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Abstract

Objective—High prevalence of diabetes mellitus (DM) along with the poor health outcomes and 

the escalated costs of treatment and care poses the need to focus on prevention, early detection and 

improved management of the disease. The aim of this paper is to present and discuss the latest 

accomplishments in sensors for glucose and lifestyle monitoring along with clinical decision 

support systems (CDSSs) facilitating self-disease management and supporting healthcare 

professionals in decision making.

Methods—A critical literature review analysis is conducted focusing on advances in: 1) sensors 

for physiological and lifestyle monitoring, 2) models and molecular biomarkers for predicting the 

onset and assessing the progress of DM, and 3) modeling and control methods for regulating 

glucose levels.

Results—Glucose and lifestyle sensing technologies are continuously evolving with current 

research focusing on the development of noninvasive sensors for accurate glucose monitoring. A 

wide range of modeling, classification, clustering, and control approaches have been deployed for 

the development of the CDSS for diabetes management. Sophisticated multiscale, multilevel 

modeling frameworks taking into account information from behavioral down to molecular level 

are necessary to reveal correlations and patterns indicating the onset and evolution of DM.

Conclusion—Integration of data originating from sensor-based systems and electronic health 

records combined with smart data analytics methods and powerful user centered approaches 

enable the shift toward preventive, predictive, personalized, and participatory diabetes care.

Significance—The potential of sensing and predictive modeling approaches toward improving 

diabetes management is highlighted and related challenges are identified.

SECTION I INTRODUCTION

Diabetes mellitus (DM) is a group of metabolic diseases that affect the body’s ability to 

regulate blood glucose levels. In Type 1 DM (T1DM), the immune system attacks the insulin 

producing pancreatic cells resulting in absolute deficiency of insulin secretion, while Type 2 

DM (T2DM) is characterized by increased resistance of the body cells to insulin, which 

frequently coexists with limited insulin secretion. T2DM is often progressed from 

prediabetes, which is classified into impaired fasting glucose (IFG) and impaired glucose 
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tolerance (IGT). In the IFG condition, the fasting blood glucose is elevated above the normal 

levels, while IGT is a prediabetic stage of dysglycemia. Both IFG and IGT are associated 

with insulin resistance and increased risk of cardiovascular disease [1].

The prolonged elevated blood glucose levels, which is the main characteristic of diabetes, 

may cause damage to large and small blood vessels leading, in the long run, to mortality 

related complications such as cardiovascular disease (CVD), neuropathy, retinopathy, and 

nephropathy. Moreover, increased blood glucose levels may lead to several acute episodes 

such as ketoacidosis and hyperosmolar hyperglycemic state. DM complications can be 

delayed or even prevented through intensive glycemic control. The latter involves frequent 

glucose measurements and exogenous insulin administration in the case of T1DM, while 

insulin treatment overdoses may cause hypoglycemic episodes. The multitude of factors that 

influence glucose metabolism make optimal glucose regulation in patients with T1DM a 

very challenging task. In the case of T2DM, glycemic control can be achieved through 

appropriate medication treatment in combination with effective lifestyle changes in terms of 

diet and physical activity. However, due to the asymptomatic nature of the disease at the 

early stages, T2DM is usually diagnosed after the occurrence of complications. In particular, 

although general blood-test-based guidelines have been established for the diagnosis of 

T2DM and prediabetes, there is a large time delay between the onset and the diagnosis of the 

disease [2].

According to the International Diabetes Federation (IDF), in 2014, 387-million people 

worldwide suffered from DM, while it is estimated that by 2035 this number will rise to 592 

million. The undiagnosed cases of DM reach up to 179 million. In 2014, 4.9-million deaths 

were attributed to DM, while the associated annual cost in health expenditure was estimated 

at USD 612 billion dollars, which corresponded to 11% of total spending in adults [3].

The high prevalence of DM, and the rapidly growing number of patients with DM, along 

with the rising costs of care, the predictable number of deaths and medical errors, poses the 

need to move from a reactive to a preventive approach in diabetes care and to shift the 

emphasis from the disease to wellness. Rapid advancements in wireless sensing combined 

with smart data analytics can be used to facilitate personalized, predictive, preventive, and 

participatory medicine approaches with the ultimate goal to optimize the management of 

DM through the following multifold focus:

identification of biomarkers which are strongly related with the onset and the progress of 

diabetes;

identification of individuals being at an increased risk of developing diabetes;

detection of diabetes at its early stages, in order to initiate appropriate treatment;

risk prediction of the incidence of long term diabetes complications enabling early 

intervention;

patients stratification facilitating the selection of optimal treatment;

tight glycemic control enabled through patient’s active participation.
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Rapid advancements in wireless sensing and smart devices are creating a pervasive wireless 

environment that can address a wide range of major diabetes-related challenges through 

integration of different types of data acquired from heterogeneous sources. Sensor-based 

technologies for continuous glucose and lifestyle monitoring with the ability to operate with 

a resolution time up to 5 and 1 min, respectively, provide important information regarding 

the patient’s glucose profile as a result of treatment and lifestyle. Moreover, data from 

patient’s electronic health records (EHR), which include demographic, clinical, treatment, 

and medical history information, constitute the patient’s health profile. Genetic information 

such as particular genes that are associated with the onset of T2DM gives additional insights 

about an individual’s predisposition to T2DM development [4]. High-throughput omic 

technologies such as microarrays, next-generation sequencing (NGS), and mass 

spectrometry have led to the identification of molecular biomarkers associated with the onset 

and progress of T2DM and have created new opportunities in diagnosing, monitoring, and 

managing T2DM [5]. Common omic profiles include genomic, transcriptomic, epigenomic, 

proteomic, and metabolomic.

