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Hydrological features and the ecological
niches of mammalian hosts delineate
elevated risk for Ross River virus epidemics
in anthropogenic landscapes in Australia
Michael G. Walsh1* and Cameron Webb1,2

Abstract

Background: The current understanding of the landscape epidemiology of Ross River virus (RRV), Australia’s most
common arthropod-borne pathogen, is fragmented due to gaps in surveillance programs and the relatively narrow
focus of the research conducted to date. This leaves public health agencies with an incomplete understanding of
the spectrum of infection risk across the diverse geography of the Australian continent. The current investigation
sought to assess the risk of RRV epidemics based on abiotic and biotic landscape features in anthropogenic landscapes,
with a particular focus on the influence of water and wildlife hosts.

Methods: Abiotic features, including hydrology, land cover and altitude, and biotic features, including the distribution
of wild mammalian hosts, were interrogated using a Maxent model to discern the landscape suitability to RRV epidemics
in anthropogenically impacted environments across Australia.

Results: Water-soil balance, proximity to controlled water reservoirs, and the ecological niches of four species (Perameles
nasuta, Wallabia bicolor, Pseudomys novaehollandiae and Trichosurus vulpecula) were important features identifying high
risk landscapes suitable for the occurrence of RRV epidemics.

Conclusions: These results help to delineate human infection risk and thus provide an important perspective for
geographically targeted vector, wildlife, and syndromic surveillance within and across the boundaries of local
health authorities. Importantly, our analysis highlights the importance of the hydrology, and the potential role of
mammalian host species in shaping RRV epidemic risk in peri-urban space. This study offers novel insight into
wildlife hosts and RRV infection ecology and identifies those species that may be beneficial to future targeted
field surveillance particularly in ecosystems undergoing rapid change.
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Background
Ross River virus (RRV) causes greater human morbidity
than any other vector-borne pathogen in Australia. This
alphavirus accounts for approximately 5100 reported cases
per year nationwide [1], approximately ten times as many
human infections as all other zoonoses combined [2]. The
epidemiology of RRV transmission is complex and involves

multiple reservoir hosts and a diverse range of mosquito
vectors [3]. Moreover, these hosts and vectors exploit varied
ecological niches across Australia and thus have the
potential to modulate significant heterogeneity in en-
zootic, epizootic and zoonotic transmission of RRV. As
such, the landscape epidemiology and infection ecology of
RRV, particularly with respect to human spillover and the
emergence of subsequent epidemics, remains incomplete
despite several decades of state-centralized surveillance
across Australia [1].
There are over 40 mosquito species that have been impli-

cated in the transmission of RRV through field detection of

* Correspondence: thegowda@gmail.com; michael.walsh1@sydney.edu.au
1Marie Bashir Institute for Infectious Diseases and Biosecurity, Westmead
Institute for Medical Research, University of Sydney, Westmead, New South
Wales, Australia
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Walsh and Webb Parasites & Vectors  (2018) 11:192 
https://doi.org/10.1186/s13071-018-2776-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-018-2776-x&domain=pdf
mailto:thegowda@gmail.com
mailto:michael.walsh1@sydney.edu.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


isolates or laboratory vector competence experiments [4, 5].
While relatively few of these mosquitoes may actually
play a significant role in driving epidemics, substantial
variation in the biology and ecology of distinct species
can influence their habitat associations, host-feeding prefer-
ences, population dynamics and propensity to bite humans
[6]. Moreover, wildlife hosts, acting as either viral reservoirs
or amplifiers, are a cornerstone of RRV infection ecology.
In particular, the distribution of important macropod
species such as the eastern grey kangaroo (Macropus
giganteus) and the western grey kangaroo (Macropus
fuliginosus), have been identified as important reservoir
hosts [7, 8], while in peri-urban spaces the common
brushtail possum (Trichosurus vulpecula) has been impli-
cated [9]. Nevertheless, the extent to which individual
species influence transmission dynamics across broad
geography and heterogeneous landscapes is unknown,
as is their interaction with those abiotic features of the
landscape known to influence vector ecology such as
climate, land cover and surface water.
Previously, small localized studies have investigated RRV

