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Abstract

Identifying and validating biomarkers from high-throughput gene expression data is important for 

understanding and treating cancer. Typically, we identify candidate biomarkers as features that are 

differentially expressed between two or more classes of samples. Many feature selection metrics 

rely on ranking by some measure of differential expression. However, interpreting these results is 

difficult due to the large variety of existing algorithms and metrics, each of which may produce 

different results. Consequently, a feature ranking metric may work well on some datasets but 

perform considerably worse on others. We propose a method to choose an optimal feature ranking 

metric on an individual dataset basis. A metric is optimal if, for a particular dataset, it favorably 

ranks features that are known to be relevant biomarkers. Extensive knowledge of biomarker 

candidates is available in public databases and literature. Using this knowledge, we can choose a 

ranking metric that produces the most biologically meaningful results. In this paper, we first 

describe a framework for assessing the ability of a ranking metric to detect known relevant 

biomarkers. We then apply this method to clinical renal cancer microarray data to choose an 

optimal metric and identify several candidate biomarkers.

1. Introduction

The subjective nature of traditional medical techniques limits the accuracy of cancer subtype 

classification and, subsequently, the effectiveness of therapy. Clinicians visually examine 

cancer specimens to determine their subtypes before proposing treatment regimens. 

However, cancers with similar characteristics may behave very differently despite similar 

treatment conditions [1]. Because cancer is the result of genetic anomalies, emerging 

diagnostic research has primarily focused on genetic and proteomic expression. This 

research generally involves the use of high throughput technology (e.g. microarrays and 

mass spectrometry) to generate large amounts of genetic and proteomic expression data. We 
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typically reduce this data using one of many analysis algorithms with the goal of identifying 

a subset of features (corresponding to genes or proteins) with high predictive accuracy [2-4]. 

We hope that these feature subsets will both enhance our understanding of the biological 

mechanisms as well as provide us with an accurate diagnostic system. When validated, we 

call these differentially expressed features biomarkers. Unfortunately, even the selection of a 

ranking metric is subjective, as different metrics may identify different subsets of features 

[5]. Feature ranking affects both the efficiency of identifying relevant genes and the accuracy 

of subsequent predictive models. We address this issue by presenting a method that uses 

existing biological knowledge to identify the best feature ranking metric for a particular 

gene expression dataset. The optimal metric maximizes the probability of correctly ranking 

differentially expressed and previously validated genes.

Despite numerous feature selection studies, there is still a lack of clinically validated and 

proven biomarkers for most cancers. Thus, the use of “correct” genes as knowledge for 

algorithm selection is subjective and we should choose these genes carefully. Sources of 

biological knowledge are abundant, but vary in terms of reliability. We consider a knowledge 

source to be reliable if genes (or the corresponding expressed proteins) from that source 

have been clinically validated as differentially expressed. The majority of knowledge is 

contained in the literature and roughly falls into four levels of reliability, adapted from a 

review of post-analysis validation methods by Chuaqui et al. [6]:

1. No biological validation. As the lowest level of reliability, this includes studies 

that develop feature selection algorithms and present the selected list of genes 

without a stringent interpretation of the biological results.

2. In silico validation. Also known as computational validation, these studies 

compare their feature selection results to the results of other studies. They may 

also identify Gene Ontology (GO) categories that are statistically 

overrepresented as a result of feature selection.

3. Same-sample validation. These studies validate their microarray experiments by 

performing additional assays on the same samples from which their microarrays 

were derived. These assays typically include quantitative real-time PCR (qRT-

PCR) or northern analysis and serve to validate the technical reliability of the 

microarrays.

4. Independent or clinical validation. As the highest level of reliability, these 

studies validate the results of their microarray experiments using independent 

biological samples, usually from a clinical source. Independent validation 

ensures that the selected features are not a result of over-fitting. These validations 

often take the form of qRT-PCR and in situ hybridization (ISH) for RNA 

products, or immunohistochemistry (IHC) and western analysis for protein 

products.

Despite frequent disagreement between qRT-PCR and microarray results, qRT- PCR is the 

most common method for validation of differentially expressed genes. Genes with large 

fold-change in microarray data are consistently correlated with qRT-PCR while those with 

smaller fold change are more susceptible to technical variability [7]. The detection of 

PHAN et al. Page 2

Pac Symp Biocomput. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differentially expressed genes is generally reproducible across several microarray platforms 

[8]. However, in light of a recent study illustrating the pervasiveness of technical artifacts in 

microarray data [9], we only consider a knowledge source reliable if it falls into category 

three or four.

Investigators have attempted to improve feature selection by using biological knowledge. 

Their knowledge sources often fall into category two of reliability, in silico validation, and 

include Gene Ontology and pathway databases, published literature, microarray repositories, 

and sequence information. Generally, these studies identify genes that cluster or correlate 

with genes from the knowledge sources [10-12]. Another study developed a theoretical 

framework to compare feature ranking metrics in the presence of control features [13]. 