As more and more data are gathered, data processing and interpretation become more crucial 

in order to turn acquired data and information into knowledge toward supporting diabetes 

decision making and action and providing powerful tools for the patient and the clinician. 

Advanced modeling, control, classification, and clustering methodologies applied on 

different combinations of datasets, have led to the development of a range of clinical 

decision support systems (CDSSs). Glucose prediction models for patients with T1DM are 

able to forecast glucose profile, enabling early decision making in order to prevent the 

occurrence of large glucose excursions, while numerous studies have addressed the design, 

development, and evaluation of closed-loop glucose controllers able to provide estimations 

of appropriate insulin infusion rates and premeal boluses [6]. Moreover, several computer-

based risk prediction models for the incidence of long-term diabetes complications have 

been proposed and their potential to support clinical decision making toward initiating 

appropriate treatment has been demonstrated [7] [8][9]. Models able to detect T2DM at its 

early stages and identify people at an increased risk of developing the disease have also been 

proposed. These are based on multilevel, multiscale approaches taking into consideration 

several mechanisms at the molecular, tissue, and organ levels that are known to contribute to 

the physiological processes leading to the development of T2DM. In addition, T2DM is 

highly heterogeneous in terms of clinical and molecular profiles, and it is well known that 

different patients respond differently to existing therapies [10]. Hence, the integration of 

clinical and molecular profiles can provide important information for selecting appropriate 

therapy and monitoring the progression of the disease toward personalized treatment.

The aforementioned CDSS constitute the key modules for the development of integrated 

systems and services for diabetes management, with the ultimate goal to empower patients 

toward the self-management of their disease and to support healthcare professionals in 

clinical decision making. Multiparametric monitoring systems combined with intelligent 

interoperable communication platforms have been developed within the framework of 

several EU-funded research projects, such as METABO [11], INCA [12], Reaction [13], 

AP@home [14] and SMARTDIAB [15]. These systems allow continuous glucose 

monitoring, context awareness, integrative risk assessment, as well as automated closed-loop 
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insulin delivery. In order to ensure safety, the systems are usually equipped with remote 

alarms facilitating expert’s intervention upon cases of emergency [16] [17] –[18].

This paper focuses on describing and comparatively assessing state of the art and emerging 

technologies related to sensors and data analytics methodologies applied for personalized 

diabetes management. The latest advances in sensors for monitoring physiological and 

lifestyle-related parameters, which are relevant to DM, are discussed. Moreover, CDSSs 

with the ability to produce clinically meaningful outputs for the prevention, detection, and 

management of T2DM are presented, along with CDSS for the management of T1DM, 

including risk prediction models for the incidence of long-term complications, glucose 

prediction models and closed-loop glucose controllers. The potential of utilizing molecular 

data toward the development of multilevel predictive models for DM is discussed, while 

future research directions and challenges are highlighted.

SECTION IISENSORS FOR GLUCOSE AND LIFESTYLE MONITORING

Glucose measurements are particularly important for arranging meals and exercise and for 

adjusting insulin doses in insulin-treated patients. Moreover, the physician can utilize them 

in order to assess the patient’s status and adjust therapy properly. The most widely used 

method for measuring blood glucose levels in patients with DM is the finger-stick procedure, 

which requires a small amount of capillary blood obtained by pricking one finger with a 

lancet. The main disadvantage of this method is that it provides the current capillary blood 

glucose concentration without giving information about the glucose trend, and thus, it can 

lead to wrong treatment decisions.

Recent advances have enabled the development of continuous glucose monitoring systems 

(CGMS), which can provide information regarding the glucose levels every 1 or 5 min. The 

CGMS are wearable devices consisting of a glucose sensor, a transmitter, and a receiver/

wireless monitor that can be worn on the belt. The glucose readings are stored in a chip and 

can be subsequently downloaded and assessed by the physician or even the patient, while 

newer devices are equipped with a display to show in real time the glucose records, usually 

accompanied with a graph, and the glucose trend. The majority of the sensors embedded in 

the CGMS are invasive and mainly subcutaneous sensors. Thus, the glucose records derived 

from the subcutaneous space present a time lag, from 2 to 45 min with a mean time 6.7 min, 

compared to the blood glucose values. For this reason, the CGMS must be calibrated 

frequently using the finger-stick procedure. Aiming at improving the reliability of the 

CGMS, the concept of the smart CGM (sCGM) sensor has been recently proposed, which 

consists of a cascade of a commercial CGM sensor and three software modules for 

denoising, enhancement, and prediction of upcoming glucose excursions, able to work in 

real time [19]. In addition, subcutaneous sensors have limited life time and must be replaced 

after a few days of use. Table I presents commercial CGMS along with information related 

to the technology adopted, the sensors lifespan, the sensors warm up period, the calibration 

frequency, the records frequency, and the accuracy [20] assessed in terms of numerical and 

clinical evaluation criteria. Numerical criteria provide a measure of the difference between 

the measured and a reference glucose profile. These include mean absolute deviation 
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(MAD), mean absolute relative difference (MARD), and median absolute relative difference 

(MedARD), defined as

where N is the number of glucose measurements,  and Gi represent the measured and the 

reference glucose levels, respectively. The reference glucose levels are usually measured by 

means of Yellow Springs Instrument (YSI) blood glucose analyzers and blood glucose 

meters. Clinical evaluation criteria, such as the Clarke error grid analysis (EGA) [21], assess 

the clinical accuracy of the glucose measurements in terms of affecting decisions for 

regulating blood glucose levels. The EGA provides the scatter plot of a reference glucose 

meter and the glucose meter under evaluation, broken down into five zones (A–E) 

representing different levels of hazard. The clinically accepted zones are considered to be 

zones A and B.