risk associated with some of these abiotic factors, but these
are typically in response to individual epidemics, and often
evaluate such factors, especially weather events, in isolation
and without consideration of wildlife hosts. For example,
precipitation and temperature have frequently been identi-
fied as important mediators of human epidemics, but are
generally considered outside the broader milieu of abiotic
and biotic influence [10–17]. Moreover, non-climatic
abiotic mediators have been apportioned relatively little
consideration in the study of epizootic and epidemic RRV.
Nevertheless, landscape features such as surface water
[18–20] and littoral dynamics [21] may exert strong influ-
ences on RRV occurrence since these play important roles
in shaping the population dynamics of both vector mosqui-
toes and reservoir hosts. The geometry of abiotic features
coincident with human populations and anthropogenic
environmental change may be critical in delineating the
shape of risk in the landscape [22], particularly in urban
environments where specific land use may influence
the local distribution of reservoir hosts and mosquito
populations [23]. The current investigation applied a
machine learning approach to the analysis of ProMED
electronic surveillance system data to assess the influence
of hydrology and the ecological niches of wild mammalian
hosts in delineating RRV landscape suitability, while also
accounting for climate, altitude and land cover.

Methods
The International Society of Infectious Diseases’ ProMED-
mail electronic surveillance system was used to identify 51
reports of epidemic RRV in humans across Australia from 1
January, 1996 to 1 July, 2016 (http://www.promedmail.org/).
All ProMED-mail reports are vetted by registered health

professionals with areas of expertise relevant to the event
being reported and located geographically as close as pos-
sible to the event [24]. The system comprises 59 appointed
moderators, correspondents, and editors who are available
to review the reports as they are generated. In addition,
there are currently more than 70,000 subscribers in at least
185 countries who are available to comment on epidemic
reports for a further level of vetting within the broader
infectious diseases community. Notwithstanding a near real-
time process of evaluation by a committed body of profes-
sionals, the system relies on signals generated not by formal
standardized methods of active data collection, but rather by
the social propagation of information, which is highly influ-
enced by human population distribution and infrastructure.
As such, it is important to note that any surveillance
data generated from such a system necessarily repre-
sent a particular cross-section of disease occurrence
rather than a representative sample of all experience.
Nevertheless, the coverage of zoonotic epidemics by the
ProMED-mail system has been shown to be good in
Australia [25]. For the current study, this means that
RRV epidemics captured by ProMED are a sample of large
events occurring in landscapes of significant human influ-
ence. Sporadic cases will be missed entirely, and even
epidemics that represent a large increase relative to the
baseline occurrence may also be missed if they occur in
small populations. As such, while we must emphasize
that the scope of this study does not apply to the full
spectrum of human RRV experience, we do correct for
potential reporting bias (see statistical methods below),
which allows for an unbiased assessment of RRV land-
scape suitability in anthropogenic environments. The
geographical coordinates for the location of each RRV
epidemic were referenced in Google Maps and cross-
referenced in Open Street Map. Five of the 51 documented
epidemics were reported with a spatial resolution greater
than five kilometers or without geographical information
and, therefore, were excluded from the analysis. The final
analytic sample comprised 46 epidemics across the twenty-
year study period.
The geographical distributions of RRV host species were

