. C, During
a scanned generalization test, participants were asked to categorize old and new items without feedback. D, Category representations and generalization to new items under assumptions of the
prototype and exemplar models. Exemplar: categories are represented as individual exemplars. New exemplars are classified into the category with the most similar members. Prototype: categories
are represented by their central tendencies (the category prototypes), and new exemplars are classified into the category with the most similar prototype. E, Trial-by-trial summed similarity (mean
centered) as predicted by the prototype (blue) and exemplar (red) models for one run in a representative subject. These values were entered as regressors into neuroimaging models as parametric
modulators of the BOLD signal.

Table 1. Dimension values for example prototypes and training stimuli from each
category

Dimension values

Stimulus 1 2 3 4 5 6 7 8

Prototype A 1 1 1 1 1 1 1 1
A1 1 1 0 1 1 0 1 1
A2 1 0 1 0 1 1 1 1
A3 0 1 1 1 1 1 1 0
A4 1 1 1 1 0 1 0 1

Prototype B 0 0 0 0 0 0 0 0
B1 0 0 1 0 0 1 0 0
B2 0 1 0 1 0 0 0 0
B3 1 0 0 0 0 0 0 1
B4 0 0 0 0 1 0 1 0

A1–A4 are individual training items from category A, and B1–B4 are individual training items from category B.
Dimension values from each category prototype are presented with their corresponding category members. The
version of each feature used for each stimulus is indicated by the feature dimension values (columns 1– 8).
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about their strategy during training and then indicated which version of
each feature they thought was most typical of each category (i.e., Did
most Romeos have a head that was up or a head that was forward?). Last,
participants were verbally debriefed about the study.

fMRI data acquisition
Scanning was completed on a 3 T Siemens MAGNETOM Skyra scanner
at the University of Oregon Lewis Center for Neuroimaging using a
32-channel head coil. Head motion was minimized using foam padding.
The scanning session started with a localizer scan followed by seven
functional runs using a multiband gradient echo pulse sequence [TR �
2000 ms; TE � 26 ms; flip angle � 90°; matrix size � 100 � 100; 72
contiguous slices oriented 15° off the anterior commissure–posterior
commissure line to reduced prefrontal signal dropout; interleaved acqui-
sition; FOV � 200 mm; voxel size � 2.0 � 2.0 � 2.0 mm; generalized
autocalibrating partially parallel acquisitions (GRAPPA) factor � 2].
One hundred fifty volumes were collected for the resting-state run, 100
volumes for each passive-viewing run, and 106 volumes for each catego-
rization run. A standard high-resolution T1-weighted MPRAGE ana-
tomical image (TR � 2500 ms; TE � 3.43 ms; TI � 1100 ms; flip angle �
7°; matrix size � 256 � 256; 176 contiguous slices; FOV � 256 mm; slice
thickness � 1 mm; voxel size � 1.0 � 1.0 � 1.0 mm; GRAPPA factor �
2) was collected following all functional runs. Scanning concluded with a
custom anatomical T2 coronal image (TR � 13,520 ms; TE � 88 ms; flip
angle � 150°; matrix size � 512 � 512; 65 contiguous slices oriented
perpendicularly to the main axis of the hippocampus; interleaved acqui-
sition; FOV � 220 mm; voxel size � 0.4 � 0.4 � 2 mm; GRAPPA
factor � 2).

Statistical analysis
Behavioral accuracies. Training data were examined with a one-way,
repeated-measures ANOVA comparing accuracies across the five train-
ing blocks. A significant positive linear effect of block was used to evalu-
ate whether significant learning occurred across the group during
training. For the generalization phase, categorization accuracies were
computed for new items (separately at each distance 0, 1, 2, and 3 to the
prototypes) and for training items (all two features from their respective
prototypes). A one-way repeated-measures ANOVA was used to com-
pare accuracies across all distances from category prototypes for new
items. A significant negative linear effect (i.e., better accuracy closer to
prototypes) was used to test for a typicality effect (Rosch et al., 1976).
Paired-samples t tests comparing categorization accuracies for old items
and for new items at distance 2 from their respective prototypes was used
to test for categorization advantage for training items compared with
new items of the same typicality.