The latest technological advances are focused on less invasive techniques (e.g., 

microneedles), noninvasive techniques based on optical methods (e.g., kromoscopy, Raman 

Spectroscopy, NIR Spectroscopy, and Photoacoustic Spectroscopy) and transdermal methods 

(e.g., reverse iontophoresis and sonophoresis) [22]. GlucoTrack by Integrity Applications 

utilizes an ear clip and measures glucose levels using ultrasonic, electromagnetic, and 

thermal technologies [23]. Abbott developed Freestyle Libre that can take glucose readings 

as many times a day as needed through a patch worn on the back of the upper arm and does 

not require finger-prick calibration [24]. MediWise’s Glucowise is a pain free glucose sensor 

that squeezes the skin between the thumb and the forefinger and displays the reading in real 

time on the screen [25]. Symphony by Echo Therapeutics uses a transdermal sensor and a 

wireless transceiver in order to display real-time glucose data [26]. CNoga Medical has 

developed a device that uses skin color to diagnose high blood pressure and measure glucose 

levels without the need to puncture the skin [27]. Quick LLC introduced the iQuicklt Saliva 

Analyzer that can measure glucose levels and transfer the results wirelessly using saliva 

samples [28]. Google has announced the development of smart contact lenses able to 

constantly measure glucose levels in tears, a release date has not yet been announced [29]. 

The evolution over time of technologies applied for the development of sensors and devices 

for glucose monitoring is shown in Fig. 1.

Other approaches are directed to the implementation of fully implantable glucose sensors 

that are completely unobtrusive to the patient’s daily life and can be implanted in the human 

body with a brief outpatient procedure. The majority of these approaches are based on the 

use of the glucose oxidase enzyme in order to calculate the glucose concentration. An 

important barrier in this technology is the decreased sensitivity of the sensors due to the 

degradation of the enzyme. To address this problem, a second enzyme has been added to 

eliminate one of the toxic byproducts of the reaction. Most preclinical results have shown a 
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lifetime of about 10–12 months. Preclinical studies with the GlySens’ fully implantable 

sensor, an oxygen-based sensor with a dual-enzyme electrode technology, have shown 

accurate readings for a period up to 18 months. The system developed by Sensors for 

Medicine and Science, Inc., consists of a miniaturized sensor implanted into the 

subcutaneous space in the wrist and operates on induced fluorescence changes. A very 

important attribute of this device is that neither the indicator nor the analyte are consumed. 

The fluorescent indicator molecule and the analyte interact directly and reversibly. A human 

pilot study showed 77.6% in the A zone and 19.2% in the B zone of the EGA [21].

The CGMS are usually integrated with insulin infusion pumps. The latest technology insulin 

pumps come with the bolus wizard feature, which provides suggestions of the premeal 

insulin boluses taking into account the current blood glucose record, the carb-insulin ratio 

and other information such as insulin sensitivity [20].

Lifestyle behavior especially in terms of diet and physical activity strongly affects the 

glucose metabolism. On-body sensors such as pedometers (measure footsteps), 

accelerometers (measure acceleration along a given axis), and heart rate monitors are used to 

detect and quantify physical activity. These devices can compute indirectly the energy 

expenditure based on their records (number of steps, movements, heart rate) and their 

accuracy depends on the kind of the activity and the sensor type. Moreover, devices such as 

Garmin Vivofit 2, Jawbone Up 24, Fitbit Flex, Basis Peak, BodyMedia LINK Armband, and 

Withings Pulse O2 incorporate multiple sensors [30] [31] [32] [33] [34][35], which are worn 

on the arm and are able to track steps, movement, sleep, and calories burned. Misfit’s Shine, 

on the other hand, can be worn anywhere on the body as it features a magnetic grip that can 

be attached on the clothes [36] and detect movement of body parts other than the arm.

SECTION IIICDSS FOR DIABETES MANAGEMENT

The onset and progress of DM are strongly affected by a multitude of data including 

lifestyle, clinical, molecular, and genetic data. Various modeling approaches along with 

different combinations of data acquired from heterogeneous sources can be used to provide 

clinically meaningful output. Taking into account that the onset of T2DM can be delayed or 

even prevented by applying effective lifestyle changes, risk prediction models for the 

incidence of T2DM can raise awareness in individuals at high risk. Models for the early 

diagnosis of T2DM are also of paramount importance since usually there is a large delay 

between the onset and the diagnosis of the disease. Prevention in T1DM is not feasible but 

glucose prediction models and closed-loop glucose controllers can be used to achieve 

optimal glycemic control and improve the participation of the patient in the care process. 

Risk prediction models for the incidence of long-term diabetes complications enable 

patients’ stratification, thus provoking personalized treatment. Fig. 2 shows the various types 

of models that apply to healthy, prediabetic, and T2DM state. Models applied to T1DM 

management are also shown.

Heterogeneous data sources may be used to provide input to the aforementioned models and 

controllers (see Fig. 3). The input space consists of data related to the patient’s EHR, 

lifestyle, glucose records, and molecular profile (e.g., genetic and omics data). Lifestyle data 
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usually include subjective dietary and smoking information reported by the patient, while 

physical activity is either recorded by a sensor or subjectively reported by the patient. Daily 

glucose profiles are recorded through CGMS or measured by finger sticks. Genetic data 

include a set of genes related with the onset of T2DM [4] , [37], [38]. An overview of the 

input data and the methodologies used toward the development of the aforementioned 

models and controllers, is presented in Fig. 3 and discussed in the following sections in more 

detail.