based on observed specimens obtained from the Global
Biodiversity Information Facility (GBIF) (http://www.gbif.
org/). Species distribution models were constructed for
Macropus giganteus (n = 31,293), M. fuliginosis (n =
8844), M. rufus (n = 15,940), M. robustus (n = 17,998),
M. agilis (n = 1840), M. rufogriseus (n = 27,568), M. parryi
(n = 264), Wallabia bicolor (n = 347,082),Trichosurus vul-
pecula (n = 1754), Isoodon obesulus (n = 4563), Perameles
nasuta (n = 82), Pteropus poliocephalus (n = 2421), Ptero-
pus alecto (n = 1144), Hydromys chrysogaster (n = 840),
Rattus sordidus (n = 75) and Pseudomys novaehollandiae
(n = 993), all of which have previously been identified by
serology or viral isolation as RRV hosts [5, 7–9, 26–30].
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Only observations recorded over the same period as the
occurrence of RRV epidemics (1996–2016) were included
to maintain the temporal continuity between species
distribution models and the landscape suitability model
of RRV epidemics. All mammal specimens included here
were restricted to the spatial extent of latitude 54.74973–
10.05167°S, and longitude 159.1019–112.9511°E. With these
field samples, Maxent models (see the description of the
statistical methods in the following section) were used to
model their ecological niches.
The human footprint (HFP) was quantified using data

obtained from Socioeconomic Data and Applications Center
(SEDAC) [31]. The HFP was calculated in two stages. First,
the human influence index (HII) was constructed. The HII
measures the impact of human presence on the landscape
as a function of eight domains: (i) population density; (ii)
proximity to railroads; (iii) proximity to roads; (iv) proximity
to navigable rivers; (v) proximity to coastlines; (vi) intensity
of nighttime artificial light; (vii) location in or outside
delineated urban space; and (viii) land cover. The domains
are scored according to the level of human impact per
geographical unit, whereby higher scores signify greater
human influence. A composite index is then created by
combining the eight individual domains. This composite
ranges from 0, indicating an absence of human influence
(i.e. a parcel of land unaltered by human activity), to 64,
indicating maximal human influence in the landscape.
The HII composite is subsequently normalized according
to the 15 terrestrial biomes defined by the World Wildlife
Fund to obtain the HFP. The normalization is represented
as a ratio of the range of minimum and maximum HII in
each biome to the range of minimum and maximum HII
across all biomes and is expressed as a percentage with a
spatial resolution of approximately 1 km2 [32]. A measure
of human migration from 1990 to 2000 was also obtained
from SEDAC and was derived from the Global Rural-
Urban Mapping Project estimates for the year 2000 [33].
Net human migration over this period was represented as
the net population flow into and out of each 1 km2 area,
where positive and negative values indicate net gains and
losses, respectively [34, 35].
Climate data aggregated over the period 1950 to 2000

were obtained from the WorldClim Global Climate data-
base [36] with the following data products used in this
investigation: mean temperatures for the hottest and
coldest quarters, and mean precipitation for the wettest
and driest quarters. In addition to the climate data, a
raster for altitude was also obtained from this database.
Each of these five data products was extracted as a 1
km2 resolution raster [37].
Vegetation cover was assessed using the MODIS-based

Maximum Green Vegetation Fraction (MGVF), which is a
data product from the United States Geologic Survey's Land
Cover Institute [38]. The MGVF records the percentage of

green vegetation cover per pixel as a function of the
normalized difference vegetation index at a resolution
of 1 km2 [39]. The MGVF raster represented the average
vegetation cover of each year between 2001 and 2012.
Raster data for the distributions of surface water were

obtained from the Global Lakes and Wetlands Database
(http://www.worldwildlife.org/pages/global-lakes-and-wetl
ands-database) at a resolution of 1 km2 each. This raster
was derived from three distinct data levels, two of which
were vector format and one raster. Level 1 consisted of
the polygons of all lakes with area ≥ 50 km2 and reservoirs
with volume ≥ 0.5 km3. Level 2 comprised the polygons of
all surface water with area ≥ 0.1 km2. Level 3 combined
the first two levels and rasterized the vector data while
also adding more information on wetlands to the final
data product [40]. Each surface water type was extracted
and a new raster isolating each feature created. Subse-
quently, the distance between each pixel and the nearest
pixel of each unique surface water feature was calculated
to create a discrete distance raster for each land cover and
water type. All distances were calculated in the QGIS
geographical information system using the proximity pro-
cedure. This allowed for a more nuanced approach to
modeling proximity to landscape features rather than
crudely assigning presence versus absence of features to
each 1 km2 area (see modeling description below). Dis-
tance rasters for the following surface water types were
represented in the analysis: lake, reservoir, river, freshwater
wetland, coastal wetland and intermittent wetland.
To interrogate the movement of water through the land-