However, this study also neglected to focus on the reliability of the control features. Indeed, 

the wealth of available information in the form of gene and protein interactions, functional 

annotation, and genetic and pathways can improve the results of data analysis [14]. 

Furthermore, microarray data analysis has shifted from purely data driven methods to 

methods that use additional knowledge, even in the feature selection process [14].

We develop a method to quantify the efficiency of detecting biomarkers by feature ranking. 

This method maximizes the biological relevance of feature ranking by choosing the best 

metric from a population of metrics. The chosen ranking metric is optimal with respect to 

knowledge obtained from reliable sources. We test the effectiveness of our method using 

clinical gene expression data. Results indicate that the choice of ranking metric significantly 

affects feature ranking, which, in turn, affects the efficiency of discovering and validating 

novel biomarkers.

2. Methods

2.1. Modeling Knowledge in Feature Selection

Throughout this paper, the term ‘feature set’ denotes a group of one or more features or 

genes that act in concert. A ‘sample’ refers to measurements of a feature set from a single 

microarray or molecular profile. The entire microarray sample contains l features while a 

feature set may contain p features (where p<<l). We represent samples for feature set i as 

jointly distributed random vectors, , and labels, Yi ∈ {0,1} . The class label, Y , 

indicates the clinical source of the microarray sample. In most cancer problems, Y = 1 

indicates, for example, samples measured from patients with cancer and Y = 0 indicates 

samples from patients with no cancer. For a microarray dataset with N samples, feature set i 

for a particular dataset is the vector  from the 

random variable D , which represents all feature sets in a dataset. Each feature set is 

associated with a relevance variable, ri , from the random variable R ∈ {0,1}. rirepresents the 

biological relevance of the feature set and the reliability of the knowledge source. D and R 
are jointly distributed.

For each feature set, we assign a score that represents the predictive ability of that feature 

set:
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(1)

where  is a random variable and θ is a meta-parameter that characterizes the scoring 

function, or ranking metric. Although θ may represent the space of all ranking methods, we 

use a reduced set of wrapper- based methods in our simulations. Specifically, we use a 

support vector machine (SVM) classifier with the linear and radial basis kernels and estimate 

the classification accuracy of biomarkers using the 0.632 bootstrap [5, 15]. The SVM 

classifier depends on a cost parameter, C , which determines the penalty of misclassification. 

The radial basis kernel depends on , which is proportional to the complexity of the classifier. 

For the radial basis kernel, the pair of parameters, (C, γ ) , represents θ . We discretely vary 

C and γ over the log scale range of 0.1 to 103 and 0.01 to 105, respectively. For the linear 

kernel, only the single parameter, C , represents θ . We vary this parameter over the log scale 

range of 0.01 to 102.

In practice, a gene expression dataset will have N samples, each with l features. We 

separately examine m ( m can be different from l and include, for example, all pairs, triplets, 

or a subset of feature combinations) feature sets, corresponding to {d1, d2 ,..., dm} and {r1, 

r2, ..., rm}. From the mapping defined in eq. 1, we compute the set of values {α1,α2,...,αm} 

where each α is an observation from A . Using a simple selection method, we can then 

conclude that the best feature sets and potential biomarkers are in the set

(2)

where τ is a threshold.

We want to choose a θ that produces the most biologically relevant ranking of the m feature 

sets, {d1, d2 , ..., dm}, with respect to a given set of knowledge. Assuming that lower scores 

are better, the best θ assigns scores such that αi < αj for ri = 1 and rj = 0 , i.e., feature set i is 

known to be more relevant than feature set j for this particular dataset. Although we may 

never know the relevance of all features in a dataset, we may infer from literature that the k 
feature sets, Gk = {g1, g2, ..., gk } , are relevant, where k << m . This implies that the 

elements of the set{αi:i∈Gk} should generally be smaller than those of {αj:j∉Gk}. If the 

knowledge is reliable, we want to choose a θ that maximizes the probability that the score of 

a feature set from Gk probability is less than that of a feature set that is not from Gk . 

Explicitly, this

(3)

for i ∈ Gk and j ∉ Gk. The estimated optimal ranking method is

(4)
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keeping in mind that  is only optimal, or maximizes the probability, with respect to the 

given knowledge set. For m feature sets, k of which are in our knowledge set, Gk , we can 

empirically approximate the probability of eq. 3 with

(5)

where I (x) evaluates to one when x is true and zero when x is false. Eq. 5 is equivalent to 

computing the area under an ROC curve (AUC) for classifying feature sets as either relevant 

or irrelevant [13].