A. Models for T2DM Risk Prediction and Early Diagnosis

Primary prevention of T2DM aims at preventing the onset of the disease via reducing the 

risk of an individual to develop T2DM, while secondary prevention focuses on the early 

detection of the disease and optimization of diabetes treatment plan in order to control 

disease progression. Traditionally, the diagnosis of T2DM and prediabetes relies on clinical 

tests such as the glycosylated hemoglobin test, fasting plasma glucose test, and oral glucose 

tolerance test [39]. However, due to the asymptomatic nature of the disease in its early 

stages, there is a large delay between the onset and the diagnosis of T2DM (more than ten 

years), which usually occurs after the incidence of complications [40]. This poses a great 

need to develop computational tools and services with the ability to estimate the risk of the 

onset and to early detect T2DM by applying multifactorial analysis.

Within this context, several attempts have focused on the development and the evaluation of 

risk prediction models [41]. The most commonly identified risk predictors, which have been 

found as strongly correlated with the onset of T2DM and provide input to this type of 

models, are: age, family history of diabetes, body mass index, hypertension, waist 

circumference, sex, ethnicity, fasting glucose level, glycosylated hemoglobin, lipids, uric 

acid, or γ-glutamyltransferases, smoking status, and physical activity [41], [48]. Logistic 

regression [49], Cox proportional hazards model [50], recursive partitioning [51], and 

Weibull parametric survival model [52] are the most commonly used methodologies for 

building these models. The prediction horizon varies from 5 to 15 years, while the reported 

c-statistics range from approximately 71–86%, with the latter being achieved by applying 

the full Framingham seven-year risk calculator, which is based on regression models [53].

Since daily activity and health behavior are important factors to predict the development of 

T2DM, inclusion of such information acquired from a variety of sensors can improve the 

performance of T2DM risk prediction models. Temporal association rule mining is a new 

powerful methodology, which can generate predictive rule-based models using the patient 

trajectories created from applying the association rule mining (ARM) [54] [55][56]. In the 

prediction of T2DM-related symptoms, a rule indicates that, if a set of observed health-

related events X has occurred in the past Tx time period, then another set of T2DM or 

indicators Y has a possibility p to occur in the following Ty time span.

Moreover, taking into account that T2DM has genetic predisposition, genotype risk scores, 

which are presented in Section IV, can provide powerful tools toward T2DM risk prediction.

In the area of models aiming at early diagnosis of T2DM, the Finnish Diabetes Risk Score 

[57] has gained wide acceptance. However, this method is sensitive to human errors since it 
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requires human intervention in deciding criteria and score. In order to overcome this 

problem, several attempts have been reported focusing on the application of statistic pattern 

recognition analysis and machine learning. Age, gender, body mass index, waist-to-hip ratio, 

waist circumference, random blood sugar test results, fasting blood sugar test results, 

postplasma blood, sugar tests, race/ethnicity, occupation, blood pressure medication, 

cholesterol medication, gestational diabetes, high blood pressure, high cholesterol, parental 

history of diabetes, and exercise, have been identified as risk factors for the incidence of 

T2DM [40], and subsets of these constitute the input space to various models. Recent efforts 

based on artificial intelligence (AI) have produced promising results.

In particular, clustering techniques that make use of k-means, mixture-of-Gaussians, self-

organizing maps (SOM) and neural gas (NG) have been applied for the diagnosis of T2DM, 

while support vector machines (SVM) and several types of neural networks (NNs), such as 

multilayer, back-propagated, radial basis function (RBF), general regression NNs, and 

neurofuzzy inference systems have been used for classifying subjects in diabetics and 

nondiabetics [40]. Moreover, methods based on mixture of experts (ME), which combine the 

outputs of several classifiers for the calculation of the final decision, have been proposed in 

order to enhance the performance achieved by a single classifier. Modified ME (MME), 

which incorporate an assembly of expert networks and a gate-ban, have proven to further 

increase the classification performance [40]. Table II summarizes the classification 

performance of each of the aforementioned AI-based models.

B. Risk Engines for Long-Term T1DM and T2DM Complications

Severe long-term mortality-related complications of DM such as CVD, retinopathy, kidney 

disease, and neuropathy can be delayed or even prevented by early initiation of appropriate 

treatment. Risk score calculators have great potential to provide valuable support in clinical 

decision making by facilitating patients’ stratification. Diabetes risk engines are fed with 

medical history data, clinical measurements, and environmental data and provide the 

probability of a patient to develop specific long-term diabetes complications. CVD and 

diabetic retinopathy constitute the most commonly target complications. Typical examples 

of risk engines for diabetes complications include the United Kingdom Prospective Diabetes 

Study (UKPDS) Risk Engine [7], the CDC/RTI Diabetes Cost Effective Model [8] and the 

Global Diabetes Model (GDM) [9]. The most widely used diabetes risk engines are those 

whose development is based on data collected within the framework of large clinical trials 

with minimum duration of 5 years, such as the Diabetes Control and Complications Trial 

(DCCT) [68], the Epidemiology of Diabetes Interventions and Complications (EDIC) study 

[69], the QRisk study [62], the UKPDS study [7], and the EuroDiab study [70]. Table III 

summarizes available risk engines, along with adopted methodologies and datasets used for 

their development, as well as the specific patient target group and complications. The 

diabetes complications risk prediction models are usually based on survival analysis, 

regression equations and Markov modeling [71]. A different methodological framework, 

which is based on AI techniques, has been utilized in [67] toward personalized risk 

prediction of diabetic retinopathy development in patients with T1DM. In particular, an 

FNN, a Classification and Regression Tree (CART), and a wavelet NN have been 

comparatively assessed using data from the medical records of 55 T1DM patients. The 
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performance achieved by each model has been evaluated in terms of sensitivity, False 

Positive Rate (FPR), accuracy, specificity, Positive Predictive Value (PPV), Negative 

Predictive Value (NPV), and False Discovery Rate (FDR) (see Fig. 4).The increased 

discriminative ability of the wavelet NN along with its superiority over the FNN and CART, 

which are less parameterized, justifies the need to investigate the application of more 

sophisticated techniques in order to obtain reliable risk scores.