scape and its relationship to RRV epidemics, two hydro-
logical data products were acquired from the Hydrological
Data and Maps based on SHuttle Elevation Derivatives
at multiple Scales (HydroSHEDS) information system
(https://hydrosheds.cr.usgs.gov/), which is derived from
elevation data of the Shuttle Radar Topography Mission
[41]. First, hydrological flow accumulation was obtained
as a 15 arc-second raster and measures the quantity of
upstream area draining into each 500 × 500 m area,
and second, a 15 arc-second raster of all stream net-
works. We also obtained the position of all controlled
water reservoirs and dams in Australia from the Global
Reservoir and Dam Database [42, 43], which is main-
tained by SEDAC. As a final assessment of hydrological
risk, we used the Priestley-Taylor alpha coefficient (P-
Tα) as a robust indicator of water-soil balance in the
landscape [44, 45]. This coefficient is the ratio of actual
evapotranspiration to potential evapotranspiration and
represents water stress in each 1 km2 by capturing both
water availability in the soil and water requirements of
the local vegetation. Thus, the measure is a robust esti-
mate of environmental water stress through soil-water
balance. A global raster for P-Tα was retrieved from
the Consultative Group for International Agricultural
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Research (CGIAR) Consortium for Spatial Information.
The ratio is dimensionless and ranges from 0 to 1 but
was scaled to 0 to 100 for easier interpretation [46].

Statistical analysis
This investigation applied the machine learning algorithm,
Maxent, to modeling and mapping the suitability of het-
erogeneous Australian landscapes to RRV epidemics. This
algorithm estimates the density of predictor variables
conditional on observed occurrences to model the land-
scape suitability of those occurrences [47, 48]. Moreover,
Maxent has wide global application to modeling the eco-
logical niches of many zoonotic infectious diseases [49–51].
Maxent has also been shown to be one of the most effective
approaches to modeling landscape suitability, performing
better than both other machine learning algorithms and
more conventional statistical models including generalized
linear models [51, 52].
Maxent models were employed in this study to (i) clas-

sify and map separately the ecological niche of RRV host
species, and (ii) subsequently describe the landscape suit-
ability for RRV epidemics. Presence points are represented
by the documented species occurrences, or epidemic RRV
events, respectively, while background points were se-
lected within the geographical extent of latitude 54.74973–
10.05167°S, and longitude 159.1019–112.9511°E. Reporting
bias is an important consideration in ecological niche mod-
eling as occurrences of species (or cases of disease) are
more likely to be observed or recorded in areas or contexts
that are more accessible. To account for such bias in our
target species observations, and reporting bias of RRV epi-
demics in humans, background points were sampled pro-
portional to the HFP (using a unique sampling for each
species niche), which incorporates population density as
well as other developed infrastructure [53]. Ten thousand
background points were sampled to model epidemic RRV
landscape suitability.
The modeling proceeded in two steps. First, output

raster maps of the RRV wildlife host niches were created
from the ecological niche models and then subsequently
used to model RRV epidemics. The Maxent models used
for the host niches included mean temperature during
the warmest and coolest quarters, mean precipitation
during the wettest and driest quarters, MGVF, and human
migration as predictors of reservoir habitat suitability at a
1 km2 resolution.
Secondly, these species distribution models were used

