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Abstract

Motivation: The Human Reference Epigenome Map, generated by the Roadmap Epigenomics

Consortium, contains thousands of genome-wide epigenomic datasets that describe epigenomes

of a variety of different human tissue and cell types. This map has allowed investigators to obtain a

much deeper and more comprehensive view of our regulatory genome, e.g. defining regulatory

elements including all promoters and enhancers for a given tissue or cell type. An outstanding task

is to combine and compare different epigenomes in order to identify regions with epigenomic fea-

tures specific to certain types of tissues or cells, e.g. lineage-specific regulatory elements. Currently

available tools do not directly address this question. This need motivated us to develop a tool that

allows investigators to easily identify regions with epigenetic features unique to specific epige-

nomes that they choose, making detection of common regulatory elements and/or cell type-

specific regulatory elements an interactive and dynamic experience.

Results: An online tool EpiCompare was developed to assist investigators in exploring the specifi-

city of epigenomic features across selected tissue and cell types. Investigators can design their test

by choosing different combinations of epigenomes, and choosing different classification algo-

rithms provided by our tool. EpiCompare will then identify regions with specified epigenomic fea-

tures, and provide a quality assessment of the predictions. Investigators can interact with

EpiCompare by investigating Roadmap Epigenomics data, or uploading their own data for

comparison. We demonstrate that by using specific combinations of epigenomes we can detect de-

velopmental lineage-specific enhancers. Finally, prediction results can be readily visualized and

further explored in the WashU Epigenome Browser.

Availability and implementation: EpiCompare is freely available on the web at http://epigenome.

wustl.edu/EpiCompare/.

Contact: twang@genetics.wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Roadmap Epigenomics Consortium generated a reference cata-

logue of human epigenomes across a variety of tissue and cell types

(Roadmap Epigenomics et al., 2015). Using this resource, investigators

can compare the epigenomes of different tissue and cell types and iden-

tify regulatory elements such as enhancers, promoters, and regions occu-

pied by epigenetic features that are unique to a specific tissue or cell

type, as well as those that are shared by multiple tissue and cell types.
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One common application utilizing the Human Reference

Epigenome is the identification of tissue or cell type-specific enhan-

cers. Enhancers are cis-regulatory elements playing essential roles in

regulating the spatial and temporal pattern of gene expression

(Blackwood and Kadonaga, 1998). Many enhancers function in a

tissue or cell type-specific manner (Ernst et al., 2011; Heintzman

et al., 2009; Shen et al., 2012). Disruption of enhancer functions can

often lead to diseases (Sakabe et al., 2012). Many studies revealed

that enhancers significantly overlap with disease-causal variants and

such variants are often enriched in enhancers specific to cell types

that are implicated in the specific diseases (Claussnitzer et al., 2015;

Ernst et al., 2011; Farh et al., 2015; Hoffman et al., 2013; Roadmap

Epigenomics et al., 2015; Song and Chen, 2015; Zhou et al., 2015).

Hence, a comprehensive list of tissue or cell type-specific enhancers

could have significant clinical impact.

The identification of tissue-specific histone marks including

H3K27ac and H3K4me1 can help identify tissue or cell type-specific

enhancers. Enhancers are epigenetically defined by the presence of

H3K4me1 and the absence of H3K4me3 (Heintzman et al., 2007).

H3K27me3 is a repression histone mark that is associated with poly-

comb complex (Barski et al., 2007). The combination of H3K4me1

and H3K27me3 marks poised enhancers, which silence developmen-

tal genes in embryonic stem cells (ESCs) and keep them poised for

activation in differentiating cells (Creyghton et al., 2010). H3K27ac

is a mark of active enhancers and promoters and distinguishes active

enhancers from poised enhancers. Combination of H3K4me1 and

H3K27ac modifications is used to identify active enhancers

(Prescott et al., 2015). Therefore, combination of different histone

marks can be used to predict tissue or cell type-specific poised/active

enhancers.