Additionally, we examined the relationship between categorization
performance and explicit knowledge of typical feature values for each
category (from the debriefing questionnaire). We computed Pearson’s
correlations between overall accuracy on the debriefing questionnaire
and categorization accuracy, separately for old and new items.

Prototype and exemplar model fitting. Prototype and exemplar models
were fit to trial-by-trial categorization data in individual subjects. The
conceptual representations of the models are depicted in Figure 1D. Pro-
totype models assume that categories are represented by their prototypes
(i.e., the combination of typical category features from all training items
in each category). Consistent with prior modeling literature (Minda and
Smith, 2001; Maddox et al., 2011), the similarity of each categorization
stimulus to each prototype was computed, assuming that perceptual
similarity is an exponential decay function of physical similarity (Shepard,
1957) and taking into account potential differences in attention to individual
features. Formally, the relationships were computed as follows:

SA�x� � exp��c�i�1

m
�wiPxi � protoAiPr�1/r�, (l)

where SA(x) is the similarity of item x to category A, xi represents the
value of the item x on the ith dimension of its m binary dimensions (m �
8 in our study), protoA is the prototype of category A, r is the distance
metric (fixed at 1 for the city-block metric for the binary dimension
stimuli). Parameters that were estimated from the pattern of behavioral
responses, separately for each participant, were w (a vector with eight

weights, one for each of the eight stimulus features) and c (sensitivity; the
rate at which similarity declines with distance). More details of the pa-
rameter estimation procedure will follow after the description of the
exemplar model.

Exemplar models assume that categories are represented by their ex-
emplars, and test items are classified into the category with the highest
summed similarity across category exemplars. Formally (Nosofsky, 1987;
Zaki et al., 2003b), similarity of an item x to category A is computed as
follows:

SA�x� � �y�Aexp��c�i�1

m
�wiPxi � yiPr�1/r�, (2)

where y represents the individual training stimuli from category A, and
the remaining notation and parameters are as in Equation 1.

For both models, the probability of assigning a stimulus x to category
A is equal to the similarity to category A divided by the summed similar-
ity to categories A and B, formally, as follows:

P�A�x� �
SA�x�

SA�x� � SB�x�
. (3)

Using these equations, the best fitting w1– 8 (attention to each feature)
and c (sensitivity) parameters were estimated from the behavioral data of
each participant, separately for each model. For each trial, the probability
of the participant’s response under the assumptions of each model was
computed. For a given set of model parameters (w1– 8, c), there will be a
specific probability value for each trial. These trial-by-trial model predic-
tions are then compared with the participant’s actual series of responses.
For example, if the participant chose category A on a trial where the
model predicted a 70% chance of picking category A, then there is an
error of 30%. Model parameters (w1– 8, c) are then tuned so that the
model predictions are as close as possible to the actual observed pattern
of responses. Specifically, an error metric (negative log likelihood of the
whole sequence of responses) was computed for each model by summing
the negative of log-transformed probabilities. This summed value was
minimized by adjusting w attention weights and c sensitivity parameters
using standard maximum likelihood methods, implemented using the
“fminsearch” function in MATLAB (MATLAB 2015a, MathWorks). Pa-
rameters for each model and each participant were optimized separately
as there are currently no procedures developed for trial-by-trial behav-
ioral fits of both models simultaneously. After optimization, prototype
and exemplar model fits were (1) compared between models across the
group using a paired-samples t test to determine whether the group as a
whole was better fit by the prototype or exemplar model; (2) compared
within each participant to each other and to chance using Monte Carlo
simulations (described in the following paragraph) to determine for each
participant whether they used a prototype or exemplar strategy; and
(3) used to generate neuroimaging regressors (described in the fMRI
analysis section) to identify regions tracking predictions of each model.