in the subsequent model predicting RRV epidemic suit-
ability. The Maxent model for RRV epidemics included
the ecological niches of the wildlife hosts, proximity to
each surface water type, proximity to controlled water
reservoirs, water-soil balance (P-Tα), hydrological flow ac-
cumulation, altitude, and MGVF. Correlation among the
landscape factors was generally low (Pearson's correlation

coefficients < 0.6) with the exception of precipitation and
M. giganteus, which were highly correlated with many of
the factors in the RRV landscape suitability model and
therefore not included in the model. Nevertheless, we are
confident minimal information derived from precipitation
would have been lost since the P-Tα coefficient was in-
cluded, which accounts for water availability due to
precipitation in its calculation. Model predictions were
presented as landscape suitability, expressed as a percent-
age. All Maxent models (for reservoirs and RRV epidemics)
were cross-validated using 5-fold cross-validation with the
cross-validation mean area under the curve (AUC) reported
as a percentage.
Landscape features used in the Maxent models were

ranked according to their permutation importance, which
randomly permutes the values of the landscape factors
between background and presence points and is more
robust to any residual correlation among the features
and therefore preferred over the potentially more naïve
percent contribution to the loss function [47, 54].
All analyses were conducted in the R environment [55],

with the exception of the computation of the distance ras-
ters, which, as described above, was conducted using QGIS.
The maxent function in the dismo package (v. 0.9–3) was
used to fit the models [54, 56].

Results
The geographical distribution of Australian RRV epidemics,
as reported by the ProMED electronic surveillance system
of the ISID between 1 January, 1996 and 1 July, 2016, is
presented in the map in Fig. 1. Large epidemic events were
widely distributed around the perimeter of the continent
but were concentrated along coastal and peripheral riverine
regions.
Climate and hydrological features are mapped in

Additional file 1: Figure S1 and Additional file 2:
Figure S2, respectively, while the predicted habitat suit-
ability of each RRV host species obtained from ecological
niche models is presented in Additional file 3: Figure S3.
The characteristics of the niche models used for each spe-
cies are presented in Additional file 4: Table S1.
The landscape suitability of RRV epidemics is presented

in Fig. 2 and depicts areas of highest risk for RRV epi-
demics along the eastern seaboard, consistently in coastal
Queensland and the central coast of New South Wales,
southern Victoria and the Murray River valley, Tasmania,
and far southwestern Western Australia. Figure 3 presents
the relative influence of the top ten most influential land-
scape features and their associated rank in the hierarchy
of RRV landscape suitability based on their permutation
importance in the Maxent model. These ten features
explained 96% of the variation in the data, while the
remaining 15 features accounted for only 4% combined.
Hydrological features were particularly influential with
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water-soil balance (permutation importance, PI = 23.4%)
and proximity to controlled water reservoirs (PI = 17.9%)
ranking first and second, respectively, and flow accumula-
tion (PI = 5.8%) ranking seventh in their overall contribu-
tion to the loss function. The predicted ecological niches

of four wildlife hosts also proved influential to RRV land-
scape suitability with an overall contribution to the loss
function of 26.2%. Individual contributions were as fol-
lows: P. nasuta (PI = 11.7%), W. bicolor (PI = 7.3%), P.
novaehollandiae (PI = 5.6%) and T. vulpecula (PI = 1.6%).

Fig. 1 The distribution of the 46 Ross River virus (RRV) epidemics identified through the ProMED system between 1 January, 1996 and 1
July, 2016 in Australia

Fig. 2 Landscape suitability to Ross River virus epidemics. This risk surface is based on the ecological niche of RRV epidemics as modeled using Maxent
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Altitude (PI = 16.1%) and vegetation cover (PI = 5.9%) also
demonstrated significant influence on RRV habitat suit-
ability, while mean temperature during the warmest quar-
ter exhibited only modest influence (PI = 1.2%).
The response curves showed that closer proximity to

controlled water reservoirs was associated with greater
RRV landscape suitability (Fig. 4). Increasing soil-water
balance in the landscape was strongly associated with in-
creasing risk, but only along the spectrum from the most
arid soil-water balance conditions up to a point halfway
to the least arid soil-water balance conditions (P-T α ≈
50%), after which risk did not markedly change. The
ecological niche of four wildlife hosts were also associ-
ated with RRV risk, with at least a doubling of risk for
each species even at modest predicted niche probabil-
ities. The mean AUC for the model was 85%, suggesting
good predictive performance.