C. Glucose Prediction Models for Patients With T1DM

Glucose metabolism in T1DM patients is strongly affected by several exogenous and 

endogenous factors. In particular, environmental factors such as nutrition, physical activity, 

patient’s psychological status, and overall lifestyle along with endogenous processes, such 

as circadian rhythms, play a crucial role in glucose metabolism. Furthermore, intra- and 

interpatient variability in response to therapy, makes the regulation of glucose levels a very 

challenging task. Computational models able to produce accurate and reliable estimations of 

future glucose profile in response to various stimuli can provide valuable tools within the 

context of achieving tight glycemic control. Predicted glucose profile is mainly used for 

producing early warnings of the upcoming hypoglycemic/hyperglycemic episodes or for 

adjusting insulin injections and insulin infusion rate in insulin-treated patients. Several 

efforts have been reported toward the development of glucose prediction models, which are 

usually based on either compartmental models (CMs) or data-driven approaches. CMs 

represent fundamental glucoregulatory processes, taking advantage of the knowledge of the 

physiological paths involved in the human metabolic process [72]. However, their 

acceptance has been limited because they take into account only a confined number of 

factors affecting glucose metabolism, while the identification of their parameters requires 

clinical measurements, which are not typically available in clinical settings. Moreover, the 

lack of personalization capabilities constitutes a major drawback [58].

In order to overcome the aforementioned limitations, the use of data-driven techniques that 

apply pattern recognition methods to capture the metabolic behavior of a patient with T1DM 

has been proposed. Several glucose prediction models have been developed based on 

Volterra series models, time-series analysis, and machine learning. Particularly, the 

application of Volterra models for the simulation of glucose–insulin dynamics has 

demonstrated good performance in the absence of noise [73], [74]. Moreover, 

Autoregressive (ARX) and Box–Jenkins models of various orders, identified based on data 

generated from a simulated physiological model, have achieved good prediction 

performance [75]. In addition, the potential of utilizing ARX models with time-varying 

parameters has been investigated [76]. Several types of Artificial NNs such as multilayer 

perceptron (MLP) [77], recurrent neural network (RNN) [78], radial basis function (RBF) 

[79], Wavelet NNs [80], and neurofuzzy techniques [81] have been successfully applied for 

the simulation of glucose metabolism. Furthermore, hybrid glucose prediction models based 

on the combined use of CM and data driven approaches such as RNN [78], support vector 

regression (SVR) [82], and SOM [83] have produced promising results. Table IV 

summarizes glucose prediction models of the literature, based on AI and autoregressive 

methods along with their input space, and reported accuracy. CGMS data, blood glucose 

Zarkogianni et al. Page 9

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



readings, insulin dosages, and lifestyle data in terms of ingested carbohydrates, physical 

activity and stress, are the most commonly used input factors.

Although a direct and fair comparison of models’ predictive performance is not possible due 

to the different testing dataset, input space, and evaluation methodology used, several 

important conclusions can be drawn. In particular, as it is expected, the application of a more 

informative input space results in better predictive performance. In addition, as the 

prediction horizon (PH) increases, the models’ predictive performance deteriorates. 

Moreover, the use of hybrid models for the simulation of glucose–insulin metabolism has 

achieved the lowest RMSE values justifying, thus, their superiority over other approaches. 

When only CGMS data are used to feed the models (shown in bold in Table IV), AI-based 

models achieve higher performance than autoregressive models (RMSE equal to 12.29 

mg/dL-achieved by SOM- against 18.78 mg/dL), demonstrating thus, the need of applying 

more sophisticated techniques in order to capture the metabolic behavior of a patient with 

T1DM.

D. Closed-Loop Glucose Controllers

Closing the loop between a CGMS and an insulin infusion pump through reliable, accurate, 

and effective glucose control algorithms, has become one of the most important research 

challenges in T1DM management. The problem of maintaining blood glucose levels within 

an acceptable range is particularly complex in patients with T1DM, since various exogenous 

parameters strongly affect the glucose metabolism, while the ever-changing and 

unpredictable nature of glucose metabolism leads to intra- and interpatient variability. 

Therefore, the glucose controller should be able to provide personalized and adaptive 

treatment recommendations. The majority of approaches applied toward the development of 

glucose controllers [6] are based on either proportional integral derivative (PID) control [84], 

[85] or model predictive control (MPC) [86] [87] [88] [89] [90] [91] [92] [93] [94] [95][96]. 

MPC-based glucose controllers have gained wider acceptance due to the MPC’s ability to 

handle 1) high nonlinearities in glucose–insulin metabolism, caused by saturation and 

inhibition effects evidenced by chemical substrates and hormones involved in enzyme 

dynamics and hormonal control effects, 2) time delays in subcutaneous–subcutaneous (sc-

sc) route due to the delayed effect of infused subcutaneous insulin and the glucose diffusion 

from the blood to the subcutaneous space, and 3) inaccuracies in subcutaneous glucose 

measurements. MPC incorporates glucose prediction models, described in Section III-C, 

which produce estimations of the future glucose profile. The estimated glucose profile is 

compared with the desired one and the obtained deviations are inserted into a cost function 

in order for the latter to be minimized toward producing advice on insulin infusion rates. The 

efficiency of the MPC controllers is strongly dependent upon the used glucose prediction 

model, the cost function and its tuning. Several attempts have been made toward the 

development of glucose controllers based on nonlinear model-predictive control (NMPC), 

and the effectiveness of the NMPC over the linear MPC has been studied and justified [92], 