To classify individual participants as “exemplarists” or “prototypists,”
we tested whether one model fit reliably better than the other on an
individual participant basis using a Monte Carlo simulation. For each
subject, a vector of random responses to the actual sequence of stimuli
observed by a given participant was generated and used to fit both pro-
totype and exemplar models as described above. This procedure was
repeated 10,000 times to generate a subject-specific null distribution of
model fits for each model. We then compared the observed prototype
and exemplar model fits to this null distribution to determine whether
one or both models fit the participant’s data better than chance. This was
determined by comparing the actually observed model fit to the null
distribution of fits and testing whether the observed model fit appeared
by chance with a frequency of �5% ( p � 0.05, one-tailed). Both models
showed above-chance performance in all subjects. To determine whether
one model fit reliably better than the other, we compared the observed
difference in model fits to the null distribution of differences in model fits
generated by the Monte Carlo simulation. One model was deemed a
winner for the given participant when that difference score appeared by
chance with a frequency of �5% ( p � 0.05, two-tailed).

fMRI preprocessing. Raw dicom images were converted to Nifti for-
mat using the dcm2nii function from MRIcron (https://www.nitrc.
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org/projects/mricron). Functional images were skull stripped using BET
(brain extraction tool), which is part of FSL version 5.0.9 (www.fmrib.
ox.ac.uk/fsl). Motion correction was computed within each functional
run using MCFLIRT in FSL to realign all volumes to the middle volume.
Across-run realignment was computed using ANTs (Advanced Normal-
ization Tools; http://stnava.github.io/ANTs/) with the first functional
volume serving as the reference volume. The first volumes of all other
runs were registered to the reference volume, and the transformation
computed was applied to all other images in the run. Brain-extracted and
motion-corrected images from each categorization run were entered into
the FEAT (fMRI Expert Analysis Tool) in FSL for high-pass temporal
filtering (100 s) and spatial smoothing using a 4 mm FWHM kernel. For
whole-brain group analyses, functional data were registered to standard
stereotaxic space following coregistration with the T1 image using the
FLIRT (FMRIB’s Linear Image Registration Tool) in FSL.

Regions of interest. Regions of interest (ROIs; Fig. 2) were defined
anatomically in individual subjects’ native space using the cortical
(VMPFC) parcellation and subcortical (hippocampus) segmentation
from Freesurfer version 6 (https://surfer.nmr.mgh.harvard.edu/) and
collapsed across hemispheres. VMPFC (medial orbitofrontal label in
Freesurfer) was expected to track prototype predictors based on its role in
episodic generalization (Zeithamova et al., 2012a) and some types of
categorization (Zeithamova et al., 2008). Past research has indicated that
generalization effects in the hippocampus may be specific to the anterior
hippocampus while the posterior hippocampus maintains event-specific
representations (Collin et al., 2015; Schlichting et al., 2015). As such, we
tested for anterior/posterior differences by dividing each subject-specific
hippocampal ROI into an anterior half and a posterior half, splitting at
the middle slice. When a participant had an odd number of hippocampal
slices, the middle slice was assigned to the posterior hippocampus. The
anterior hippocampus was expected to track prototype predictors,
whereas the posterior hippocampus was expected to track exemplar
predictors.

Model-based fMRI analysis. Data were modeled using the GLM. Three
regressors were included in each model: one for all trial onsets, one that
included modulation for each trial by prototype model predictions, and
one that included modulation for each trial by exemplar model predic-
tions. The regressor for all trial onsets was included with the model
regressors to account for activation that is associated with performing a
categorization task generally, but does not track either model specifically.
The model-based fMRI predictors were computed as the summed simi-
larity to both categories, formally the denominator in Equation 3 under
the category representation assumptions of each model (as formalized in
Eqs. 1 and 2). Because summed similarity indexes how similar the current
item is to the existing category representations as a whole (regardless of
which category it is closer to), it has been used in model-based studies for
the localization of regions that contain such category representations.
The summed similarity metric has also been previously called “recogni-
tion strength” (Davis et al., 2014) or “representational match” (Mack et
al., 2013). Including exemplar and prototype predictors in the same GLM
accounts for shared variance between the model predictions. Thus, the
model adopted here ensures that only regions that show trial-by-trial

response variability predicted by the prototype or exemplar model are
identified when comparing each to baseline.