Discussion
The current investigation mapped the landscape suitability
of large RRV epidemics in anthropogenic environments
across the Australian continent based on over 20 years of
epidemics reported by the ProMED-mail surveillance sys-
tem. Moderate soil-water balance, proximity to controlled
water reservoirs, altitude, and the ecological niches of P.
nasuta and W. bicolor were key delineators of high-risk
landscapes. This is the first study to examine the relation-
ship between RRV epidemics and hydrological dynamics
and structure in the landscape. Furthermore, this study
considered these and other abiotic features in concert
with all known RRV wild mammalian hosts, which is

also unique. These findings suggest that RRV epidemic
risk is concentrated, but not uniform, around the coastal
and near-inland perimeter of Australia. Landscape suit-
ability in this heterogeneous periphery is maximized by
the confluence of specific hydrological features and suit-
able habitat of wildlife hosts.
This study is the first to highlight the importance of

this suite of hydrological features in defining landscapes
at high risk for RRV epidemics. Moderate soil-water bal-
ance and proximity to controlled water reservoirs were
the two most influential features of RRV landscape suit-
ability, while hydrological flow accumulation was ranked
7th in importance. Each of these features is important in
demarcating unique aspects of the movement of water
through the landscape. Controlled reservoirs and dams
can be strong mediators of water flow and have the po-
tential to drastically alter natural wetland ecosystems or
introduce novel anthropogenic wetland ecosystems [57].
Moreover, in the case of dams specifically, the altered
landscape is not limited to the development of con-
trolled water reservoirs upstream of the dam, but also is
reflected downstream following the geomorphological
reshaping of the riverbed leading to decreased contain-
ment of the floodplain [58]. Thus, hydrological restruc-
turing introduces the potential for altered habitats for
mosquitoes and reservoir hosts. It is possible that con-
trolled reservoirs and dams have a greater likelihood to
have conserved bushland surrounding them that provides
suitable refuge for urban wildlife. While proximity to
controlled reservoirs has not previously been examined
with respect to arboviruses in Australia, it has been shown

Fig. 3 Relative influence of each feature to epidemic RRV landscape suitability as derived from their permutation importance in the Maxent
model. Landscape features are ranked from most influential to least with the permutation importance listed at the top of each bar. The area
under the curve (AUC) reported as a percentage is also presented to indicate model performance
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to increase the risk of mosquito-borne disease transmis-
sion in other settings, such as malaria in sub-Saharan
Africa [59]. Evidence from the current study may sug-
gest that the placement of water reservoirs could alter
wetland ecosystems, or the suitability of the local land-
scape for reservoir hosts, in ways that enhance RRV land-
scape suitability.
Water-soil balance, as measured by the P-Tα, demon-

strated an interesting relationship with RRV landscape
suitability. Suitability was low in highly water-stressed
landscapes but increased sharply in landscapes with

moderate degrees of water-soil balance, and subsequently
reached a threshold of risk at the midpoint of the spectrum.
This relationship may highlight the importance of land-
scapes prone to periodic inundation but which do not ex-
perience regular or constant soil-water saturation. This
type of soil-water balance would be expected to be particu-
larly relevant to dry inland river flood plains and the Cx.
annulirostris vector [5]. However, precipitation inundation
in coastal estuaries also increases populations of Ae. vigilax
and Ae. camptorhynchus seasonally, rather than tidal inun-
dation alone [5]. An additional driver of the preferred saline

