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Abstract

Ectodomain shedding of cell-surface precursor proteins by metalloproteases generates important 

cellular signaling molecules. Of importance for disease is the release of ligands that activate the 

epidermal growth factor receptor (EGFR), such as transforming growth factor-alpha (TGFA), 

which is mostly carried out by ADAM17 [a member of the A-disintegrin and metalloprotease 

(ADAM) domain family]. EGFR ligand shedding has been linked to many diseases, in particular 

cancer development, growth and metastasis, as well as resistance to cancer therapeutics. Excessive 

EGFR ligand release can outcompete therapeutic EGFR inhibition or the inhibition of other 

growth factor pathways by providing bypass signaling via EGFR activation. Drugging 

metalloproteases directly have failed clinically because it indiscriminately affected shedding of 

numerous substrates. It is therefore essential to identify regulators for EGFR ligand cleavage. 

Here, integration of a functional shRNA genomic screen, computational network analysis, and 

dedicated validation tests succeeded in identifying several key signaling pathways as novel 

regulators of TGFα shedding in cancer cells. Most notably, a cluster of genes with NF-kB pathway 

regulatory functions was found to strongly influence TGFα release, albeit independent of their 

NF-kB regulatory functions. Inflammatory regulators thus also govern cancer cell growth 

promoting ectodomain cleavage, lending mechanistic understanding to the well-known connection 

between inflammation and cancer.
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Introduction

Epidermal-growth-factor-receptor (EGFR) activation generates signals for cell proliferation, 

migration, differentiation, or survival (reviewed in (1)), cellular phenotypes that are often 

dysregulated in cancer. A-disintegrin-and–metalloprotease-17 (ADAM17) — releases most 

ligands that activate the EGFR, e.g. transforming-growth-factor-alpha (TGFα) (2-4). 

ADAM17, EGFR ligands and EGFR are indeed upregulated in numerous different cancer 

types, driving EGFR activity that promotes cancer growth and metastasis (reviewed in (5) 

and (1)). The same components, ADAM17 and EGFR/EGFR ligands, have also been 

associated e.g. with the development of organ fibrosis in lung, liver or kidney (6-9) and have 

important roles in inflammation (reviewed in (10); (11)). Broad-spectrum metalloprotease 

inhibition has been unsuccessful in the clinic due to significant side effects resulting from 

indiscriminate suppression of the cleavage of many metalloprotease substrates and their 

dependent physiological functions (reviewed in (12),(13)). Even recently developed selective 

ADAM10 or 17 inhibitors still affect the cleavage of many substrates (14,15). Existing 

strategies to targeting EGFR itself would be more specific, but they also have had limited 

therapeutic success in cancer and other disease applications due to development of resistance 

to the inhibitors (16),(17).

Excessive release of EGFR ligands is an important mechanism of therapeutic resistance in 

cancer treatment. It can outcompete attempts to block ligand binding to EGFR or to block 

EGFR kinase activity (18-20), and it can confer resistance to inhibition of other oncogenic 

driver pathways by establishing “by-pass signaling” via the EGFR pathway (21). As 

examples for the latter, EGF can induce resistance to cMet inhibition (crizotinib) in lung 

cancer patients (22,23), EGF or NRG1 can induce resistance to cMet inhibition in cMet-

amplified gastric cancer cells and BRaf (V600E) inhibition in melanoma cells (21), and 

TGFα causes resistance to ALK inhibition in lung cancer cells (24). Development of 

strategies to target EGFR ligand release is therefore of great importance for successful 

inhibition of the EGFR pathway and for effective targeting of other growth pathways under 

current clinical investigation in cancer and other diseases.

Ectodomain shedding by ADAMs can be induced by activation of intracellular signaling 

pathways involving e.g. calcium influx, the activation of G protein-coupled receptors, and 

the release of diacylglycerol, an activator of protein kinase C (PKC) (25). Several 

mechanisms that regulate cleavage on the level of ADAM17 have been reported, including 

regulation of expression, maturation, trafficking to the cell surface (reviewed in(12)), 

posttranslational modifications of ADAM17´s ectodomain (26-29) or C-terminus (by the 

mitogen-activated protein kinases p38 or ERK) (30,31), and interaction with other 

transmembrane proteins, such as iRhom1/2 (32,33) and annexins (34,35). In addition, a 

small domain contained in the ectodomain of ADAM17 has been identified that interacts 

with and regulates the cleavage of a small subset of ADAM17 substrates (36,37). Specific 
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regulation of substrate cleavage also involves intracellular signal-induced C-terminal 

modifications of the substrate (4,25,38,39) that lead to protease accessibility changes of the 

substrate’s ectodomain (40), but it has remained mostly unknown which intracellular 

signaling components and pathways are involved (reviewed in (12)).

To identify such signaling components and pathways that regulate induced TGFα cleavage, 

we carried out an shRNA screen of all human kinases and phosphatases. An early limited 

screen analysis revealed that protein-kinase-C-alpha PKCα and the PKC-regulated protein-

phosphatase-1-inhibitor-14D (PPP1R14D) are required for specific regulation of phorbol 

ester (TPA; a diacylglycerol mimic and PKC activator)- or angiotensin II-induced shedding 

of TGFα and that this regulation indeed occurred on the substrate and not the protease level 

(4).

Here we report a combined experimental and computational approach for discovering novel 

regulators of TGFα cleavage. First, using stringent analysis of our primary shRNA screen 

carried out in acute T cell leukemia-derived Jurkat cells, we validated a significant number 

of positive and negative regulators of TGFα cleavage in triple negative breast cancer cells. 

We then modeled and validated signaling pathways identified in an integrative network 

modeling approach. This network incorporated experimental genes measured in the screen 

and predicted genes that regulate TGFα cleavage in different cancer cells. We discovered 

and validated a cluster of TGFα regulatory genes that are also known to influence NF-κB 

signaling and show that NF-κB-regulatory functions of these proteins are not required for 

their cleavage regulatory functions.

Our results thus define targets that might allow therapeutic control of EGFR ligand 

ectodomain shedding and thus avoid EGFR ligand-mediated therapeutic resistance. More 

broadly, our results highlight quite generally how a network approach can improve shRNA 

screen validation, provide new opportunities for existing therapies, and identify genes 

relevant for EGFR-driven diseases.

