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Abstract

Constructing longitudinal diffusion-weighted atlases of infant brains poses additional challenges 

due to the small brain size and the dynamic changes in the early developing brains. In this paper, 

we introduce a novel framework for constructing longitudinally-consistent diffusion-weighted 

infant atlases with improved preservation of structural details and diffusion characteristics. In 

particular, instead of smoothing diffusion signals by simple averaging, our approach fuses the 

diffusion-weighted images in a patch-wise manner using sparse representation with a graph 

constraint that encourages spatiotemporal consistency. Diffusion-weighted atlases across time 

points are jointly constructed for patches that are correlated in time and space. Compared with 

existing methods, including the one using sparse representation with l2,1 regularization, our 

approach generates longitudinal infant atlases with much richer and more consistent features of the 

developing infant brain, as shown by the experimental results.

1 Introduction

Diffusion-weighted imaging (DWI) has been widely employed in various studies on brain 

development of both term and pre-term babies [1]. It is a unique technique capable of in vivo 
characterization of tissue microstructure and white matter pathways. For quantitative 

analysis using DWI, several diffusion-weighted (DW) atlases based on diffusion tensor 

imaging (DTI) [2] and higher angular resolution diffusion imaging (HARDI) [3] have been 

introduced. However, existing approaches to atlas construction typically average the aligned 

DW images, thus blurring structural details as well as diffusion properties. In this article, we 

focus on improving longitudinal DW infant atlases by explicit consideration of structural 

misalignment for constructing atlases with greater structural details.

In general, the atlas construction process consists of two steps: (1) alignment of a population 

of images to a common space, and (2) fusion of the aligned images into a final atlas. In 

recent years, effective approaches on image fusion have been introduced to preserve 

anatomical details. Serag et al. [4] employed adaptive kernel regression in the temporal 

dimension for construction of longitudinal T1 and T2-weighted atlases. Shi et al. [5] 

proposed a patch-wise fusion method based on multi-task LASSO [6], leading to sharper 

atlases by fusing only patches that are representative of the image population. More recently, 

Zhang et al. [7,8] extended Shi et al.’s work to the frequency and temporal domains for 

Correspondence to: Dinggang Shen.

HHS Public Access
Author manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 
September 01.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2017 September ; 10433: 49–56. doi:
10.1007/978-3-319-66182-7_6.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



construction of longitudinal T1-weighted atlases. Behrouz et al. [9] demonstrated that 

structural preservation in DW atlases can be improved by enforcing consistency between 

angular neighbors using group sparsity. This work, however, is limited to constructing 

atlases of a single time point.

The human brain undergoes dramatic changes in the first year of life. Dedicated method 

taking into account these changes is needed for effective construction of infant DW atlases. 

In this paper, we propose a novel approach to construct longitudinal infant DW atlases with 

greater details and temporal consistency. We employ sparse representation [10] with 

guidance by a graph that encodes the relationships between spatially and temporally 

neighboring patches. Experimental results indicate that the proposed method improves the 

quality of the DW atlases in terms of structural details and fiber coherence, compared with 

existing image fusion methods.

2 Method

2.1 Longitudinal Image Normalization

Our method for DW atlas construction starts with group-wise image normalization to align 

the DW images of each individual at each time point to an age-specific common space, and 

also to determine image spatial correspondences between time points. We first align the DW 

images of all subjects at each age using group-wise registration [11] with their fractional 

anisotropy (FA) maps. We reorient the diffusion signals using the method described in [12]. 

Then, we compute age-specific templates (Īt) of aligned DW images (Ii,t) at each time point 

(t) using kernel regression based on age [7]:

(1)

where . ki,t is postnatal age at scan time, and k̄t is average 

age of a population at t. We determine σ as standard deviation of subjects’ age in the 

population. Next, we build a longitudinal template using group-wise registration with FA 

maps of the age-specific templates. Through this process, we can find spatial and temporal 

correspondences across different time points using the displacement maps (Tt→l in Fig. 1) 

between the age-specific templates and the longitudinal template.