Fig. 4 Variable response curves for the hydrological features, the ecological niches of wildlife hosts, altitude and vegetation cover
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habitat of the latter two mosquitoes associated with es-
tuarine wetlands could be the groundwater chemistry
associated with reduced evapotranspiration in semi-arid
or moderately water-stressed areas adjacent to coastal
wetlands [60].
While proximity to lotic systems was not influential to

RRV landscape suitability, the geometry of water flow
through the landscape was, with areas of lesser mean
water flow accumulation associated with increasing risk.
This geometry, combined with the overwhelming prepon-
derance of RRV risk experienced at low altitude (Fig. 4),
suggests that lowland areas that experience sporadic or sea-
sonal flooding, may be more important than adjacency to a
constant lotic flow. This would agree with several local
studies, which have found increasing risk associated with
precipitation events. Almost all studies examining the
association between precipitation and RRV occurrence
in humans across three states identified an increase in
risk following periods of heavy rain [10–12, 14–17, 61–64].
As mentioned above with respect to water-soil balance,
rainfall is likely to modulate the abundance of both inland
freshwater and coastal vector mosquitoes. Nevertheless, a
recent review [65] found little evidence supporting a signifi-
cant relationship between flooding and RRV epidemics.
This was the first study to explore the influence of the

ecological niche of each known mammalian host on human
RRV epidemics. Several studies have identified shedding of
RRV in kangaroos and wallabies, with M. giganteus and M.
fuliginosus recognized as potentially important reservoir
hosts [7, 8]. These two macropods are generally accepted as
driving much of the zoonotic transmission of RRV [5].
However, the current study highlighted the niches of W.
bicolor, P. nasuta, P. novaehollandiae and T. vulpecula to
be most influential to epidemic RRV in anthropogenic land-
scapes. Identifying these four species as RRV hosts is not
novel, and of course cannot be by virtue of their being in-
cluded in this study, but highlighting their potential import-
ance to epidemic RRV landscape suitability is. Moreover, it
is worth noting that the three former species are currently
experiencing significant habitat loss due to land devel-
opment [66–68], whereas the latter species is one that
is highly adaptable to human environments [69]. There-
fore, these species have the potential to be important
bridging hosts in areas of growing human population
expansion in lowland wetland ecosystems [9]. There is
still much to learn regarding the role of native wildlife
in driving risk of RRV transmission in Australia. Beyond
the response to infection of individual species, population
dynamics of wildlife must also be considered. Surveillance
for enzootic RRV activity is restricted to sampling and
testing of mosquito populations, whereas suitable strat-
egies to track wildlife serology, as is the case with WNV in
North America in which surveillance has targeted wild
avian hosts [70], have yet to be developed in Australia.

Similarly to WNV in North America [71], spatial and tem-
poral variability in virus circulation in both vector and res-
ervoir hosts, possibly mediated by climatic and abiotic
factors, may drive epidemic transmission cycles of RRV
but this will require thorough investigation of the viral
ecology to determine.
A brief comment is warranted on what appear to be

anomalous regions of relatively high risk in the Pilbara
region of Western Australia, and the areas around Alice
Springs in the Northern Territory (Fig. 2). While these
areas appear to stand out in comparison to surrounding
areas, they were predicted by the model to have only
modest landscape suitability (range 20–40%) relative to
much of the surrounding interior, which was predicted
close to 0. These areas also correspond to areas of greater
water accessibility and higher mammalian biodiversity
compared to surrounding desert country. This modest
landscape suitability notwithstanding, there were ProMED
reports of Ross River epidemics in both the Pilbara [72]
and Alice Springs [73], however these could not be in-
cluded in the analysis because they did not offer sufficient
geographical reporting to geolocate the occurrences.
There are some important limitations for which we