Materials and Methods

The initial screen was conducted in Jurkat cells, as is fully described in (4). An important 

feature of this screen is that it uses a Jurkat-TE cell line which expresses TGFα with an 

intracellular GFP and extracellular HA tag.

shEnrich method

The shEnrich method analyzes redundant shRNAs against a given gene to select for 

consistency and strength of biological effect (in our case, projected effect on TGFα 
shedding). The method rank-orders all shRNAs and calculates a moving enrichment score 

(ES) based on summing the probability of finding an shRNA within the gene’s family 

(probability of a hit, “p_hit”) and the probability of finding an shRNA outside the family 

(probability of a miss, “p_miss”). For each gene’s shRNA cohort, there is a total effect 

represented by the sum of all shRNAs z-scores; the p_hit is a fractional representation of 

how much of this total effect is captured at each rank. The p_miss is a fractional penalty 

equivalent to the inverse of the number of nom-family shRNAs in the screen.
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A phosphorylation-site specific interactome

We used the set of human interactions contained in version 13 of the iRefIndex database (41) 

as our source for protein-protein interactions, which consolidates information from a variety 

of source databases. We used the MIscore system (42) to assign confidence scores (ranging 

from 0 to 1) to these interactions; this scoring system considers the number of publications 

(publication score), the type of interaction (type score), and the experimental method used to 

find the interaction (method score). We extracted the relevant scoring information for 

interactions from the iRefIndex MITAB2.6 file, using the redundant interaction group 

identifier (RIGID) to consolidate interactions between the same two proteins reported by 

multiple databases, and used a java implementation of MIscore (version 1.3.2, available at 

https://github.com/EBI-IntAct/miscore/blob/wiki/api.md) with default parameters for 

individual score weights. We only considered interactions between two human proteins (i.e. 

we excluded human-viral interactions) and converted protein identifiers, generally provided 

as UniProt or RefSeq accessions, to valid HUGO gene nomenclature committee (HGNC) 

symbols. Once converted, we removed redundant interactions (generally arising from 

isoform-specific interactions that map to the same protein/gene symbols) and retained the 

maximum observed score. This produced a total of 175,854 unique protein-protein 

interactions.

To this interaction set, we added predicted and experimental interactions for kinase and 

phosphatase sites. We collected the kinase-site interactions from Phosphosite (43) and 

phosphatase-site interactions from DEPOD (44,45) Where site-specific information existed, 

we created edges in the interactome, first from the kinase/phosphatase to a substrate-site 

node (represented in the network as ‘PROTEIN_SITE’) and second from the substrate-site to 

the substrate (represented as ‘PROTEIN’). The kinase/phosphatase to substrate-site 

interactions were scored using a modified MIscore framework (42). This scoring method is a 

normalized, weighted sum of an interaction type score(SP), evidence type score(St), and 

publication value score(Sp):

Using the MIscore framework as a guide, all interaction type scores (St) were set to 1 

(because this interaction information was ‘direct’). Publication scores were set using the 

MIscore scale (Sp=0.00/0.33/0.53/0.67/0.77/0.86/0.94/1.00 for 0/1/2/3/4/5/6/7 publications). 

The method scores (Sm) were set based on the evidence available for each data set:

DEPOD Phosphosite

in vitro reaction or in vivo in one lab 0.33 in vitro evidence 0.33

in vitro and in vivo or evidence in multiple labs 0.66 in vivo evidence 0.66

in vitro and in vivo in multiple labs 1.0 both 1.0
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All K values were set to 1. The interactome uses Uniprot identifiers. A text version of this 

interactome is hosted on the Fraenkel Lab website (http://fraenkel-nsf.csbi.mit.edu/

tgfashedding/)

Prize-collecting Steiner Forest (PCSF)

We used the genes selected by the shEnrich method and the interactome network described 

above as inputs to the Prize Collecting Steiner Forest algorithm (46). The genes from 

shEnrich were all assigned prize values of 1 and converted to Uniprot identifiers. We used 

the parameters β=10, D=10, ω=1, and μ=0.006 (parameter optimization explained in 

supplemental methods). After finding an optimal network of genes, we augmented this forest 

and added back all possible interactions among these genes from our initial interactome. We 

converted to gene identifiers back to gene symbol and visualized the network in Cytoscape. 

The PCSF algorithm is available online as part of our ‘Omics Integrator suite of tools (http://

fraenkel-nsf.csbi.mit.edu/omicsintegrator/). An archived version of PCSF that was used for 

this analysis is hosted on the Fraenkel Lab website (http://fraenkel-nsf.csbi.mit.edu/

tgfashedding/).

Sensitivity, Specificity, and Centrality Metrics

To determine a gene’s sensitivity within our network solution, we created a family of 100 

networks using the original prize values and genes selected from the shEnrich method. In 

each of these simulations, we added 0.5% noise to the interaction edge scores in our 

interactome by randomly increasing or decreasing these edge scores by 0.5%. For a given 

gene, we measured sensitivity by counting the gene’s representation in the family of noisy 

networks. A gene that shows up in all of the networks is insensitive to noise and thus robust 

to our method. Because the prize nodes are constant inputs to the algorithm, we expect them 

to be insensitive to edge noise. To measure specificity, we again created a family of 100 

networks. This time, we hold the interactome constant and randomly select gene targets 

from our initial library as inputs. We run the algorithm at the same parameters as above and 

count a gene’s representation in the family of random networks. We calculated 1-specificity 

to rank genes that are specific to the real experimental data and eliminate biases in selection 

due to the initial library construction. For all centrality metrics we used the networkX 

module in Python.

For aggregate scoring, we used the following equation to rank experimental and predicted 

genes:

In this equation, sens, spec, and norm_cl refer to a gene’s sensitivity, specificity, and 

normalized closeness, and σsens,σspec, and σnorm_cl are the standard deviation of these 

measurements for the entire network.
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Analysis of NF-κB related cluster in model cell lines

We pulled RMA-normalized cell line expression data from CCLE (47) and plotted these 

values using the Seaborn package in Python.

Analysis of network-selected genes in cancer patient samples

We pulled patient mRNA expression data from www.cbioportal.org (RNA Seq. V2 RSEM, 

z-scores) for the time frame January 11, 2016 to February 11, 2016. The data for IRAK1, 

CALM1, OBSCN, PPEF1, and PPEF2 across cancer types histograms comparison was 

pulled from the same website on June 6, 2016. The data that was investigated was only from 

data using z-scores with a 0.0 threshold used for analysis (in order to have the data clearly 

represented without bias).

We further explored differential expression of human cancer cell lines using RNA-seq from 

EMBL expression Atlas (48). We selected for all instances of ‘cancer’ vs. respective 

‘normal’ tissue. We plotted the log2 fold-change expression as reported from the Expression 

Atlas Downloads and used Seaborn package in Python to group cancers based on their 

differential expression of NF-κB -related cluster genes. All differentially expressed genes 

are P<0.05 using a t-test provided by the Expression Atlas web interface.

