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Abstract

The Artificial Pancreas (AP) is a new technology for helping people with type 1 diabetes to better 

control their glucose levels through automated delivery of insulin and optionally glucagon in 

response to sensed glucose levels. In a dual hormone AP, insulin and glucagon are delivered 

automatically to the body based on glucose sensor measurements using a control algorithm that 

calculates the amount of hormones to be infused. A dual-hormone MPC may deliver insulin 

continuously; however, it must avoid continuous delivery of glucagon because nausea can occur 

from too much glucagon. In this paper, we propose a novel dual-hormone (DH) switching model 

predictive control and compare it with a single-hormone (SH) MPC. We extended both MPCs by 

integrating an exercise model and compared performance with and without the exercise model 

included. Results were obtained on a virtual patient population undergoing a simulated exercise 

event using a mathematical glucoregulatory model that includes exercise. Time spent in 

hypoglycemia is significantly less with the DH-MPC than the SH-MPC (p=0.0022). Additionally, 

including the exercise model in the DH-MPC can help prevent hypoglycemia (p < 0.001).

I. Introduction

Diabetes mellitus is a physiological disorder where the body either is resistant to or does not 

sufficiently secrete insulin. Type 1 diabetes is the less prevalent but more challenging type of 

diabetes mellitus in which the pancreas fails to produce insulin for glucose regulation. 

Without insulin, glucose cannot be absorbed into tissues, and blood glucose (BG) levels 

increase, resulting in hyperglycemia (BG > 180 mg/dl). Difficulty controlling glucose is 

compounded by meals which require additional insulin. On the contrary, when glucose 

utilization is high, for example during physical activity, tissues absorb glucose more rapidly, 

and the BG can fall very steeply. The American Diabetes Association identifies a lower 

boundary of 70 mg/dl for the BG, below which is defined hypoglycemia, where severe 

symptoms may occur if untreated for even short periods [1]. The replacement of insulin in 

type 1 diabetes requires both basal insulin delivery, either with long-acting insulin or by 

continuous infusion of fast-acting insulin, and bolus insulin doses for meals with fast-acting 

insulin.
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Insulin pump therapy (open-loop therapy) is a common method for people with type 1 

diabetes to maintain euglycemia; the patient can use the insulin pump to infuse basal insulin 

and can also deliver boluses prior to meals [2]. For closed-loop insulin delivery, also known 

as the artificial pancreas (AP), insulin delivery is automatically adjusted based on sensed 

glucose levels and a control algorithm. In single hormone AP systems, only insulin is dosed 

whereas in dual hormone APs, glucagon is also dosed [3].

A number of closed loop algorithms utilize a proportional integral derivative controller [4, 

5]. Our group has previously described variations of PID or PD AP control algorithm [6]. 

We also have described an exercise detection and dosing adjustment algorithm that can be 

incorporated [7]. Other groups have implemented model predictive control (MPC) to 

manage BG such as a SH MPC by Magni et al. [8], a DH MPC by Boiroux et al. [9], and a 

SH MPC by Hovorka et al. [10]. Boiroux et al. [9] used a switching controller that switches 

between insulin and glucagon SH MPC based on the patient’s glucose. When glucose levels 

are below a threshold (e.g. 85 mg/dl), the glucagon SH-MPC would be used, otherwise, 

insulin SH-MPC would be used. To the best of our knowledge, no prior groups have 

incorporated exercise directly into the process model of a DH-MPC.

In this paper, we introduce a DH-MPC approach that can switch between dual hormone and 

single hormone operation based on the sensed glucose level of the patient. Our DH-MPC 

algorithm includes a model for exercise, such that if exercise is detected or if a patient 

announces an exercise event to the controller, the algorithm can respond appropriately. We 

test the feasibility of the algorithm in the presence of moderate exercise. We also compared 

the performance when including exercise versus not including the exercise model in the 

MPC. We linearize the non-linear equations within the process model to reduce the 

processing time in the controller.