[96], [98]. Moreover, the mathematical formulation of the cost function is of particular 

importance. Traditionally the cost function includes the sum of the squared differences of 

the glucose predictions from the desired glucose values and of the estimated insulin changes
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where y and r represent the estimated and the desired glucose values, respectively, while u is 

the insulin infusion rate, Np is the prediction horizon, Nc is the control horizon, and Γe and 

Γu are the prediction and control weighting coefficients, respectively. However, taking into 

account that the goal of a closed-loop glucose controller is to maintain glucose levels within 

an acceptable range, the addition of appropriate terms penalizing the cost function whenever 

future glucose predictions are outside a predefined range [98], [99], can improve control 

performance. Another important issue toward the implementation of MPC is its tuning. A set 

of parameters in the cost function influence the controller’s performance and stability and 

their values are usually adjusted either via trial and error procedures or by following general 

tuning guidelines [72]. However, trial and error is a rather cumbersome task while 

systematic approaches cannot be implemented online because the glucose metabolism is 

subject to severe disturbances and changing operating conditions. In order to overcome this 

problem, online tuning has been proposed [98].

An exemplar adaptive glucose control algorithm (Insulin Infusion Advisory System—IIAS) 

addressing the aforementioned issues is presented in [98]. The system is able to adapt over 

time through continuously updating the parameters of both the glucose–insulin metabolism 

model and the cost function. In particular, the IIAS incorporates a hybrid personalized 

glucose–insulin metabolism model, which is based on the combined use of CMs for the 

simulation of glucose absorption from the gut and the subcutaneous insulin kinetics, 

respectively, and an RNN for the simulation of glucose kinetics. The ability of the RNN to 

be trained on line provides high personalization and adaptation capabilities. Moreover, 

online tuning of the cost function’s parameters—prediction horizon (Np), control horizon 

(Nc), and control weighting coefficient (Γu)—is achieved through a fuzzy-based logic 

strategy. The IIAS has been in silico evaluated using the UVa T1DM simulator [100] and its 

performance has been compared against both the adaptive basal therapy presented in [41] 

and the artificial pancreatic b-cell, which is based on zone-MPC and is adjusted 

automatically by linear difference personalized models [99]. The obtained results are 

presented in Tables V and VI . The IIAS has achieved the lowest risk associated with 

extreme glucose deviations (Risk Index) in the former case and the lowest percentage of 

glucose excursions in both cases. The superiority of the IIAS over the adaptive basal therapy 

and the linear MPC justifies the need of applying more sophisticated control strategies to 

regulate glucose levels in T1DM.

Several clinical studies have been conducted in recent years, in order to test and compare the 

performance of closed-loop glucose controllers against conventional therapies [101] [102] 

[103] [104][105]. Overnight closed-loop experiments using different MPC controllers have 

demonstrated the superiority of the closed-loop control over the conventional pump 

treatment [101], [104]. Similar conclusions have been drawn from closed-loop clinical 

studies lasting more than 24 hours [101], [107].
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Recent technological advances have led to the development of systems supporting outpatient 

clinical trials over extended time periods in order to evaluate the performance of closed-loop 

glucose controllers under free living conditions. The Diabetes Assistant (DiAs), an 

experimental smartphone-based mobile system, is the first portable platform facilitating 

outpatient clinical trials [108]. In the same context, a three-layer modular architecture for 

closed-loop control of T1DM has been developed, consisting of a sensor/pump interface 

module, a continuous safety module, and a real-time control module [109].

Although great progress has been made toward the development of safe and accurate 

automated insulin delivery systems, the risk of hypoglycemia caused by overestimated 

insulin infusion rates is not completely eliminated. In order to prevent and treat 

hypoglycemia, latest research directions focus on the administration of both insulin and 

glucagon, the insulin-counteracting hormone. The feasibility of achieving safe and good 

glycemic control by applying bihormonal closed-loop glucose controllers has been 

investigated [106], and their superiority over insulin-only controllers has been proven [110]. 

The most common approach combines MPC for the estimation of insulin infusion rates in 

order to handle the time lags and delays imposed from the subcutaneous insulin delivery, and 

PID control for the calculation of glucagon infusion rates, since the subcutaneous glucagon 

absorption is rapid [106].

Although significant efforts have been reported toward the development of closed-loop 

glucose controllers, there are still severe limitations in terms of reliability, safety, and 

accuracy [111] . Considering the short duration (up to one week) of the inpatient and 

outpatient clinical trials along with the fact that closed-loop glucose controllers are intended 

for chronic use, there is a lack of clinical evidence for proving their effectiveness and safety. 

Moreover, the occasional inaccuracies in glucose records from the CGMS and the delays 

caused from the subcutaneous insulin administration makes the estimation of optimal insulin 

infusion rates a challenging task. Although the usage of more than one glucose sensors has 

been proposed, improvement of the existing or development of novel control strategies with 

various levels of safety is needed in order to enhance robustness. Bihormonal closed-loop 

systems seem to be very promising in achieving optimal glycemic control [106]. However, 

more stable glucagon preparations are needed in order for the glucagon to remain in a 

wearable pump for at least 3–7 days, and therefore, to enable long-lasting clinical trials for 

obtaining reliable evaluation results.

SECTION IVTOWARD T2DM PREDICTIVE MODELING USING MOLECULAR 

DATA

Although clinical data encompass phenotypic information, insulin secretion and resistance 

actually involve with multiscale biological processes affected by gene, protein, and 

metabolite factors [5], [112], [113]. A patient’s comprehensive biological state can be 

inferred by combining several omic data types, including genomic, transcriptomic, 

epigenomic, proteomic, and metabolomic. The omic profile is useful for investigating or 

predicting the underlying interactions, associations, and mechanisms in acquired samples. 