Cell lines

Kato-III and MDA-MB-231 cells were purchased from ATCC (Manassas, VA) in March, 

2016. Both cells lines were tested for mycloplasma using the Lonza MycoAlert 

Mycloplasma Detection Kit. We tested cells within one month of arrival and expanded the 

initial population into aliquots for all further experiments.

shRNA knockdown experiments

MDA-MB-231 or Jurkat cells were transduced with lentiviral particles used in the original 

screen or, for newly identified regulators, obtained from Sigma Aldrich (Mission shRNA 

Transduction Particles). The clone IDs of the particles were: PRKCA: TRCN0000001693, 

TRCN0000001692; PPP1R14D: TRCN000000192, TRCN0000001924; DUSP9: 

TRCN0000002426, TRCN0000002427; INPP5D: TRCN0000039894, TRCN0000039896; 

ENPP1: TRCN0000002538, TRCN0000002537; OBSCN: TRCN0000021599, 

TRCN0000021602; PPAP2A: TRCN0000002579, TRCN0000002577; PPEF1: 

TRCN0000002551, TRCN0000002550; PKIB: TRCN0000002817, TRCN0000002815; 

PPP4R1: TRCN0000052763, TRCN0000052766; PTPRE: TRCN0000002893, 

TRCN0000002895; SSH3: TRCN0000002612, TRCN0000002613; SH2D1A: 

TRCN0000360148, TRCN0000367940 TRCN0000360149; PTPN22: TRCN0000355586, 

TRCN0000355534, TRCN0000355533; TAB1: TRCN0000381913, TRCN0000380746, 

TRCN0000380345; XIAP: TRCN0000231575, TRCN0000231576, TRCN0000231577. 

MDA-MB-231 or Jurkat cells were plated at 2.5×105 cells per well in 96 well plates, and 

infected with 1 uL of virus in media with 4ug/mL polybrene. After 24 hours (day 1), cells 

were switched to media with of puromycin (2ug/mL or 2.5ug/mL for MDA-MB-231 or 

Jurkat cells respectively). On day 3, fresh media with puromycin was added. On day 5, cells 

were switched to regular growth media and allowed to recover before stimulation. On day 7, 

cells were either stimulated with 100 nM PMA or left in media. At 1h (MDA-MB-231, 
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ELISA measurements) or 5 minutes (Jurkat, FACS analysis), released or surface bound 

TGFα was measured.

Measuring surface bound TGFα in Jurkat cells

For all measurements in Jurkat-TE cells, we used the following staining and washing 

procedure: Jurkat-TEs were spun out of media and re-suspended in 25 uL of 1:100 mouse 

anti-HA (Covance #MMS-101) on ice for 1 hour. Cells were washed 3 times with 200 uL 

cold PBS with 3% FCS, and resuspended in 25 uL 1:100 APC-coupled anti-mouse (BD 

Pharmigen #550826) on ice for 2 hours. They were resuspended with propidium iodide (PI) 

and relative TGFα at the surface was quantified using FACS. We analyzed all FACS data 

using FlowJo. We measured the FITC and APC-A geometric means in the PI-negative (live) 

population. Relative TGFα is determined from the ratio of red:green fluorescence and 

represents the relative amounts of extracellular:intracellular TGFα.

Measuring TGFα shedding in Kato-III and MDA-MB-231 cell lines

Validation of screen hits was conducted using MDA-MB-231 cells plated in 96 well plates. 

90% confluent cells were stimulated with 100 nM PMA for 2 hours after which time 

supernatant was collected. A microsphere-based Luminex Technology and ELISA kits 

(DY239, R&D Systems) were used to measure a panel of shed growth factors, as previously 

described (49).

To measure changes in TGFα shedding with inhibitor treatments, 40,000 cells per well were 

plated in a 96 well plate, allowed to adhere overnight and then incubated with serum-free 

medium for 3 hours. Cells were then pre-treated for 1 hour with DMSO control or IRAK4 

inhibitor (5uM AS2444697, TOCRIS) or IRAK1/4 inhibitor (5 uM IRAK1/4 Inhibitor I, 

TOCRIS) or IKKb inhibitor (2 uM BI605906, TOCRIS) or metalloprotease inhibitor (10uM 

Batimistat, TOCRIS) after which medium was replaced with fresh media containing the 

respective inhibitor and 100nM PMA (or vehicle). After 1 hour incubation, TGFα shedding 

in the cell culture medium was quantified using the DuoSet ELISA Development System 

(R&D systems). Cell viability was immediately assessed using CellTiter-Glo Luminescent 

Cell Viability Assay (Promega). TGFα shedding values (pg/mL) were normalized to cell 

viability measurements.

Statistical analysis

For Jurkat experiments, we conducted unpaired t-tests using Prism software to assess 

significance. For all control shRNAs (denoted “shCtl” in each figure), n=6 and for all other 

shRNAs, n=3. In all cases, error bars are standard error of the mean. For the ELISA 

experiments in KATOIII or MDA-MB-231 cell lines, a one way ANOVA test was performed 

using Prism software to determine significance of treatment conditions compared to the 

untreated control (n=5). In all cases, error bars are standard error of the mean.
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Results

A kinome/phosphatome screen for regulators of TGFα shedding

We conducted a screen for signaling regulators of TGFα shedding, comprising a library of 

750 human kinases and phosphatases, using a FACS-based assay (Figure 1A) in acute T cell 

leukemia-derived Jurkat cells. Most genes were targeted by 4–5 redundant shRNAs (Figure 

1B). After gene knockdown cells were stimulated for 2 min with phorbol ester (TPA), a 

commonly used cleavage stimulus that activates protein kinase C (PKC). We then measured 

mean geometric extracellular TGFα (APC) to intracellular TGFα (GFP) fluorescence by 

FACS and normalized this red:green ratio for all shRNAs to control shRNAs targeting lacZ . 

Most individual shRNAs showed no effect or had a normalized ratio with an absolute value 

less than +/− 1 z-score from the distribution mean. Z-scores < 0 correspond to shRNAs with 

low red:green ratio, indicating enhanced TGFα shedding, and z-scores > 0 correspond to 

shRNAs with high red:green ratio and reduced TGFα shedding (ranked distribution in upper 

and middle panel Figure 1C). A limited analysis validated the screen in principal by 

revealing that PKCα and the PKC-regulated protein-phosphatase-1-inhibitor-14D 

(PPP1R14D) are required for specific regulation of TGFα cleavage (4).

Within a given family of redundant shRNAs targeting the same gene, and also within 

samples targeted by the same control shRNA, resulting z-scores varied over a considerable 

range and overlapped significantly; shown as example for one targeted gene, Axl, and 

shLacZ controls (lower panel Figure 1C). This demonstrates inherent difficulties similar to 

other shRNA screens in determining which shRNAs consistently produce a phenotype. We 

explored multiple ranking strategies before pursuing a computational network modeling 

approach to significantly improve upon these inherent problems.