All test items were included in the GLM without an imposed distinc-
tion between old and new items because the models already differ in how
they treat these two types of items. Exemplar models generally predict
better classification of old items compared with new items at the same
level of typicality, whereas prototype models do not differ in their treat-
ment of old and new items when they are the same distance from the
prototypes. Likewise, we did not include correct/incorrect explicitly in
the GLM because the model-fitting process involves predicting an indi-
vidual subject’s pattern of responses, including experimenter-defined
errors (e.g., a given classification response may be consistent with a par-
ticular participant’s exemplar representation, even though it does match
the experimenter-defined category). We also did not impose a distinc-
tion between individual subjects whose behavioral data were best fit by
the prototype model compared with those who were not because of the
following: (1) the neuroimaging regressors that we generated were
unique to each subject and driven by their own responses; (2) it is possi-
ble that subjects maintain both prototype and exemplar representations
even when one dominates behavioral responses in the majority of partic-
ipants; and (3) the number of exemplarists in the current study would be
too low to permit group comparisons based on the best fitting strategy.
However, exploratory analyses split by strategy showed generally similar
patterns of neural model fits, with numerically more pronounced proto-
type correlates in participants identified as prototypists. Events were
modeled with a 5 s duration, which was the fixed length of the stimulus
presentation, regardless of the timing of participant’s response. Onsets
were then convolved with the canonical hemodynamic response func-
tion as implemented in FSL (gamma function with a phase of 0 s, an SD
of 3 s, and a mean lag time of 6 s).

ROI analyses were computed in native space. The mean parameter
estimate from each region was extracted and divided by the SD of param-
eter estimates to compute the effect size of how much the BOLD signal
tracked each model predictor. Normalizing the �-values by their error of
estimate provides a mean to deweigh values associated with large uncer-
tainty, similar to how lower-level variance estimates are used in group
analyses as implemented in FSL (Smith et al., 2004). However, using raw
parameter estimates did not affect the observed pattern of results. Nor-
malized �-values were then averaged across runs and submitted to group
analyses. Given our a priori predictions that the VMPFC and anterior
hippocampus would track prototype predictors, we computed one-
sample, one-tailed t tests to determine whether prototype effects were
significantly greater than zero. A similar procedure was used to test for
significant exemplar effects in the posterior hippocampus. Paired-
sample t tests were used to determine whether a given region tracked one
model predictor more than the other. For these ROI analyses, the �-level
was set to p � 0.016 to correct for multiple comparisons across the three
ROIs. To test for a representational dissociation along the anterior–pos-
terior axis of the hippocampus (Collin et al., 2015; Schlichting et al.,
2015), we computed a 2 (model: prototype, exemplar) � 2 (hippocampal
ROI: anterior, posterior) repeated-measures ANOVA on the model-fit
values and tested for an interaction.

Whole-brain maps in normalized space were generated for explor-
atory purposes. Parameter estimates were averaged across runs within
individual subjects using a fixed-effects analysis. Group-level contrasts
were computed using Mixed-Effects FLAME 1 in FSL, comparing the
prototype and exemplar regressors to baseline (i.e., the unmodeled ITI
during which the fixation cross was presented) to identify regions track-
ing the predictions of each model. Whole-brain maps were computed
with a voxelwise threshold of z 	 3.1 and cluster corrected at p � 0.05
using the false discovery rate (FDR) method in FSL.