II. Material and Method

A. Process Model

The prediction of BG in our MPC algorithm is achieved using a glucoregulatory model, 

consisting of a glucose kinetics model, insulin kinetics and dynamics models, and glucagon 

kinetics and dynamics models. The model describes the relationship between 

subcutaneously delivered insulin and glucagon and blood glucose concentration. The 

glucose kinetics model [10] defines the effect of the insulin and glucagon actions on the 

blood glucose, as follows:

(1)

where Q1 and Q2 are the masses of glucose in the accessible and non-accessible 

compartments respectively, in mmol/L.  and FR represent non-insulin mediated glucose 

uptake and renal glucose clearance respectively, in mmol/L/min. uG represents gut 

absorption rate in mmol/L/min, which is considered zero in this study. EGP0 is the basal 

endogenous glucose production in mmol/L/min at a theoretical zero insulin concentration 
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[10]. The source of non-linearity in these equations comes from the interactions between the 

effect of the insulin on EGP and the distribution and disposal within the measurable and 

non-measurable glucose compartments. These nonlinear equations are linearized based on a 

Taylor series expansion at each time point, where the higher order terms are excluded.

The insulin kinetics model (Eq. 2) represents the insulin absorption rate from the short-

acting insulin dosing [11].

(2)

where Q1a and Q2 represent the insulin mass through the slow absorption pathway, and Q1b 

represents a faster channel for insulin absorption. Q3 represents plasma insulin mass [11]. 

All insulin masses are in mU/kg. The sources of nonlinearity in these equations come from 

the local degradation of insulin at the injection site. These non-linear equations are 

linearized using a Taylor series. The insulin dynamics model is based on a study from 

Hovorka et al [10].

(3)

where x1 (min−1), x2 (min−1) and x3 (unitless) represent the effect of insulin on glucose 

distribution, glucose disposal and suppression of endogenous glucose production, 

respectively and Vd_IN is the insulin distribution volume (L.kg-1) [10]. The glucagon 

kinetics model, which represents the absorption rate of subcutaneously injected glucagon, is 

reported in [12].

(4)

where x1g and x2g represent subcutaneous glucagon mass compartments and x3g is plasma 

glucagon mass, all measured in mg/kg. The nominal values of the parameters for the 

glucagon kinetics model used in this study have been provided from Lv et al [12]. The 

glucagon dynamic model, which describes the interaction between the glucagon and the 

glucose concentration, was published by us previously [7].
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(5)

Y represents the effect of glucagon on endogenous glucose production. Since the change on 

Y has an effect on EGP, we introduce a new variable Z as another state, which is used in the 

MPC algorithm. The values of the parameters of the glucagon kinetics are described 

previously [7]. These values change per subject and make a virtual patient population (see 

section 2.D).

B. Model Predictive Controller

Model predictive control is an optimization based control algorithm, which considers the 

dynamic model of the plant. Unlike PID controllers, MPC is able to predict the future 

outputs and optimize the inputs to the plant accordingly.

Figure 1 shows the structure of the MPC control methodology. The glucoregulatory model is 

the MPC process model. Typically, the plant would be the patient using the AP. The plant (or 

human) receives hormones as an insulin infusion rate (IIR) or glucagon infusion rate (GIR) 

and has a blood glucose level measured by a sensor (BG). For our simulations, the plant is 

approximated using the same glucoregulatory state equations described above. However, 

while the process model parameters are kept constant during the simulation and are set to the 

mean values from prior published studies [10–13], the plant model parameters vary for each 

virtual patient tested during simulation.