A very stringent two-best shRNA scoring method used the average of multiple 

measurements for the same shRNA for z-score calculation and required a gene’s top two 

shRNAs contain one hairpin that scored 2 z-scores and one hairpin that scored 1.5 z-scores 

above or below the mean; this method selected 5 genes. In contrast, a less stringent approach 

which calculated z-scores based on the median measurements of all redundant shRNAs 

targeting a given gene identified 22 genes with a z-score of 1 above/below the mean (in the 

positive/negative direction). The shEnrich method, explained in the next paragraph, selected 

the most targets of all the methods (Table 1). Each scoring method selected different and 

partially-overlapping gene lists (comparison of the different scoring methods shown in 

Supplemental Table 1). PRKCA and PPP1R14D published in the original screen validation 

(4) scored in the 2 best shRNA and shEnrich methods, whereas other genes only scored in 

shEnrich.

Selection of gene candidates using the shEnrich method

To improve our scoring of genes identified in the original shRNA screen, we developed the 

shEnrich method to measure consistency of redundant shRNAs and strength of their effect. 

This enrichment scoring method is conceptually modeled after the original Gene Set 

Enrichment Method (GSEA), and is representative of other rank-order methods for RNAi 

scoring (e.g. RIGER and dRIGER) (50-53). These methods all developed ranking statistics 
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that look for consistency of shRNA effects compared to the remainder of the tested shRNA 

population and control shRNAs.

Our method most closely resembles that of Kampmann et al (53), in that our screening 

readout was a single measurement (z-score normalized red:green fluorescent ratios) and that 

we derived our null distributions from a cohort of non-targeting controls. However, that 

earlier approach does not correct for the number of shRNAs targeting a gene, which in our 

case ranged from 1 to 10. We therefore calculated expected distributions for each gene based 

on its shRNA family size; e.g. for a gene with 4 shRNAs, we calculated 1000 permutations 

using 4 shLacZs from our control set. Our enrichment method resulted in a projected z-score 

and a maximal normalized enrichment score (NES). This represents the rank at which 

maximal enrichment occurs for a gene’s shRNA family. Figure 2A represents the shEnrich 

score for Axl in the forward direction (highest rank reflects that an shRNA increased 

shedding) and for PPP1R14D in the reverse direction (highest rank indicates an shRNA 

decreased shedding). Both AXL and PPP1R14D show high NES relative to the lacZ controls 

indicating high consistency. We repeated this process for all genes of all shRNA family sizes 

in both the forward (shRNAs increase shedding) and reverse (shRNAs decrease shedding) 

ranking directions. Within each family size (in forward and reverse direction), we compared 

gene shEnrich NES against 1000 permutations calculated using subsets of the shlacZ 

controls. Figure 2B shows the distribution of shEnrich NES for all genes relative to the 

distribution of shlacZ scores for shRNA family size 5 (all other family sizes plotted in 

Supplemental Fig. 1 and 2). Most genes did not show an effect that was as consistent or 

more consistent than the shlacZ controls. To additionally filter gene candidates for strength 

of effect, we plotted gene shEnrich NES against the projected z-score (Figure 2C). Many 

genes had a low shEnrich NES and a low projected z-score (low referring to a score with a 

value < −1 in the forward direction or > +1 in the reverse direction). Only a few genes had a 

high shEnrich NES and a relatively high projected z-score; these genes fell in the upper-left/

upper-right quadrants (highlighted with orange squares) in the forward/reverse directions 

(scatter plots for all other family sizes shown in Supplemental Fig. 3). For our example 

genes, AXL did not make the projected z-score cut-off of < −1, but PPP1R14D did make the 

> +1 z-score cut-off. The full list of genes that passed these stringent criteria is shown in 

Table 1.

We first used a traditional strategy to validate a portion of shEnrich-identified gene targets in 

MDA-MB-231 cells, a triple-negative breast cancer cell line and well-studied cancer model, 

using an ELISA assay that detected cleaved TGFα ectodomain in cell culture supernatants. 

PPP1R14D or PRKCA knockdown blocked TGFα cleavage, again confirming our 

previously published results (4) and DUSP9 knockdown increased shedding; results from 6 

independent experiments are shown (Figure 2D) using one shRNA for PPP1R14D and 

PRKCA, and (lower panel, Figure 2D) using two shRNAs for DUSP9. Knockdown of 11 

other shEnrich-identified genes that induced strong effects on TGFα cleavage in the initial 

shRNA screen revealed that for 8 of the 11 gene targets, shRNAs showed consistent 

directionality of effect for both shRNAs tested in the MDA_MB-231 context (INPP5F, 

ENPP1, PPAP2A, PPEF1, PKIB, PPP4R1, and PTPRE), though effect size varied (Figure 

2E). Of the individual shRNAs, 10 out of 22 had a directionality of effect consistent with the 

shEnrich prediction for their gene target (up or down arrows highlighted with exclamation 
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points in Figure 2E); the other shRNAs with shEnrich predictions showed opposite effects 

from the shEnrich predictions (arrows, but no exclamation points in Figure 2E).

These effects may result from differences in effectiveness of knockdown depending on the 

cell type studied, as has been described in other reports (51) highlighting the importance of 

investigating a larger set of shRNAs per gene and using aggregate statistics such as shEnrich 

to analyze their effects. Detected switches in directionality suggest that contextual factors 

might affect the shedding phenotype, making it difficult to incorporate shRNA hits into 

signaling pathways from enrichment scores or targeted validation alone. We therefore 

performed additional analysis by network modeling to identify a more complete TGFα 
cleavage regulatory pathway.

Prize-Collecting Steiner Forest (PCSF) identifies a TGFα shedding pathway

We previously described the role of off-target effects in RNAi or shRNA screens, 

specifically that both reagent-based and biology-based effects determine whether a gene can 

be identified as part of a pathway based on gene knockdown data (43). Interpreting RNAi or 

shRNA results in a network framework, in contrast to an individual “hits” or “targets” 

framework, leverages contributions from all hit/target contributions to pathways via their 

relationships with other network genes. This interpretation can ameliorate dependence upon 

individual reagent performance and increase confidence in biological validation.