Results
Behavioral
Categorization accuracy (Fig. 3A) increased linearly across train-
ing (repeated-measures ANOVA linear effect: F(1,28) � 137.67,
p � 0.001, partial � 2 � 0.83). At the generalization test, the mean
overall accuracy was 86.2% (SD, 10.9%) on the training items

Figure 2. Regions of interest from a representative subject. Regions were defined in the
native space of each subject using automated segmentation in Freesurfer.
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and 80.5% (SD, 7.9%) on new transfer items. Categorization
accuracy for all test items split by their typicality (distance to the
prototypes) is presented in Figure 3B. A one-way, repeated-
measures ANOVA on categorization accuracy for new stimuli
across the four distances showed a significant linear effect (F(1,28) �
67.05, p � 0.001, partial � 2 � 0.71) with better accuracy for items
closer to its category prototype. A paired t test comparing accu-
racy on old items and new items at the same distance to the
prototypes showed significantly better accuracy for old items
(t(28) � 2.26, p � 0.03, d � 0.42).

A paired-samples t test comparing prototype and exemplar
model fits showed significantly better fit (i.e., lower negative log
likelihood) across the group for the prototype model (t(28) �
3.61, p � 0.001, d � 0.67; Fig. 3C). Results from the Monte Carlo
simulation showed that the prototype model significantly outper-
formed the exemplar model in 21 subjects, the exemplar model out-
performed the prototype model in 3 subjects, and the fit for the two
models did not differ reliably in 5 subjects (Fig. 3D).

In the debriefing, the mean accuracy in identifying the most
common version of the features for each category was 80.6%
across the entire group (SD, 17.7%; range, 37.5–100%). Further,
features that participants paid the most attention to (as estimated
by the models) were also those that the participant had the best
explicit knowledge of; attention weight estimates generated by
each model were significantly higher for features labeled correctly
during the debriefing compared with those labeled incorrectly

(exemplar: t(19) � 3.11, p � 0.006; prototype: t(19) � 4.76, p �
0.001). Accuracy on the debriefing measure was not correlated
with classification accuracy for training (old) items presented
during the generalization test (r � 0.03, p � 0.88), but it was
positively related to accuracy for new items (r � 0.42, p � 0.02),
meaning that explicit knowledge of which feature values were
associated with each category did benefit generalization.

Model-based fMRI
ROI analysis
Prototype and exemplar parameter estimates (normalized � val-
ues) for each ROI are depicted in Figure 4A. One-sample t tests
showed above-chance prototype correlates in the VMPFC (t(28) �
3.55, p � 0.001, d � 0.66) and anterior hippocampus (t(28) �
2.32, p � 0.014, d � 0.43). A paired t test in the VMPFC showed
greater prototype than exemplar correlates (t(28) � 2.33, p �
0.014, d � 0.43), whereas the difference in model fits in the an-
terior hippocampus did not reach significance (t(28) � 1.50, p �
0.073, d � 0.28). A one-sample t test of exemplar correlates in the
posterior hippocampus was not significant (t(28) � 1.10, p � 0.14,
d � 0.20) nor was the paired comparison between exemplar and
prototype effects (t(28) � 1.01, p � 0.16, d � 0.19). To test
whether model fits in the anterior hippocampus differed from
those in the posterior hippocampus, we performed a 2 (model:
prototype, exemplar) � 2 (hippocampal ROI: anterior, poste-
rior) repeated-measures ANOVA, which showed no main effect of

Figure 3. Behavioral results. A, Proportion of correct categorization responses across five training blocks. B, Proportion of correct responses during the generalization test for test items at each
distance from their respective category prototype. Separate accuracies are presented for training items (old; all distance 2) and new items. C, Model fit errors (negative log likelihood) for the
prototype and exemplar models. Lower values indicate better fit. Asterisk represents a significant ( p � 0.05) paired-samples difference in mean fit error between the models. In A–C, error bars
represent across-subject SEM. D, The percentage of individual subjects best fit by the prototype model (blue), the exemplar model (red), and those for whom model fits did not differ significantly
from one another (neither, gray).
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model (F(1,28) � 0.16, p � 0.69, partial � 2 � 0.006), no main effect
of hippocampal ROI (F(1,28) � 1.77, p � 0.20, partial � 2 � 0.06),
but a significant model � hippocampal ROI interaction (F(1,28) �
6.63, p � 0.02, � 2 � 0.19).