Recent advances in high-throughput technologies such as microarrays, NGS, and mass 
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spectrometry have enabled the identification of molecular biomarkers for T2DM. For 

example, the population-level genome-wide association study (GWAS) [4] helps discover 

novel genetic variants associated with T2DM that can be incorporated into T2DM risk 

prediction models. To be more specific, GWAS has identified putative causal genes for 

T2DM such as CDKAL1, CDKN2A, IGF2BP2, and MTNR1B, each of which corresponds 

to 15–20% increase in the T2DM risk. Because a tremendous amount of GWAS data has 

become publicly available, several studies have focused on the metaanalysis of these data 

and have resulted in the identification of 59 genetic loci that are associated with T2DM 

susceptibility [37], [38]. Moreover, multiple single nucleotide polymorphisms (SNPs) on 

CAPN10 have been found to collectively increase the risk of T2DM by 2.8 folds [114], 

while SNP on DACH1 gene is associated with familial young-onset diabetes, prediabetes, 

and CVD in the Chinese population [115]. Gene-expression patterns may also assist in 

predicting prediabetic states or uncovering underlying biological mechanisms of T2DM. 

Transcript expression levels among patients with T2DM, subjects with impaired glucose 

tolerance, and subjects with normal glucose tolerance have been studied. The authors have 

reported that TNF-alpha, TXNIP, and SOCS-3 genes are accurate indicators for various 

clinical conditions [116]. Furthermore, expression profiles of microRNA and their effects on 

regulating insulin sensitivity have been widely examined in recent years [117], [118].

Other than genetic factors, the environmental modification of DNA sequences (e.g., DNA 

methylation and histone modification) substantially contributes to the risk of T2DM. 

Epigenetic mechanisms such as chromatin remodeling and oxidative stress, epigenetic 

regulation of gene expression, and histone modification in vascular epithelium exposed to 

hyperglycemia are related to T2DM [119], [120]. More specifically, the epigenetic 

regulation of the DLK1-MEG3 microRNA cluster by DNA methylation is associated with 

Type 2 diabetic islets [121]. Scaling up the biological scales, protein and metabolite markers, 

caused by genomic and transcriptomic variations, represent disease status with more 

directness and immediacy [122], [123]. Protein markers such as specific cytokines and 

chemokines are predictive for T2DM since inflammatory response is significant in the 

disease [124]. Five classes of protein markers in T2DM have been identified: hormones 

(e.g., amylin), protease inhibitors (e.g., cystatin), secretory vesicle proteins (e.g., 

chromogranin), cell adhesion (e.g., protocadherin), and secreted enzymes (e.g., 

phospholipase) [125]. Compared to other omic technologies, metabolomics is an emerging 

due to the complexity of the biochemical targets [122], which is caused by the variety of 

biological sample types being examined, the number of metabolites, and the large magnitude 

of variation in metabolite concentrations. Alterations in fatty acid, tryptophan, and 

lysophosphatidylcholine metabolism and in other metabolic pathways may constitute a 

metabolic signature for T2DM [126] [127] –[128]. In Fig. 5, the aforementioned molecular 

biomarkers associated with prediabetes and T2DM are summarized under the corresponding 

omic category.

To take advantage of emerging genomic knowledge and to translate it into clinically useful 

tools/services, genotype scores have been developed with the ability to assess the risk of 

T2DM incidence taking into account these genetic variations [129]. Within this context, 

several prospective cohort studies have been conducted aiming at assessing the impact of 

introducing the genetic profile into the T2DM risk prediction models. In particular, in these 
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studies, the models have been fed with different input space consisting of, either only the 

genetic factors, or only the conventional risk factors or both, and their predictive 

performance has been comparatively assessed. The models’ discriminative ability has been 

evaluated in terms of the area under the receiver operating characteristic curve (AUC), which 

is created by plotting the true positive rate against the false positive rate at various threshold 

settings. In the case of the genetic input space, the AUC ranges from 55% to 68% with a 

median of 60% achieving lower performance than that achieved by applying only 

conventional risk factors (AUC range: 63%–90%, median: 78%) [129]. The highest 

performance has been achieved by taking into account both genetic and conventional risk 

factors (AUC range: 63%–91%, median: 79%). The inclusion of the genetic profile into the 

models’ input space has resulted in slight improvement in their predictive performance, 

irrespectively of the study design, participants’ race/ethnicity and number of genetic markers 

included. Although in theory, it could be speculated that the genetic profile can be useful in 

the case of the youngest population, because the phenotypic symptoms have not occurred, 

yet, there are no studies to justify this notion. The most important reason for not obtaining a 

significantly higher predictive performance by taking into account the genetic variants is the 

limited number of the identified genetic markers with the majority of them not strongly 

correlated with T2DM (odds ratios of heterozygous genotypes are less than 1.15) [129]. In 

order to achieve AUC up to 80% and even higher, based on the genetic profile, 400 genetic 

variants with minor allele frequencies of 10% and odds ratios of the heterozygous genotypes 

for each variant greater than 1.25 are needed [129], [130].

SECTION VFUTURE RESEARCH DIRECTIONS AND CHALLENGES

Although great progress has been made in the recent years toward the development of the 

CDSS for diabetes management, these systems have not yet been fully adopted in the 

clinical practice. This is mainly due to the biased data analysis and the lack of reliable and 

comprehensive evaluation studies, since the criteria for selecting patients and controls and 

the approaches for the treatment of controls vary greatly among published studies [131]. 

Moreover, although it is widely known that CDSS have great potential to provide with cost-

effective solutions, substantial economic analysis for proving this has not been conducted.

Apart from the need for a systematic evaluation framework, current research challenges 

focus on the development of new CGMS and sensor networks able to monitor in an 

unobtrusive and seamless manner a wide range of physiological and lifestyle related 

parameters. Advanced data analytics and modeling approaches are needed to extract 

clinically meaningful knowledge from the multitude of collected raw data. User-centered 

approaches, taking advantage of the sensor networks and the personalized CDSS, can 

significantly contribute in reshaping and improving the clinical workflow for the 

management of DM.