Our previous work demonstrated that data integration into a network context could construct 

novel pathways despite noise from RNAi screens (54). Starting with results obtained from 

shEnrich, we used the Prize-Collecting Steiner Forest (PCSF) method (46,55) to construct a 

pathway for TGFα cleavage; the method predicted additional pathway genes not identified 

in the initial experimental set in this process. The Prize Collecting Steiner Forest (PCSF) 

acted as a filter, and required genes to have interaction associations with other genes 

identified from the screen to be included in the final pathway. To define all sets of possible 

associations, we derived an interactome from iRefWeb and added predicted kinase and 

phosphatase site-specific interactions from Networkin and DEPOD (45,56) (details of the 

interactome construction are explained in methods; optimization of network node selection 

is shown in Supplemental Fig. 4). The algorithm identified an optimal sub-network from this 

interactome by selecting edges that captured genes from the shEnrich method 

(“experimental genes”) without over-fitting. In this process, the algorithm added predicted 

genes that connected experimental genes (Figure 3, top panel). We used a set of parameters 

to tune the algorithm to ensure an appropriate selection of experimental and predicted genes 

(see methods). This optimized network contained 86 genes, and 97 edges. Of the original 

108 genes selected from the shEnrich method, 43 were retained. Of note, the network 

contained interaction evidence for the experimental genes PPEF1, OBSCN, DUSP9, 

PRKCA, and PPP4R1; these genes were selected by shEnrich and confirmed with ELISA in 

MDA-MB-231 cells. PPP1R14D was not included despite experimental validation, 

suggesting that there is not sufficient interaction evidence to include this gene in the 

pathway. The remaining 43 genes were previously unidentified genes predicted by the 

algorithm to be relevant to TGFα cleavage. These predicted genes also included gene targets 

contained in the original screen that were refractory to knockdown using available shRNAs.
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We hypothesized that the optimized network gene list contained subsets of functionally 

related genes. To find these subsets, we leveraged edges in the network solution. Genes with 

a high number of inter-neighbor edges are more likely to have functional similarities. We 

used the GLay Community clustering Cytoscape plug-in (57) to subdivide the optimized 

network into a final target set of 9 network sub-modules. This process removed 14 edges and 

retained all genes (Figure 3, bottom panel; full network shown in Supplemental Fig. 5).

Robustness analysis prioritizes predicted pathway genes

To prioritize candidates selected by PCSF, we performed a series of robustness and 

connectivity analyses. Here we explain the metrics for gene prioritization and the 

corresponding quantification as presented in Table 2. We measured the sensitivity of each 

gene in the solution by counting representation in 100 runs of PCSF with noise added to the 

edges. Genes that are insensitive to noise show up in all networks and are assigned a score of 

0.00, whereas genes that are sensitive appear in a few networks only and are assigned a score 

equal to 1-fraction of networks in which they are represented. A score of 0.99 indicates that 

the gene was present in only one network. None of the experimental genes identified by 

shEnrich were sensitive to edge noise (high aggregate score) (left column Table 2), however 

12 of the newly predicted genes were highly sensitive and showed up only in the solution 

without edge noise (genes with low aggregate score bottom of right column Table 2). This 

suggests that low probability edges connected these predicted genes to the network; varying 

the edge value caused the algorithm to remove the predicted gene in some simulations.

We then tested specificity of the network solution using random inputs from the targets in 

the original shRNA library. This process involved selecting random sets of genes from the 

original library (regardless of whether they scored using our shEnrich method), rerunning 

the PCSF routine at the optimal parameters and counting gene representation in this family 

of 100 random networks. Gene border color indicates fractional representation in these 100 

random networks (Figure 3, bottom panel). Of the 43 experimental genes, 30 genes showed 

low specificity, indicating general association among targets from the original library. These 

targets may still have a role in shedding regulation (such as PRKCA), however, we could not 

distinguish these effects from general library association.

We further used centrality metrics to quantify the robustness of our network selections. 

Centrality did not imply a biological centrality per se, but reflected how the genes were 

selected in this network solution. Having a high centrality implied a greater resilience to 

experimental noise from the input set; mathematically, centrality reflects how interaction 

edges contributed to a gene’s presence in the final network. We calculated the degree, 

betweenness, page-rank, and closeness centrality, and an aggregate score (Supplemental Fig. 

6A) based on interactions in the original, unclustered network. We created a normalized 

histogram of centrality scores to evaluate the relative distribution of values (Supplemental 

Fig. 6B). From this histogram, we observed that closeness centrality best discerns 

connectivity, while other metrics are dominated by a few high-value nodes (i.e. Page-Rank, 

Betweenness, and Degree centrality). Using closeness centrality, we visualized these genes 

within the network solution by adjusting their symbol size to reflect extent of connectivity 

(Figure 3; quantification in Table 2). Lastly, we created a normalized, aggregate score (Table 

Wilson et al. Page 11

Mol Cancer Res. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2) reflecting an experimental gene’s performance across these three metrics. We adjusted 

specificity/sensitivity to be (1-specificity)/(1-sensitivity), and normalized closeness 

centrality to the max value to scale all metrics from 0-1. We weighted each metric by the 

standard deviation for that metric and normalized to the maximum score possible for all 

experimental genes (Table 2, left panel). We completed a similar analysis for predicted genes 

in the network, and again measured sensitivity to edge noise, specificity using random input 

terminals, and closeness centrality as a metric for connectivity (Table 2, right panel).

Experimental validation of PCSF-selected network genes

First, we validated PCSF-selected experimental gene hits from the original screen. SLAM-

associated protein (SAP) (SHD2D1A) and Protein Tyrosine Phosphatase, Non-Receptor 

Type 22 (PTPN22), using our FACS based TGFα shedding assay in Jurkat cells with or 

without TPA stimulation. We used TPA stimulation as a benchmark to explore if our gene 

perturbations were of similar magnitude to a known modulator of TGFα shedding. 

Knockdown of SH2D1A was monitored by qPCR, demonstrating 70-80% decrease of 

SH2D1A mRNA levels for all three individual shRNAs (Figure 4A). Knockdown of 

SH2D1A with three individual shRNAs enhanced TPA-stimulated TGFα cleavage from the 

cell surface as determined by decreased red:green fluorescent ratio compared to TPA-

stimulated control shRNA expressing cells (Figure 4B). Again, mRNA knockdown for each 

individual shRNA against PTPN22 was monitored by qPCR and varied between 40-90% 

(Figure 4C). In contrast to SH2D1A, three shRNAs targeting PTPN22 decreased TPA-

stimulated TGFα cleavage (increased red:green ratio) as compared to control shRNA 

(Figure 4D); Three other genes contained in the original screen (OBSCN, PPEF1 and 

PRKCA) and present in our network model were already validated in MDA-MB-231 triple 

negative breast cancer cells by ELISA measurements in the context of our shEnrich method 

validation (Figure 2E). Knockdown of SH2D1A or PTPN22 in MDA-MB-231 cells 

confirmed their effects on TPA-induced TGFα cleavage in this cell type (enhanced cleavage 

after SH2D1A and reduced cleavage after PTPN22 knockdown), as measured by ELISA 

(Supplemental Fig. 7A, knockdown efficiency shown in Supplemental Fig. 7B).