Whole-brain analysis
Whole-brain activation maps showing regions tracking proto-
type and exemplar predictors are presented in Figure 4B, with
cluster information in Table 2. Thereweresevenclusterssignificantly
tracking prototype predictors, including clusters in VMPFC, bilateral
middle temporal gyrus, bilateral temporal pole, and left superior
lateral occipital cortex. No regions tracked exemplar predictors at
this threshold. Because a prior study identified exemplar corre-
lates when using a category structure that resulted in stronger
exemplar strategy use (Mack et al., 2013), we wanted to evaluate
whether exemplar correlates could be identified if we relaxed the
threshold. At a lenient threshold (z � 2; FDR cluster correction,
p � 0.1), exemplar correlates were identified in left lateral occip-
ital cortex (peak: MNI coordinates, 
22, 
88, 
22; z � 3.23;
1376 voxels), right lateral occipital cortex (peak: MNI coordi-
nates, 44, 
86, 
4; z � 3.78; 1346 voxels), precuneus (peak: MNI
coordinates, 2, 
64, 56; z � 3.56; 571 voxels), right postcentral
gyrus/inferior parietal cortex (peak: MNI coordinates, 46, 
32,
54; z � 3.53; 454 voxels), and left postcentral gyrus/inferior pa-
rietal cortex (peak: MNI coordinates, 
58, 
22, 48; z � 3.04; 423
voxels).

Discussion
We tested whether hippocampal and VMPFC processes that
support generalization in episodic memory do so in concept
learning. Furthermore, we aimed to determine whether such gen-
eralization relies on abstract category representations (i.e., pro-
totypes) or item representations (i.e., exemplars). Participants
learned to classify binary-feature stimuli into two categories, each
organized around a prototype containing the version of each
feature most typical of the category. While undergoing fMRI
scanning, participants completed a generalization phase where
they classified training stimuli and new items that had not been
given an explicit category label. Fitting formal prototype and ex-
emplar models to behavior revealed that most participants relied
on prototype representations abstracted across the training set to
make their generalization judgments. The dominance of the pro-
totype model in behavior was accompanied by prototype corre-

lates in the VMPFC and anterior hippocampus, suggesting that
these regions contribute to concept generalization by represent-
ing abstract category information. These results indicate that
memory integration mechanisms supported by the VMPFC and
hippocampus contribute to generalization across multiple cogni-
tive domains.

In episodic inference, the VMPFC has been shown to form
generalized representations via memory integration processes
that link information across episodes (for review, see Schlichting
and Preston, 2017). The VMPFC also tracks generalization suc-
cess in a task similar to that in the current study (Zeithamova et
al., 2008). However, the computations or representations re-
flected in categorization-related VMPFC activity were unclear.
By linking neural activation to predictions from formal categori-
zation models, we show that the VMPFC tracks prototype-based
model predictors, indicating that it contributes to classification
by representing abstract category information. We propose that
the VMPFC may form prototype representations by integrating
information across exemplars that share a category label, which
are then accessed to inform generalization judgments. Such a role
for the VMPFC is consistent with episodic memory studies show-
ing that the VMPFC supports integration of current experience
with prior knowledge (Zeithamova et al., 2012a; Richter et al.,
2016; Liu et al., 2017), facilitating memory for schema-consistent
information (Tse et al., 2007, 2011; van Kesteren et al., 2010) and
inference of new relationships across overlapping events (DeVito
et al., 2010; Zeithamova et al., 2012a; Schlichting et al., 2015).
Further, prior research has shown that the VMPFC contributes to

Figure 4. Model-based fMRI. A, Prototype (blue) and exemplar (red) neural model fits in the three ROIs. Effect size is the mean/SD of �-values within each ROI, averaged across runs. Ant.,
Anterior; Post., posterior; Hip., hippocampus. Error bars represent the across-subject SEM. Tensor symbol represents a significant interaction between model fits and hippocampal ROIs (anterior vs
posterior). B, Representative slices from a whole-brain prototype 	 baseline contrast denoting regions in which activation reliably tracked predictors derived from the prototype model. No
suprathreshold clusters of activation were found for the exemplar 	 baseline contrast. R, Right; L, left; z, z-coordinate in MNI standard space.