There are 13 state variables, which include two state variables from the glucose kinetics 

model, four from the insulin kinetics model, three from the insulin dynamic models, three 

from the glucagon kinetics model and two from the glucagon dynamic model. Since the 

derivative of the glucagon concentration also affects the glucose concentration (equation 1), 

we define the second glucagon dynamic model state variable (variable Z in equation 5) for 

this effect. The final linearized form of the MPC equations is as follows:

(6)

xm(k) is the state vector, u(k) is the 2-dimensional input vector (insulin and glucagon) and 

d(k) includes the constant terms resulting from the linearization. Since the controller 

requires a history of the output for future predictions, it is essential to relate the input vector 

to the output. We define a new vector as follows x (k) = [Δxm (k)T y (k)]T and the 

augmented state equations are re-arranged below:
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(7)

The predicted outputs are calculated using equation 8.

(8)

where the matrices F, Φ and Ψ are presented in [14] and

We chose a 300-minute prediction horizon as the action of insulin is several hours [10]. We 

chose a 20-minute control horizon as the results did not change substantially with a longer 

horizon. The cost function is defined in equation 9, which includes the reference trajectory 

(Rs) and the predicted outputs, and the tuning control parameter (R̄).

(9)

We compute the output of the optimizer (future inputs) by setting the derivative of the cost 

function with respect to ΔU to zero and; after some calculations, the optimal ΔU is defined 

in equation 10.

(10)

At the next step, we impose some constraints on the insulin and glucagon delivery. We set 

the maximum amount of insulin infusion rate (IIR) and glucagon infusion amount (GIR) to 

15 units per hour and 50 microgram, respectively. In this paper, we show the performance of 

(1) a single hormone MPC algorithm (SH-MPC) in which the insulin is the only hormone 

used for blood glucose regulation, and (2) a dual hormone algorithm (DH-MPC). For the 
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dual-hormone, we consider different ways of switching between single hormone and dual 

hormone operation. One option (DH-Thr) is to use a SH when glucose levels are greater than 

a threshold (85 mg/dl) and then use DH when glucose levels drop below this threshold. A 

second option (DH-Pred) is to use SH when glucose levels are predicted to rise above 70 

mg/dl during the prediction horizon, otherwise switch to DH-MPC.

C. Exercise model

Exercise can have profound effects on glucose levels in a person with type 1 diabetes, 

causing hypoglycemia if dosing is not adjusted. We incorporated an exercise model 

described by Hernandez et al. [13] into our process model. The exercise model, which 

models aerobic exercise, affects the influence of insulin on glucose transport and disposal, 

and endogenous glucose production and causes increased insulin sensitivity by influencing 

equations 3 (kb1, kb2 and kb3) as follows:

(11)

The model parameters (kb1, kb2 and kb3) are updated during the exercise period according to 

equation 12.

(12)

where ΓPGUA and ΓHGPA, which are related to the percent of maximum oxygen consumption 

(PVO2max), are calculated based on a dynamic model that is explained further in [13]. 

PAMM is the percent of active muscular mass.

D. Virtual patient population

We defined a virtual patient population for our in-silico simulations. We changed the most 

sensitive inter-subject parameters (EGP0, kb1, kb2, kb3, SfGG, kc and kg3) of the process 

model across each subject. First, we produced a normal distribution based on the 

information of each parameter, given prior studies [7, 10, 11], and then randomly selected 

samples, using a random number generator that is weighted by the parameter distribution, in 

order to generate the virtual population. Each parameter set was then subjected to a battery 

of tests to determine the physiologic feasibility. If a virtual subject did not pass each of the 

following 4 criteria, they were excluded from further testing. 1) Steady-state glucose levels – 

in the absence of insulin, this should be > 300 mg/dl. 2) Delivery of high-dose insulin (15 

units/h) should result in a low steady-state glucose level < 100 mg/dl. 3) Delivery of high-

dose glucagon (20 mcg/kg) should result in a significant rise in glucose within 2 hours of the 

dose > 50 mg/dl above the baseline steady state glucose. 4) Delivery of a small dose of 
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glucagon (0.2 mcg/kg) should not result in a response > 100 mg/dl above baseline. A total of 

163 out of 400 virtual subjects passed the above criteria and were selected for our in-silico 

simulations.