We next validated PCSF-selected predicted genes not found in the original screen. Our 

optimized network contained a 15-gene cluster with high centrality, specificity, and low 

sensitivity (Figure 3). Of these genes 7 were from the original screen: PPEF1, PPEF2, 

OBSCN, CALM1, IRAK1, PPP1R12B, and AKAP11. By shEnrich analysis six of these 

genes decreased TGFα shedding, except for AKAP11 which induced shedding (lightening 

plots in Supplemental Fig. 8, B–H). We then tested the effect of knockdown of two predicted 

genes contained in this cluster, X-linked-inhibitor-of-apoptosis (XIAP1) and TGF-Beta-

Activated-Kinase-1-Binding-Protein-1 (TAB1) for their effect on TGFα shedding. We 

selected these predicted genes because they were robust among this cluster (right column 
Table 2,). As we constructed this pathway using a tissue non-specific interactome, we also 

explored the expression of this regulatory cluster in Jurkat, MDA-MB-231, Kato-III, and 

MKN-45 cell lines (Supplemental Fig. 8I) using CCLE data and found that all components 

were expressed (47). We monitored mRNA knockdown by qPCR in the presence of three 

shRNAs against TAB1 (Figure 5A). TAB1 knockdown decreased TPA-stimulated TGFα 
cleavage from the cell surface (increased red:green fluorescent ratio) as compared to TPA-
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stimulated control shRNA expressing cells (Figure 5B). XIAP mRNA knockdown (Figure 

5C) decreased surface-bound TGFα (decreased red fluorescence) as compared to control 

shRNA (Figure 5D). Additional experiments evaluating the effect of TAB1 or XIAP 

knockdown on TGFα shedding in Jurkat cells are shown in Supplemental Fig 9A,B,C,D. We 

also confirmed the same effects of TAB1 and XIAP knockdown on TGFα cleavage in MDA-

MB-231 triple negative breast cancer cells (Supplemental Fig 9E) and monitored mRNA 

expression after shRNA perturbation (Supplemental Fig 9F). Taken together, these results 

confirmed the relevance of PCSF-identified experimental and predicted network genes in 

TGFα cleavage regulation.

Network modeling identifies intersection between genes that regulate inflammation and 
ectodomain cleavage

Since it is widely accepted that inflammation contributes significantly to cancer 

pathogenesis (reviewed in (58)), it is interesting to note that most genes contained in our 

PCSF-identified 15-gene TGFα-regulatory cluster are associated with the NF-κB pathway, 

suggesting a mechanistic link between the release of tumor growth factors such as TGFα 
and inflammation. Here we hypothesized that our gene cluster was relevant for 

understanding cancer pathology and that testing of an existing chemical inhibitor against the 

predicted gene, IRAK1, could lend mechanistic understanding of how this inhibitor could be 

applied clinically.

To explore the relevance of genes contained in our 15-gene “TGFα/NF-κB regulatory 

cluster” and growth factor release in cancer, we first examined their normalized expression 

in various cancers by analyzing cBioPortal data (59) and differential expression in human 

cancer cell lines from Expression Atlas (48). We focused on the upper subset of already 

validated “TGFα/NFκB regulatory cluster” genes, PPEF1, PPEF2, OBSCN, CALM1, XIAP, 

TAB1. We observed that the genes in this subset are expressed in multiple cancer types, 

including in gastric cancer, but none of them at significantly different levels when compared 

between cancers (Figure 6 A–E). However, some subsets of components were differentially 

expressed in multiple cancer types (log2 fold-change in Figure 6F, p-values in Supplemental 

Fig 10, and data accession numbers in Supplemental Table 2). IRAK1 is most overexpressed 

in glioblastoma multiforme, astrocytoma, hepatocellular carcinoma, and liver cancer from 

cell line data (Figure 6F).

Although we validated the effect of some of these NF-κB regulatory genes on TGFα 
cleavage (Figure 5 and Supplemental Fig 9), two inhibitors of IRAK1 had no effect on 

TGFα cleavage. Further, an inhibitor of IKKβ (upstream of NF-κB; controls the 

phosphorylation and subsequent degradation of one important direct regulator of NF-κB 

(IκB)) did not affect TGFα cleavage (Figure 6 G–H). This suggests that the NFκB 

regulatory function of this gene cluster is not required for their effect on TGFα cleavage. In 

addition, these results suggest that IRAK1 inhibitors do not modulate TGFα cleavage.

In summary, these results suggest that tumor associated inflammation may enhance tumor 

growth by also enhancing growth factor release due to overlap in their regulatory pathways 

and suggests unexpected novel applications for inhibition of NF-κB regulatory genes in 

combination targeted therapies in cancer.
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Discussion

Here we report a putative TGFα shedding pathway through a combined computational and 

experimental approach and demonstrated the relevance of this pathway for targeted therapy 

design. We identified a cohort of genes organized in subnetworks that affect TGFα 
ectodomain release, vetted these selections computationally, and validated genes using 

targeted experiments in several cancer cell types. In the process, we identified an unexpected 

connection between regulators of the NfκB pathway and the release of cancer growth factors 

of the EGFR ligand family by ectodomain cleavage.

While the identified genes tune TGFα shedding and thus EGFR activation, many of them 

are not predicted oncogenes by traditional expression, mutation, or activation metrics. Our 

approach thus further highlights a trend toward selecting therapeutic targets based on 

functional role rather than over-expression of a particular gene in diseased over normal 

tissue. It is important to note that our network modeling approach yielded predicted genes 

not previously tested in our shRNA screen and that we could not have predicted these genes 

using traditional metrics. The directionality of their effect on TGFα regulation cannot be 

predicted, and discovering directionality requires dedicated experimental validation (see also 

discussion of the predicted gene XIAP below). Further, we made these predictions in a 

tissue, non-specific manner, but were able to validate these genes in multiple cell lines. The 

results show that we can discover alternative control mechanisms for growth factor pathway 

activation regardless of tissue type and that these targets require novel methods for 

discovery.

We explored the relevance of this pathway for cancer therapeutics and specifically 

investigated whether there was a link between the NF-κB pathway and TGFα shedding. The 

literature supports the role of these genes in regulating NF-κB signaling and there are 

several observations that suggest that more indirect connections and co-regulation of the 

EGFR and NF-κB pathways indeed exist. In head and neck squamous cell carcinoma, EGFR 

and TGFα genes are up-regulated concurrently with NF-κB signaling components. The NF-

κB activators, IKKα and IKKβ enhance EGFR signaling, and activation of both IKKs can 

induce EGFR, TGFα, and Jun expression, a downstream effector of EGFR (60). Gastric H. 
pylori infection induces activation of EGFR and NFκB activity and both are thought to be 

associated with gastric cancer progression (61,62). NF-κB has been associated with 

resistance to EGFR therapies in cancer and inhibition of NFκB is able to sensitize cells to 

erlotinib treatment. Anti-EGFR therapies were indeed able to reduce NF-κB activation 

(reviewed in (10)). Further, it is well established that stimulation of EGFR can activate NF-

κB through proteasome-mediated degradation of IkBα (63,64). Patient and cell line 

expression data validated our first hypothesis that these network components are expressed 

in cancer samples, albeit at varying levels in different cancers, and possibly relevant to 

pathology. Our experimental validation confirmed the network-based hypothesis that TAB1 

and XIAP affect TGFα shedding. Our experiments with chemical inhibitors of IRAK1 or of 

IκB suggest that the NFκB regulatory function of these genes is not needed for their 

cleavage regulatory function, and thus, we were unable to confirm a mechanistic hypothesis 

about inhibitor mode of action. We sought to validate the role of IRAK1 in tuning TGFα 
shedding in gastric cancer because these cancers are growth factor-driven and exhibit EGFR 
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pathway dependencies. However, from our cancer cell line analysis, it appears that our NF-

κB-related cluster is differentially expressed in brain and liver cancers, which are not 

traditionally EGFR-pathway driven. Further analysis may explore the role of IRAK1 

inhibitors in these cancers as opposed to gastric cancers.