must provide more explicit discussion. First, temperature
and precipitation were aggregated as background compos-
ites over a 50-year period, from 1950 to 2000. Therefore,
while the 1 km2 spatial resolution of this single aggregate
measure was reasonably high, it was also temporally coarse,
which constrained the analysis as described above in the
discussion of weather and climate. Nevertheless, the two
quarterly measures of temperature and precipitation are
accurate representations of the general climate regimes of
the Australian continent, and thus represent a reasonable
approach to controlling for background climate. We do
recognize, however, our inability to draw any conclusions
regarding specific weather events and concede this as
an important limitation overall. Moreover, it is worth
re-emphasizing that the object of this study was not
forecasting, which would require the unavailable weather
data at fine temporal (and spatial) scale. We are not trying
to predict risk for a specific set of weather conditions or
given a particular seasonally-dependent abundance of
vector mosquitoes. Rather this study seeks to identify
landscapes that are most suitable to epidemic RRV, given
hydrological conditions and the ecological niche of key
wildlife hosts. For any given year, the actual risk will vary
based on local weather events and the subsequent prolifer-
ation of mosquitoes. So, while this approach does not
predict RRV occurrence given a specific set of weather
conditions, it does highlight areas that could be more
susceptible to epidemic events if the right weather con-
ditions are present. Secondly, the documented RRV epi-
demics included in this study are (i) derived from the
ProMED surveillance system archive, which may not
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have captured the reporting of all public health agencies,
and (ii) relatively small in number. Therefore, while it was
our explicit intention to model the landscape suitability of
RRV epidemics within the narrow scope of anthropogenic
environments, these data may not be representative of the
total epidemic events occurring within this landscape
cross-section of Australia over the time period under study.
It is also important to note that the landscape epidemiology
of epidemic RRV is not expected to operate within the
same ecological phenomena as sporadic RRV. As such,
conclusions drawn from the current study necessarily
apply only to epidemic RRV in anthropogenic landscapes.
Thirdly, the ecological niche modeling of the reservoir
species is subject to potential spatial sampling bias, in that
specimens are more likely to be sampled in those areas
that are more accessible to sampling. While we cannot
eliminate such bias entirely, we did mitigate its effects by
sampling background points proportional to the human
footprint, a rich proxy for accessibility. Thus, for each
species, we were able to model the niche itself rather
than the artefactual phenomenon of observability. Fourth,
mosquito populations were not included in the RRV land-
scape suitability model. While vector mosquito species
(Ae. vigilax, Ae. camptorhynchus and Cx. annulirostris)
are available in GBIF the observations are obtained across
broad spans of time (1950–1995) and while this corre-
sponds well to the time period over which climate is mea-
sured (1950–2000), it is unlikely that this metric can
adequately model the sparse mosquito data across such
large periods of time. Following from these limitations,
the findings do not posit a definitive understanding of epi-
demic RRV. They may extend the understanding of the
landscape epidemiology of RRV in humans by highlighting
specific features that are relevant to RRV epidemics. How-
ever, it is essential that this model be validated against
new data as they become available from better field inves-
tigations in broad and diverse environmental settings
across Australia. Finally, because this is an observational
study, direct causal interpretation of the associations
between RRV epidemics and landscape factors are not
inferred. The associations presented here may suggest
relationships among landscape features and RRV epi-
demics, but they do not suggest causality. More defini-
tive causal inference will require direct measurement of
the biotic, abiotic and human social landscapes where
RRV epidemics emerge and where they do not, prefera-
bly at high spatial resolution and in real time. This will
require extensive field investigation incorporating human
and animal sampling, multi-species mosquito surveillance,
rich habitat description, and fine-scaled weather time-series.

Conclusion
In conclusion this study found that features mediating
the movement of water through the landscape and the

ecological niche of wildlife hosts promoted landscapes
suitable to RRV epidemics in anthropogenically impacted
environments. Taken together these features help to delin-
eate epidemic RRV risk in Australia, and thus may help
direct geographically targeted vector and wildlife surveil-
lance within and across state boundaries, and in concert
with human syndromic surveillance. Careful monitoring
of key wildlife populations and protection of their habitat
in peri-urban spaces may be warranted.
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