2.2. Iteratively Updating Knowledge

It may be difficult to compile a comprehensive list of knowledge from literature and 

independent validation. Consequently, we can expect that some feature sets that are not in 

our knowledge set,j∉Gk, are, in fact, relevant biomarkers. If V is the set of all relevant 

biomarkers, regardless of whether their relevance is known, we define the knowledge update 

function, S , as

(6)

This function adds to Gk a relevant biomarker with the best rank according to the estimated 

optimal metric, . Of course, a feature set is known to be in the set V only after performing a 

validation procedure such as qRT-PCR.

If we know all feature sets in V , we can quantify any improvement in efficiency due to 

optimization of the ranking metric. Using bootstrap resampling, we randomly and repeatedly 

partition the feature sets in V into a group of known relevant feature sets (training) and a 

group of unknown relevant feature sets (testing). If there are K elements in V , we randomly 

select K elements with replacement, resulting in K * (K * <K) unique elements for the 

testing set. We use the group of K - K * known relevant feature sets to optimize the ranking 

metric, then iteratively detect feature sets from the unknown set of K * features and update 

our knowledge using eq. 6. Every validation test requires a finite amount of time and 

resources. Plotting the fraction of correctly validated biomarkers (y-axis) vs. total validation 

time (x- axis), reveals that higher detection efficiency corresponds to a larger area under this 

curve. This curve is similar to a ROC curve, so we also call the area under this curve the 

AUC. We repeat this bootstrap sampling of feature sets 100 times in order to compute the 

significance of the differences among three conditions: optimal metric selection, sub-optimal 

metric selection, and sub-optimal initial knowledge. For the sub-optimal metric selection 

condition, we use correct initial knowledge selected from V via bootstrap, but use a 

modified equation to choose  with median AUC:

(7)
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Selection of a ranking metric with median AUC represents the common practice of 

arbitrarily selecting a metric with no regard for biological relevance and efficiency. This 

median AUC algorithm also serves as a reference point for assessing the potential 

improvement of efficiency when using the optimal algorithm.

For the sub-optimal initial knowledge condition, we begin the simulation with incorrect 

knowledge selected via bootstrap and use eq. 4 to optimize the ranking algorithm before 

updating the current knowledge set. We expect the average AUC of the optimal selection 

condition to be higher than that of both of the sub-optimal conditions. Figure 1 illustrates 

this process.

To determine whether the optimization procedure is over-fitting to the knowledge set, we 

conduct additional tests using randomly selected knowledge sets. If over-fitting is occurring, 

results of the optimal, suboptimal, and suboptimal knowledge tests for randomly selected 

knowledge should be similar to those of the true knowledge set.

2.3. Microarray Data Analysis and qRT-PCR Validation

We examine two clinical case studies using renal tumor microarray datasets. The first 

dataset, from a study by Schuetz et al., uses Affymetrix microarrays (HG-Focus, 8793 

probesets) to profile samples from three subtypes of renal tumors: 13 clear cell (CC) renal 

cell carcinoma (RCC), 4 chromophobe (CHR) RCC, and 3 oncocytoma (ONC, benign) [2]. 

The second dataset, from a study by Jones et al., uses a different model of Affymetrix 

microarrays (HG-U133A, 22283 probesets reduced to 8793 that are common to HG-Focus) 

to examine similar renal tumor subtypes with 32 CC, 6 CHR, and 12 ONC samples [16]. We 

are interested in biomarkers that differentiate the CC class from the combined group of ONC 

and CHR.

Using literature, we identify genes that have been validated (via qRT-PCR or IHC) as 

differentially expressed between the CC and ONC/CHR subtypes. We then validate an 

additional 94 genes using qRT-PCR (using RNA from 34 CC and 18 CHR tissue samples). 

These 94 genes were selected by a renal cancer pathologist based on his knowledge and 

previous research. Only some of the 94 genes assayed with qRT-PCR are differentially 

expressed as assessed by a linear SVM with classification error estimated using 0.632 

bootstrap. Genes measured with qRT-PCR are categorized as differentially expressed if the 

estimated classification error is less than 10%. Using the set of knowledge from both 

literature and qRT-PCR validation, we examine the efficiency of detecting these biomarkers 

by optimizing the ranking metric under various conditions, as illustrated in figure 1.

3. Results and Discussion

As described in the methods, we identify five genes from literature that are differentially 

expressed between the CC and ONC/CHR renal tumor subtypes (table 1). Each of these 

genes had been validated using either qRT-PCR or IHC. Additionally, we validate several 

other potential biomarkers using qRT-PCR and select genes with estimated classification 

errors of less than 10% (table 2).
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Combining all knowledge from both literature and qRT-PCR validation, we examine the 

effect of optimizing the feature ranking metric using the method illustrated in figure 1. Box 

plots of the 100 iterations for each of the three tests indicate that optimal selection 

outperforms sub-optimal selection (figure 2, left column). The comparison of optimal to 

suboptimal metrics may seem to always favor the optimal metric. However, the optimal 

metric is not always a simple linear classifier. In fact, during the iterative gene detection 

process, θ changes frequently as V is updated. Moreover, suboptimal selection may 

represent the common practice of arbitrarily selecting ranking metrics with no regard to their 

potential disadvantages for particular datasets. The box plots represent the median and 

quartiles of the AUC values for each of the 100 iterations. Correspondingly, the ROC curves 

also indicate that the optimal selection method improves the efficiency of biomarker 

detection (figure 2, right column).