Our network model predicts new mechanistic information about XIAP, a gene that is 

currently a focus for therapeutic development. XIAP-TAB1 binding is an upstream regulator 

of NF-κB signaling (65) and overexpression of XIAP is associated with loss of apoptotic 

signaling in cancer (66). XIAP binds and inhibits caspases 3 and 9, and also TAK1; binding 

TAK1 causes ubiquitination and degradation of TAK1 to prevent its activation of JNK (67). 

NF023, a new compound, inhibits XIAP-TAB1 binding, and thus could act as a pro-

apoptotic therapeutic in cancer (65). Our work complements these efforts by predicting an 

additional functional role for XIAP: XIAP targeting can also affect EGFR signaling by 

modulating TGFα cleavage. This information could indicate when XIAP intervention might 

be clinically useful. Although XIAP1-TAB1 interaction is necessary for activation of NF-κB 

signaling, knockdown of XIAP1 and TAB1 proteins individually have opposite effects on 

TGFα cleavage. This suggests that their cleavage regulatory function is independent of their 

functions in NF-κB signaling. Experimental validation determined the directionality of 

predicted genes’ effect on TGFα shedding because our model did not describe this 

directionality.

Our focus here has been on signaling pathway nodes, as a category generally offering 

potential for therapeutic targeting. This focus differs from an earlier study in which the 

Kveiborg laboratory undertook a genome-wide screen for regulators of HB-EGF shedding 

(like TGFα also an EGFR ligand ADAM17 substrate) (68). Based on selection criteria 

requiring that at least three of four individual siRNAs inhibited HB-EGF shedding after TPA 

treatment, they validated 81 genes, including ADAM17 and PKCα. The signaling nodes 

obtained in their study corresponded well with the findings in our screen. Further stringent 

re-testing of these initial hits confirmed that 24 hits mimicked the effects of ADAM17 

knockdown on HB-EGF cleavage, including the multifunctional sorting protein PACS2 as a 

top hit. PACS2 was shown to co-localize with ADAM17 on early endosomes and to regulate 

recycling and stability of internalized ADAM17, thereby sustaining ADAM17 cell-surface 

activity by diverting ADAM17 away from degradation. The fact that the main finding of this 

screen represents an ADAM17 trafficking factor might be related to the significantly longer 

time frame of induced shedding stimulation in the screen (30min vs 2-5min in our screen). 

Shedding can occur within seconds to minutes, while trafficking usually requires more time. 

This suggests that the genes we identified might act on regulatory components that do not 

require trafficking (or transcription). Similar to our screen results, hits were segregated into 

multiple functional categories but no enrichment in particular signaling pathways was found. 

This further emphasized the need for novel network modeling approaches as we performed 

and validated them in the present work. Future work will have to address whether the 

regulators we identified act on the protease, the substrate (TGFα) or other proteins that 

interact with ADAM, substrate or both (12), and by what mechanism they affect cleavage. In 

this context, particularly if they act on the protease, we need to explore the possibility that 

our regulators also affect the cleavage of other ADAM substrates beyond TGFα.
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In summary, our work identified and validated numerous regulatory components of TGFα 
shedding that could be leveraged for multiple treatment and disease contexts. These genes 

may be relevant as novel therapeutic targets in contexts where EGFR signaling is 

hyperactive or where EGFR is a source of therapeutic resistance. While we focus primarily 

on cancer, this pathway model is relevant for other diseases that are strongly affected by 

EGFR signaling, such as organ fibrosis or inflammation (8). Our network modeling 

approach proves useful for identifying how signaling pathways intersect or overlap and can 

thus affect targeted therapies. Our pathway analysis lays the ground-work for identifying 

signaling intermediates that bridge multiple pathways to affect the release of growth factors 

in the tumor environment. While discovering how these pathways intersect remains a 

difficult challenge, our analysis demonstrates a path toward target selection and considering 

mechanistic implications of therapeutic interventions.
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Implications

Using genomic screens and network analysis, this study defines targets that regulate 

ectodomain shedding and suggests new treatment opportunities for EGFR-driven cancers.
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Figure 1. An shRNA screen measured kinase and phosphatase effects on phorbol ester (TPA) 
induced TGFα shedding
(A) Jurkat cells expressing HA-TGFα-GFP and lentiviral vectors either expressing shRNAs 

targeting the human kinome and phosphatome or lacZ targeting control shRNAs were 

treated with TPA, stained with APC-coupled anti-HA antibody, and subjected to FACS. 

TGFα shedding was detected by determination of the mean red:green fluorescent ratio of the 

cells. (B) shRNA coverage for most genes was 4-5 individual shRNAs/gene. (C) Z-score 

normalized red:green ratios for all independent shRNAs relative to shlacZ controls plotted as 

a ranked distribution (upper panel) and as a histogram of scores (middle panel). Z-scores < 0 

correspond to shRNAs which had a low red:green ratio and enhanced TPA-induced 

shedding, and z-scores > 0 correspond to shRNAs which had a relatively high red:green ratio 

and prevented TPA-induced shedding. The lower panel shows where all lacZ shRNAs (20 

total) and all AXL shRNAs (10 total) fell within this distribution, and highlights the 

difficulty in determining which genes are consistently affecting shedding.
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Figure 2. shEnrich selects genes for consistency and effect size
(A) Lightening plots show the enrichment score for AXL in the forward direction (red, 

upper) and PPP1R14D (gold, lower) in the reverse direction. Grey lines represent 100/1000 

enrichment scores calculated for shlacZ. Dashed line represents position of maximal 

enrichment for the gene of interest. (B) Normalized enrichment scores (NES) for all genes 

with 5 redundant shRNAs (family size 5) plotted against 1000 NES for lacZ in the forward 

direction (left) and reverse direction (right). (C) Maximal NES score for all genes with 5 

redundant shRNAs and lacZ controls plotted against the z-score at which maximal 

enrichment occurs (‘projected z-score’). Normalized distributions and maximal enrichment 