A. Unobtrusive Sensing

The key challenges for the development of next-generation CGMS refer to decreasing the 

operational cost, reducing the number of calibrations and warm up periods, and improving 

accuracy. Furthermore, the current trends point to the development of noninvasive 
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techniques for accurate glucose monitoring. Although considerable efforts have been made 

in this direction, there are still issues related to precision, robustness, stability, long response 

time for glucose determination, which require considerable improvements [20].

Moreover, the development of sensors for automatically detecting meal consumption 

constitutes a major challenge in dietary monitoring. Within this context, the usage of 

wearable body sensors, for detecting intake gestures (e.g., intentional arm movements to 

bring food into mouth), chewing sounds during food intake, and swallowing have been 

recently investigated [132]. Intake gestures can be detected by inertial sensors integrated into 

clothing [133], chewing sounds can be recorded by ear microphones [134], and swallowing 

can be assessed using Electromyography at the hyoid or a textile capacitive sensor [135]. 

The signals from these sensors can be analyzed in order to recognize the time, type, and 

amount of a meal.

Taking into account that the DM pathophysiology is a continuing process, transient critical 

abnormalities should be early detected. Sensor networks able to provide with continuous 

physiological (e.g., glucose, blood pressure, pulse, cardiac rhythm) and lifestyle (e.g., diet, 

physical activity) monitoring data have great potential to detect such transitions and track the 

progress of the disease. The emerging technology of Internet of Things can significantly 

contribute toward this direction by providing global connectivity among sensors and devices 

that contain appropriate embedded technology, thus enabling seamless integration of more 

factors in clinical decision making related to diabetes management.

B. Emerging Methodologies for Modeling the Onset and the Progress of DM

Considering the multifactorial nature of DM, multilevel and multiscale modeling approaches 

should be applied in order to take into consideration all the different types of factors that are 

strongly associated with the disease onset and evolution. New powerful data analysis 

methods, such as undirected and directed networks, can be used to capture correlated and 

causal relationships among the variables. Undirected networks can represent correlations but 

no causal effects. For example, the weighted correlation network builds upon the pairwise 

correlation between features determining the significance of each link [136]. The regression-

based network can use various regression models (e.g., linear regression, Poisson regression, 

and logistic regression) depending on the distribution of targeted response features [137], 

[138]. In directed networks, causal relationships may be inferred from the direction of each 

link. ARM-based and Bayesian are two examples of this kind of network. The Bayesian 

network applies Bayes rules to link features, wherein the occurrence of a feature depends on 

the occurrence of the other feature. The strength of each link depends on the posterior 

conditional probabilities [139], [140]. Such methods can be applied in order to identify 

novel biomarkers, which are strongly related with the onset of T2DM and the evolution of 

T1DM and T2DM.

An emerging methodology for discovering patterns in multiscale data is deep learning, 

which is applied for both unsupervised and supervised analysis [141], [142]. Deep learning 

methods are inspired by the hierarchical structure of the brain, and use multiple levels of 

abstraction in order to identify relevant patterns. Such methods have been, recently, applied 

in order to predict patient phenotypes from clinical data [143] and biomolecular properties 
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[144], [145]. In the case of DM, deep learning techniques can be used to search for patterns 

across clinical and multiple types of omic data.

C. User Centered Approaches

The development of user centered approaches, through body sensor networks, context 

awareness, and personalized modeling, can significantly contribute to empower citizens and 

patients toward the self-management of their own health and disease outside institutions, 

improving, thus, health outcomes in terms of both quality of life and health expenditures. A 

holistic user-centered approach, supported by computer-based predictive models, providing 

personalization capabilities and integrating heterogeneous sources of data (patient, clinical, 

biological, therapeutic, behavioral, physical training and performance, lifestyle and diet, 

environmental data, social data) has great potential to raise individual awareness, promote 

behavioral lifestyle changes, support treatment, and monitor the disease.

Increased emphasis should also be given on the development of the CDSS in order to 

improve interactions between patients and health professionals within the context of 

codecision making. Furthermore, the creation of ecosystems for DM management, involving 

multiple stakeholders such as patients, families, diabetologists, general practitioners, case 

managers, who undertake activities related to the coordination of services (assessment, 

planning, facilitation, evaluation, monitoring the patient’s progress, and promoting cost-

effective care) on behalf of an individual patient, and health care policy makers is 

particularly challenging.

SECTION VICONCLUSION

Optimal management of DM requires redesigning the current system of healthcare delivery 

by shifting the focus from reactive to proactive care. Predictive and preventive medicine for 

DM must rely on the capacity to capitalize on information from a diverse range of data 

(lifestyle, social, clinical, treatment, and molecular) in order to early detect 

pathophysiological changes and to better tailor intervention and treatment. Recent advances 

in sensing technologies for monitoring physiological and lifestyle parameters coupled with 

advanced data analytics and modeling approaches for the prediction, diagnosis, and 

management of DM can play a key role. Enhanced integration of patient data through the 

development of multiscale and multilevel physiological models can generate new clinical 

knowledge and contribute to a more effective personalized diabetes care approach.
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Fig. 1. 
Evolution of devices for glucose monitoring.
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Fig. 2. 
Upper panel: Progress from healthy state to prediabetic state and T2DM. Types of models 

that apply in each state. Lower panel: Types of models for the management of T1DM.
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Fig. 3. 
Overview of the DM data management flow.
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Fig. 4. 
Performance evaluation of the FNN, CART, and wavelet NN-based risk prediction models 

for the incidence of diabetic retinopathy [67].
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Fig. 5. 
Molecular biomarkers for prediabetes and T2DM.
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