For the Schuetz data (figure 2, top row), the performance difference between the optimal and 

suboptimal ranking metrics seems small according to the box plots. However, the ROC curve 

of the optimal metric initially rises much more quickly compared to that of the suboptimal. 

The region of low specificity boosts the performance of the suboptimal metric. However, this 

region should be neglected when assessing performance since the number of false positives 

at this point is very high. Validation procedures would likely consider only the biomarkers 

detected in the high specificity region. Results are similar for the Jones data (figure 2, 

bottom row).

The high variance of the suboptimal initial knowledge condition indicates that optimization 

of the ranking metric is sensitive to the initial conditions. Some of the randomly selected 

initial knowledge may, in fact, be differentially expressed, resulting in good performance. 

However, these random initial knowledge sets are more likely to be irrelevant. Thus, box 

plots for this condition illustrate this mixture of knowledge quality. These results stress the 

importance of the quality of biomarker knowledge.

The control tests using random knowledge sets for V show that our method does not over-fit 

to the knowledge (figure 2, box plots CO, CSO, and CSK). None of the algorithms 

considered in our space of θ are able to favorably rank these randomly selected genes. AUCs 

of these control tests are close to 0.5 as expected for random classification.

Using all knowledge from literature and the first round of qRT-PCR, we optimize the 

ranking metric and select the top genes that have not been previously validated and that have 

estimated classification errors of less than 5% (table 3). We can link a few of these genes 

directly to previous literature pertaining to renal cancer. For example, CXCR4 has been 

linked to kidney cancer. Using qRT-PCR, Schrader et al. shows that this gene is over-

expressed in kidney cancer tissue compared to normal kidney tissue [17]. IGFBP3 and 

KLF10 has also been linked to renal cell carcinoma [18, 19]. Validation of these genes using 

qRT-PCR may yield additional knowledge to iteratively refine the biomarker selection 

process. However, since we want to primarily focus on the methodology here, we reserve the 

actual validation of these results for a future study.
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4. Conclusion

We have shown that biomarker identification by feature ranking benefits from knowledge 

integration at key points. Using this knowledge—whether from clinical observations, 

laboratory experiments, or existing literature—we can intelligently choose an optimal 

ranking metric for a specific gene expression dataset. The use of an optimal metric for 

ranking and identifying novel biomarkers reduces the number of false discoveries, increases 

the number of true discoveries, reduces the required time for validation, and increases the 

overall efficiency of the process.

The results of our simulations indicate that knowledge integration improves biomarker 

selection for clinical microarray data. Although this study assumes independent gene 

expression, the method is general and we can use it to rank combinatorial gene expression 

data as well. Furthermore, we test this method using only a limited set of wrapper-based 

feature ranking metrics. However, it is easily expandable to encompass a variety of metrics, 

including the commonly used filter methods such as t-tests and fold change. We hope that 

the proposed method will impact biomarker identification practices and improve the 

effectiveness of resulting clinical applications.
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Figure 1. 
Quantifying the efficiency of detecting relevant feature sets. For clinical data, we define V as 

the set of K known differentially expressed feature sets. Using bootstrap cross validation, we 

partition V into K* and K-K* samples. K* is the number of unique samples after sampling 

from V K times with replacement. We optimize the ranking algorithm using K-K* feature 

sets and assess the algorithm's efficiency in detecting the remaining K* feature sets. For each 

of the three conditions— optimal metric selection, sub-optimal metric selection, and sub-

optimal initial knowledge—we perform this bootstrap sampling 100 times in order to 

compute the significance of any differences between mean AUC values.
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Figure 2. 
Box plots of AUC areas over 100 iterations for each test (left). AUCs for the optimal test (O) 

are higher than both the sub-optimal (SO) and sub-optimal knowledge (SK) tests 

(differences are statistically significant with p-values very close to 0). The control tests, 

using randomly selected knowledge indicate that optimizing the ranking metric does not 

over-fit (CO=control optimal, CSO=control suboptimal, CSK=control suboptimal 

knowledge). Average ROC curves for each test, illustrate the differences in biomarker 

detection efficiency (right). The ROC for the optimal metric test (solid line) indicates more 

accurate biomarker detection for both the Schuetz (top row) and Jones (bottom row) renal 

cancer datasets.
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