plots for all other gene family sizes are included in supplemental figures. (D) Supernatant 
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ELISA detection of cleaved TGFα in MDA-MB-231 cells with PPP1R14D and PRKCA 

knockdown (upper panel), or DUSP9 knockdown (lower panel). Each bar represents 

redundant tests of the same shRNA; error bars are standard errors of the ratio of shRNA 

gene:shlacZ control. Dotted line indicates measurements in respective shlacZ control (E) 
TGFα ELISA of additional genes identified by shEnrich method. Two shRNAs were 

selected for each gene and tested in sextuplicate in MDA-MB-231 cells. Bars represent 

average log2 fold-change relative to a non-targeting control, and each dot represents an 

individual replicate. Red/blue arrows indicate the shEnrich prediction of directionality of 

effect (increased/decreased TGFα shedding) for each gene tested, and exclamation marks 

indicate where the experimental shRNA effect agreed with the shEnrich prediction.
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Figure 3. PCSF identifies TGFα shedding regulatory network
(Top panel) The cartoon schematic represents how PCSF selects an optimal sub-network. 

Interaction edges are aggregated from multiple databases and all edges are scored (two 

shown for simplicity). Prizes are assigned from experimental data; in our case prizes were 

assigned to genes selected by shEnrich. The algorithm weights the cost of adding edges with 

capturing prizes in selecting an optimal network. (Bottom panel) The optimal, clustered 

network contains 86 genes and 83 edges. Grey face coloring indicates genes selected from 

the original experimental data set; white face represents predicted gene (genes and phospho-

sites) selected by the algorithm. Gene border represents specificity to randomization 

(pink<=0.1; orange<=0.05), and gene size represents closeness centrality (larger genes are 

more central and more robust). Grey gene labels indicate genes that are sensitive to edge 

noise. Genes on the far right of the legend below the networks are annotated examples to 
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help interpret all of their network properties. The cluster associated with NFkB signaling is 

highlighted.
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Figure 4. Validation of effect of experimental genes on TGFα cleavage in Jurkat cells
(A) Knockdown of SH2D1A was monitored by qPCR. (B) Knockdown of SH2D1A with 

three individual shRNAs enhanced TPA-stimulated TGFα cleavage from the cell surface 

compared to control shRNA expressing cells (indicated by lower red:green fluorescent ratio 

as compared to control). (C) Knockdown of PTPN22 was monitored by qPCR. (D) 
Knockdown of PTPN22 with three individual shRNAs decreased TPA-stimulated TGFα 
cleavage as compared to control shRNA (indicated by higher red:green fluorescent ratio as 

compared to control). Error bars are standard error of the mean. We used an unpaired t-test 

to test significance. *p≤0.05; **p≤0.01;***p≤0.001; ****p<0.0001.
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Figure 5. Validation of predicted genes on TGFα cleavage in Jurkat cells
(A) Knockdown of TAB1 was monitored by qPCR. (B) Knockdown of TAB1 with three 

individual shRNAs decreased TPA-stimulated TGFα cleavage from the cell surface as 

compared to control shRNA expressing cells (indicated by higher red:green fluorescent ratio 

as compared to control) (C) Knockdown of XIAP was monitored by qPCR. (D) Knockdown 

of XIAP with three individual shRNAs decreased TGFα at the cell surface as compared to 

control shRNA (indicated by lower red fluorescence as compared to control). Error bars are 

standard error of the mean. We used an unpaired t-test to test significance. *p≤0.05; 

**p≤0.01;***p≤0.001; ****p<0.0001.
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Figure 6. Analysis of genes in the “TGFα/NF-κB regulatory cluster”
(A–E) mRNA expression of network genes in human cancer samples. Histograms represent 

distribution of mRNA z-scores for (A) PPEF2, (B) PPEF1, (C) OBSCN, (D) CALM1, and 

(E) IRAK1 in gastric cancer (orange; 302 samples) and ‘other’ cancers (purple; 10,550 

samples) (also see methods). (F) Differential expression of genes of the TGFα/NF-κB 

regulatory cluster in multiple cancer types from Expression Atlas. Colorbar indicates log2 

fold-change as reported from Expression Atlas. Kato-III (G) or MDA-MB-231 (H) cells 

were treated with vehicle (DMSO), the metalloprotease inhibitor BB94, IRAK4 inhibitor, 
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IRAK1/4 inhibitor or IKKB inhibitor for 1 hour and exposed to control treatment or TPA 

(100nM) for 30 min. TGFα release was measured in cell supernatants by ELISA. Error bars 

are standard error of the mean.
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Table 1
Genes selected by the shEnrich method

The shEnrich method selected genes that had consistent shRNA effects in the forward direction (shRNAs 

increased TPA-induced TGFα shedding) and in the reverse direction (shRNAs decreased TPA-induced TGFα 
shedding). Asterisks indicate genes that are included in following network analysis.

shEnrich Method

Forward shEnrich

shRNA family size 2

PPP2R1A

PTBP1

RIOK2

shRNA family size 3

CDC25A

PTPN18

TP53RK

shRNA family size 4

BLK

CKM

DUSP5

EGLN1

FLJ16518

GALK2

GMFB

HYPB

INPP5B

KIAA2002

LOC400687

LOC441868

LOC90353

LOC91461

NEK7

NUDT10

PHKA2

PIN1

PMVK

PTPN22

PTPN5

PTPRE

RIPK5

RXRB

SACM1L

TEX14
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TRPM7

shRNA family size 5

ABL1

AKAP11

CKS2

DDR2

DKFZP566K0524

DUSP13

EAT2

EEF2K

EIF2AK3

EPM2A

FBP2

FLJ25449

Gpr109b

GUCY2C

IMPA2

INPP5F

IRAK1

ITPKA

LOC283871

LOC401313

LPPR4

MAP3K11

MAP3K7IP1

MAPK4

NR1I3

NT5E

NUDT11

OBSCN

PCTK3

PIB5PA

PIP5K1A

PLCB4

PPAPDC1

PPAPDC1A

PPEF1

PPEF2

PPFIA1

PPM1J

PPP1R12B

PPP2CB

PPP3CA
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PPP4R1

PPP4R1L

PPP5C

PRG-3

PRKWNK3

PTPRM

RAF1

RIMS4

SGPP2

SH2D1A

SMG1

SNRK

SPAP1

SYT14L

WWP2

shRNA family size 8

CIB2

ERBB4

Reverse shEnrich

shRNA family size 2

CALM1

PPP2R1A

DUSP9

shRNA family size 3

PPAP2A

SSH3

shRNA family size 4

GPR109A

LCK

PPP1R14D

SIK2

TRPV5

shRNA family size 5

CDC14A

ENPP1

EPB41L4A

NME5

PIM1

PKIB

PRKCA
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