Table 2. Regions significantly tracking prototype model predictors

Region Hemisphere Cluster size z-statistic

Peak coordinate

x y z

Frontal pole L 315 4.78 
10 62 14
VMPFC M 124 4.2 0 44 
16
Anterior cingulate

cortex
R 65 4.14 4 30 
10

Temporal pole L 266 4.13 
44 16 
32
Temporal pole R 269 4.34 58 12 
30
Middle temporal gyrus L 98 4.08 
62 
14 
12
Superior lateral

occipital cortex
L 131 4.49 
46 
70 30

Cluster size is the number of voxels; peak coordinate is given in MNI space. L, Left; R, right; M, medial.
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decision-making in novel situations by integrating across rele-
vant experiences (Behrens et al., 2008; Barron et al., 2013) and
may play a larger role in relating memory representations to cur-
rent decision-making demands (Kaplan et al., 2017). Together,
these results suggest that the VMPFC links information across
episodes to represent abstract information not experienced di-
rectly, playing an important role in knowledge generalization
across multiple cognitive domains.

The present results also revealed portions of the hippocampus
that tracked prototype predictors during generalization. While
many theories have posited that learning systems outside the me-
dial temporal lobes are the primary drivers of category learning
(Knowlton and Squire, 1993; Ashby et al., 1998; Shohamy et al.,
2004), the current study and other evidence (Zeithamova et al.,
2008; Kumaran et al., 2009) demonstrate a clear role for the hip-
pocampus in concept generalization. These results challenge tra-
ditional multiple-systems views that posit a division of labor
between medial temporal systems supporting memory for spe-
cific events and other learning systems for concept formation
(Squire and Knowlton, 1995). Furthermore, evidence for gener-
alized (prototype) concept representations in the hippocampus
also challenges single-system views that posit hippocampal gen-
eralization based on representations of individual category mem-
bers (Medin and Schaffer, 1978; Nosofsky, 1986; Koenig et al.,
2008). Instead, the results suggest an update to multiple-systems
views to incorporate growing evidence that the hippocampus
contributes to several forms of memory generalization in addi-
tion to its well known role in memory for specific events.

Our results also demonstrated differences in concept repre-
sentations along the long axis of the hippocampus, with proto-
type–model correlates specific to the anterior hippocampus. The
existence of abstract concept representations within anterior but
not posterior hippocampus is consistent with previous studies
showing integrated representations in this region during associa-
tive inference (Schlichting et al., 2015) and when linking scenes to
form large-scale narratives (Collin et al., 2015). The anterior hip-
pocampus may be better suited than posterior hippocampus to
forming such generalized representations because its cells have
larger receptive fields that may better facilitate integration across
time and space (Kjelstrup et al., 2008; Stensola et al., 2012; Pop-
penk et al., 2013). Anterior hippocampus also responds similarly
to related events, suggesting a shared representation of similar
information, whereas posterior hippocampus tends to represent
similar information distinctly, forming unique representations of
overlapping information (Komorowski et al., 2013; Brunec et al.,
2017). These features of hippocampal coding identified in animal
research have thus far been tested in humans primarily in studies
of episodic memory, but are likely broadly applicable across
memory domains. Prototype correlates unique to the anterior
hippocampus that were observed in the current study are entirely
consistent with this model of hippocampal function. While ex-
emplar correlates in the posterior hippocampus did not reach
significance, this may have been driven by the category structure
that promoted prototype representations in the majority of par-
ticipants. Together with prior evidence, our results contribute to
the idea that memory representations vary along the long axis of
the hippocampus, with the unique role of the anterior hippocam-
pus in supporting novel decisions based on generalized represen-
tations abstracted across experiences.