E. Test scenario and statistical analysis

All virtual subjects completed the following scenario. First, their glucose levels were 

brought to a steady state value of 160 mg/dl at time t=0. Next, subjects completed the 

equivalent of 45 minutes of exercise starting at time t=10 minutes at 60% PVO2max and 80% 

PAMM. We compared the control algorithms and assessed performance in terms of the 

average time spent in hypo/hyperglycemia and the average blood glucose across the virtual 

subjects. We used the Student’s t-test and the Wilcoxon rank-sum test to compare the 

average blood glucose and the time spent in hypo-/hyperglycemia, respectively, across 

different process model configurations. The significance level was 95%.

III. Results and Discussion

Figure 2 shows the benefit of using DH compared with SH. Some subjects within the 25%–

75% interquartile range using the SH process model crossed the hypoglycemia threshold 

interquartile range, whereas subjects using the DH model generally did not go hypoglycemic 

(only the lower 2.5% of subjects went hypoglycemic under DH). The time the virtual 

subjects spent in hypoglycemia was significantly less for the DH (p-value = 0.0022). In DH, 

the glucagon delivery not only prevented more subjects from becoming hypoglycemic, but 

also increased the median blood glucose across the subjects. Preventing hypoglycemia and 

reducing time spent in hypoglycemia can prevent symptoms related to hypoglycemia 

including nervousness, shakiness, dizziness and nausea. It is important to note that both the 

SH and DH process models included exercise in these results.

Figure 3 shows the importance of including the exercise model in the process model. When 

the exercise model is not included, hypoglycemia occurs, whereas when it is included, 

hypoglycemia is generally avoided. When the exercise model is not included, the algorithm 

cannot anticipate forthcoming exercise-induced hypoglycemia and thereby turn off insulin 

and increase glucagon dosing as shown in the insulin and glucagon delivery panels of Figure 

3. The time spent in hypoglycemia was significantly less when exercise was included (p-

value < 0.001). This makes intuitive sense. Aerobic exercise can cause rapid drops in 

glucose levels because of increased glucose uptake during exercise. If the process model is 

not aware of this change and dosing is not adjusted, then hypoglycemia results.

There was a difference in performance when the process model switched between DH and 

SH based on a fixed glucose threshold (DH-Thr) compared with a predicted drop below 70 

mg/dl (DH-Pred). DH-Pred resulted in some post-exercise hyperglycemia. While time spent 

in hypoglycemia with the DH-Pred approach did not change significantly in comparison to 

the DH-Thr approach (p-value = 0.011), the time spent in hyperglycemia, as well as the 

median blood glucose, were significantly higher for DH-Pred (p-value < 0.001). Results here 

indicate that DH-Thr is optimal for controlling glucose during exercise.
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A limitation of this study is that the exercise model only models the effect of aerobic 

exercise on the glucoregulatory system. Anaerobic exercise can result in a less significant 

drop in glucose compared with aerobic exercise [15]. Furthermore, the exercise model was 

static for all subjects, whereas different people can respond differently to exercise. In the 

future, we plan to integrate anaerobic exercise and high intensity interval training into the 

exercise model.

In conclusion, the threshold-based dual-hormone MPC with exercise in the process model 

outperformed the other controlling approaches. It was critical to include exercise in the 

controller process model so that the time spent in hypoglycemia would be reduced. In the 

future, we plan to include a meal model to the process model (uG would not be zero in 

equation 1) and evaluate in human subjects.
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Figure 1. 
MPC Schematic
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Figure 2. 
Interquartile range along with the 95% intervals of the blood glucose across the virtual 

subjects are shown for DH-Thr (red line) and SH (blue line) methods with the exercise 

model included.
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Figure 3. 
Interquartile ranges along with the 95% intervals of the blood glucose across the virtual 

subjects are shown for the DH-Thr with exercise model (red line) and DH-Thr without 

exercise model (cyan line).
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