2.2 Patch Fusion via Graph-Constrained Sparse Representation

We construct the DW atlases at each time point in a patch-wise manner. We define a patch as 

a 4D block, which includes diffusion signals of all gradient directions. This signals are 

normalized by the average b = 0 signal. The estimation of a patch of the atlas at location s 
and time-point t is deemed as a task (p) in multi-task learning. For each task, we first extract 

spatiotemporally neighboring patches from the individual images at each voxel locations and 

its 26-connected neighbors across time points. In this process, the age-specific templates are 

used as references. The age-specific template and individual DW images of different time 
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points are transformed to the common space at time-point t beforehand. Patches from the 

individual images form a dictionary Dp. If we denote the reference patches from the age-

specific templates as {yp}, the goal is to find optimal sparse weights {wp} that minimize 

differences between Dpwp and yp for all p. Each patch and its spatiotemporal neighbors are 

estimated jointly using multiple task learning with a spatiotemporal graph constraint (step 

(b) in Fig. 1). That is, we solve the following problem:

(2)

where ℙ is a set of all tasks for a target patch and its spatiotemporal neighbors, W is a 

matrix containing sparse weights for each task (wp) as column vector, and ℕ(p) is the set of 

tasks associated with the spatiotemporal neighbors. λ1 is a parameter used to control the 

sparsity resulting from l1 regularization (second term of Eq. (2)). λ2 is a parameter used to 

control the similarity between the sparse weights for neighboring tasks. The spatiotemporal 

relatedness between tasks are encoded using weights α (p, p′):

(3)

where ds (p, p′) and dt (p, p′) are spatial distance and age difference between task p and its 

neighbor task p′, respectively. They are normalized by their maximum values. γs and γt are 

parameters used to control the relatedness between tasks by scaling the spatial and temporal 

distances separately. The third term in Eq. (2) for the relatedness between tasks can be 

reformulated using a graph Laplacian L of size q × q :

(4)

where L = H − A, and q is the number of all tasks (= size of ℙ). H is a diagonal matrix, with 

each diagonal element hp,p computed as Σp∈ℕ(p) α (p, p′). A is an adjacency matrix with 

elements {α (p, p′)}. Using this formulation, we can enforce greater similarity constraints 

between tasks that are highly correlated.

3 Experiments

3.1 Materials

We demonstrate the effectiveness of our method in longitudinal DW atlas construction using 

dataset of an infant population (28 subjects, born at full term). For each subject, 42 

diffusion-weighted images were acquired using 3T Siemens Allegra scanner with a spin-

echo echo planar imaging sequence using TR/TE = 7680/82 ms, resolution = 2 × 2 ×2 mm3, 

and b = 1000 s/mm2. Seven non-diffusion-weighted (b = 0) reference scans were acquired. 

The image dimension is 128 × 96 × 60. We built the atlases for neonate, 6 and 12 months of 
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age using the DW images of 20 subjects. Each subject has different number of longitudinal 

scans (1.2 scans on average). The DW images of remaining 8 subjects at three time points 

are used for the following evaluations. All DW images were processed using the FSL 

software package [13] for the correction of eddy current distortion and brain region 

extraction using the averaged b = 0 images.

3.2 Implementation Detail

The parameters of our algorithm need to be adjusted: (1) patch size, (2) the sparsity 

parameter (λ1), (3) the graph constraint parameter (λ2), and (4) the task relatedness 

parameters (γs and γt). In the following experiments, we fixed the patch size as 3 × 3 × 3 × 

42, where 42 is the number of diffusion-weighted volumes. We set λ1 and λ2 as 5 that 

produced better details in final atlases via a grid search. We set γs and γt as 5.0 and 1.0 

respectively in the same way.

3.3 Comparison with Existing Image Fusion Methods

To evaluate the effectiveness of the proposed method, we compare it with other existing 

fusion methods, including kernel regression based on age [4], multi-task LASSO with spatial 

consistency (l2,1-Spatial) [8,9] and spatiotemporal consistency (l2,1) [7]. Figure 2 shows the 

FA maps of the atlases. Compared with other methods, the proposed method provides 

clearer boundaries with less noise-like artifacts (see arrows in Fig. 2). In addition, the 

methods with temporal consistency (i.e. l2,1 and proposed methods) introduce more 

structural details of infant brain, which are more consistent between the atlases at different 

ages. The effectiveness of our method is further supported by Fig. 3, which shows the 

orientation distribution functions (ODFs) of the atlases. In the atlas given the kernel 

regression method, many ODFs in cerebral cortex are missing due to the lower anisotropy. 

Compared with the atlases of the l2,1-Spatial and l2,1 methods, the proposed atlas shows 

more coherent ODFs along white matter (WM) with less spurious peaks (see arrows in Fig. 