An exploratory whole-brain analysis revealed additional pro-
totype correlates in left middle temporal cortex, bilateral tempo-
ral pole, and left superior lateral occipital cortex. While not a part
of the canonical category-learning network (Seger and Miller,

2010), prototype correlates in lateral temporal regions are note-
worthy given their role in semantic processing (Martin and Chao,
2001) and false memories resulting from reliance on generalized
information (Garoff-Eaton et al., 2006; Dennis et al., 2014; Tur-
ney and Dennis, 2017). A recent study of false memory (Turney
and Dennis, 2017) showed increasing activation in bilateral mid-
dle temporal cortices, along with VMPFC, as the similarity of
lures to targets increased. A recent categorization study (Davis et
al., 2017) demonstrated that activation in lateral temporal corti-
ces, also along with the VMFPC, tracks typicality (decision evi-
dence) during category generalization. Together, these studies
suggest that these regions may be sensitive to graded typicality in
multiple memory domains. Future research may elucidate the
possibility that the lateral temporal cortices play a previously un-
derappreciated role in memory generalization that may be linked
to generalization processes subserved by the VMPFC.

In contrast to robust prototype correlates, the whole-brain
analysis revealed no significant exemplar correlates. This proto-
type–model dominance in the brain matched the prototype–
model dominance in behavior, with the prototype model reliably
outperforming the exemplar model in 73% of participants. How-
ever, while the current data inform the decades-long “prototype
versus exemplar” debate on the nature of concept representation
(Homa et al., 1981; Busemeyer et al., 1984; Nosofsky et al., 2012),
the strong prototype fit identified here should not be overinter-
preted as evidence that categories are always represented by their
prototypes. For instance, a model-based fMRI study by Mack et
al. (2013) found better exemplar fit to behavior matched by ex-
emplar correlates in the brain when using a different category
structure in which prototypes were not as readily extracted or as
useful for categorization. Even in our prototype-dominant study,
behavioral model fits indicated that several participants (10%)
relied on exemplar representations, and the group as a whole
showed better classification of training items than new items of
the same typicality. Thus, specific exemplars had some influence
on behavior, albeit weaker than that of prototypes. In line with
these behavioral indicators, several regions tracked exemplar pre-
dictors at a more lenient threshold and were consistent with the
exemplar-tracking regions identified in the study by Mack et al.
(2013), including lateral occipital and parietal regions. Thus,
weak exemplar representations may have formed along with pro-
totype representations. In contrast, the lack of overlap between
the prototype regions identified in the current study and the
exemplar regions identified in the study by Mack et al. (2013) are
consistent with the idea that specific and generalized memory
representations rely on partially dissociable neural systems (Pres-
ton and Eichenbaum, 2013; Collin et al., 2015; Schlichting et al.,
2015). Taking these results together, we propose that factors such
as the category structure (Rosch, 1975; Medin and Schaffer, 1978)
and the category-training format (Aizenstein et al., 2000; Reber et
al., 2003; Zeithamova et al., 2008; Zeithamova and Maddox,
2009) may bias the nature of concept representations formed
during learning and accessed during generalization. Further-
more, just as representations of large-scale narratives are pro-
posed to form alongside memories for individual events (Collin
et al., 2017), prototype and exemplar representations may form
in parallel across many tasks, with their relative strengths in brain
and behavior varying according to the task demands.

By using latent variables from well established categorization
models in an fMRI analysis, we show that the VMPFC and ante-
rior hippocampus support concept generalization by accessing
abstract prototype information. These data inform the prototype
versus exemplar debate by providing novel neural evidence for
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the existence of generalized concept representations. Further-
more, together with prior studies on generalization in episodic
memory, the data indicate that VMPFC– hippocampal memory
integration mechanisms contribute to knowledge generalization
across cognitive domains.
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