3). Figure 4 shows the fiber tracts of the splenium of the corpus callosum, which are 

extracted from the atlases. Seeds were assigned to the middle of the splenium. The atlases 

given by the kernel regression and l2,1-Spatial methods produces larger bundles with less 

number of branches. The proposed atlas gives more well-connected fiber tracts with clearly 

separated branches, compared with the atlas given by the l2,1 method (see arrows in Fig. 4). 

Figure 5 shows the tracts that traverse the corpus callosum in the atlases of the proposed 

method at birth and 6 months and 12 months of age.

3.4 Evaluation of Temporal Consistency

We assess the temporal consistency of the atlases in terms of fiber tract consistency of across 

time points. We assume that longitudinal DW atlases with more temporally consistent 

features can yield less distortion in propagating individual images at a time point to different 

temporal spaces via the atlases. For this purpose, we first obtain fiber tracts, including 

inferior fronto-occipital fasciculus (IFOF), forceps minor (F-Minor), and hand-superior U-

tract (U-Tract), from the testing DW images at the neonatal time point. Then, we transform 

the fiber tracts from the individual neonatal space to the space of the same individual at later 

time points in two ways:
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A. Direct transformation from the testing images at the neonatal time point to the 

DW images of the same subjects at later time points (i.e., 6 and 12 months).

B. Atlas-guided transformation (1) from the testing images to the neonatal atlases, 

(2) from the neonatal atlases to the atlases of later time points, and (3) from the 

atlases to the testing images at later time points.

The non-linear transformations are obtained by affine transformation followed by 

diffeomorphic non-linear registration using the FA maps of the atlases and the testing 

images. Transformation using method (A) is relatively small and can be estimated very 

reliably. Hence it is used as the baseline for comparison. The transformed tracts are 

compared using symmetric mean distance over all closest point pairs. Figure 6 shows the 

average of the mean distances between the fiber tracts for 8 testing subjects. The small 

distances given by the proposed method indicate that the atlases generated by it are more 

temporally consistent.

4 Conclusion

In this paper, we have introduced a novel method based on graph-constrained sparse 

reconstruction for constructing longitudinal DW atlases of the developing infant brain in a 

patch-wise manner. Our method results in the atlases with more structural details, less 

artifacts, and greater temporal consistency.
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Fig. 1. 
Overview of longitudinal diffusion-weighted (DW) atlas construction
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Fig. 2. 
Fractionial anisotropy maps of diffusion-weighted atlases, generated by kernel regression 

using age (Kernel), muti-task LASSO with spatial consistency (l2,1-Spatial), multi-task 

LASSO with spatiotemporal consistency (l2,1), and the proposed method (Our). Compared 

with other methods, the proposed method provides more details with less artifacts in 

longitudinal atlases (see arrows in right columns). 1st row: neonate; 2nd row: 6 months; 3rd 

row: 12 months.
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Fig. 3. 
Orientation distribution functions (ODFs) of diffusion-weighted atlases at 6 months of age, 

generated by kernel regression using age (Kernel), muti-task LASSO with spatial 

consistency (l2,1-Spatial), multi-task LASSO with spati-temporal consistency (l2,1), and the 

proposed method (Our). The proposed method provides ODFs with coherent fiber 

orientation along the white matter to the cerebral cortex.
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Fig. 4. 
Fiber tracts of the splenium of corpus callosum, extracted from diffusion-weighted atlases at 

6 months of age. The proposed atlas provides more clearly separated branches and well-

connected tracts to the cerebral cortex. Kernel: kernel regression using age; l2,1-Spatial: 

muti-task LASSO with spatial consistency; l2,1: multi-task LASSO with spati-temporal 

consistency; Our: the proposed method. 1st row: right side of the splenium; 2nd row: left side 

of the splenium.
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Fig. 5. 
Tracts that traverse the corpus callosum, extracted from the diffusion-weighted atlases 

generated by the proposed method at neonate, 6 months, and 12 months of age.
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Fig. 6. 
Mean distances between fiber tracts, transformed by displacement between individual brains 

at different ages and displacement between longitudinal atlases. F-Minor: forceps minor; 

IFOF: inferior fronto-occipital fasciculus; U-Tract: hand-superior U-tract. 0–6: propagation 

from neonate to 6 months; 0–12: from neonate to 12 months.
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