Given datasets of multiple histone modifications for a specific

cell type, several tools, including ChromHMM (Ernst and Kellis,

2010; Ernst and Kellis, 2012), RFECS (Rajagopal et al., 2013), and

Segway (Hoffman et al., 2012), can define chromatin states across

the cell’s epigenome and/or define regulatory elements such as en-

hancers. While the above tools are designed for a single sample,

tools like hiHMM (Sohn et al., 2015) and TreeHMM (Biesinger

et al., 2013) can define chromatin states in multiple cell types or

multiple species simultaneously. But these tools cannot be readily

applied to detect tissue or cell type-specific enhancers. Several efforts

have been devoted to define tissue or cell type-specific enhancers.

For example, the FANTOM5 Consortium identified active enhan-

cers for a large number of human tissue and cell types by using bidir-

ectional capped RNA data (Andersson et al., 2014). They called

differentially expressed enhancers across all tissue and cell types,

using Kruskal–Wallis rank sum tests. To define tissue differentially

expressed enhancers, for example, for the brain, they further per-

formed pair-wise, post-hoc tests, and required the enhancers to be

differentially expressed between brain tissues and at least one non-

brain tissue. A limitation of this approach is that such differentially

expressed enhancers are often expressed in multiple tissue and cell

types and are not specific to a single tissue or cell type. Furthermore,

since the enhancers are marked by active transcription, poised en-

hancers are likely to be missed. Indeed, the active enhancers identi-

fied by FANTOM5 had 231 fold more bidirectional capped RNA

reads than polycomb-repressed enhancers (Andersson et al., 2014).

The Roadmap Epigenomics Project used a tool called

HoneyBadger2 to define tissue or cell type-specific enhancers using

k-means clustering. Regions that were clustered together share simi-

lar epigenetic profiles across a variety of tissue and cell types.

A given cluster may have a pattern such that the enhancer signals

are predominantly present in certain tissues, but not in other tissues.

Such regions were defined as tissue-specific enhancers. However,

this approach is based on unsupervised learning, and as such, clus-

ters are not directly assigned to a specific tissue. Other groups char-

acterized the cell-type specificity of enhancers in human and mouse

using clustering methods (Ernst et al., 2011; Heintzman et al., 2009;

Shen et al., 2012; Won et al., 2013), but did not provide tools to de-

fine cell-type specificity. Tools like MultiGPS (Mahony et al., 2014)

and dPCA (Ji et al., 2013) were designed to compare Chip-seq data

between two conditions but not readily adaptable to compare en-

hancers or histone modifications between groups of tissue and cell

types. Another tool, ChromDiff (Yen and Kellis, 2015) compared

chromatin states across different group of samples. For each given

region, ChromDiff calculated the percent coverage for each chroma-

tin state in each sample and corrected them based on sample meta-

data. Then it tested for difference of corrected values between two

groups of samples for each chromatin state using statistical test such

as Mann–Whitney–Wilcoxon test and identified significant regions

with specific chromatin states. The tool can be applied to identify

tissue or cell type-specific enhancers if ChromHMM models are

defined, but can be difficult to use by experimental biologists due to

the lack of a user-friendly interface.

To address these needs, we have developed an online tool

EpiCompare to help investigators to analyze the Roadmap

Epigenomics data. Investigators can easily identify regions with epi-

genomic features specific to combinations of tissue or cell types.

Several classification methods are provided, including the clustering

method used by the Roadmap Epigenomics Project (Roadmap

Epigenomics et al., 2015). Investigators can compare enhancers,

promoters, and specific histone marks using any combination of tis-

sue and cell types, using Roadmap data and/or their own data.

Investigators can test a variety of hypotheses by designing specific

combinations of epigenome comparisons, and EpiCompare provides

a quality assessment of the predictions. The predicted regions can be

readily visualized and further explored within the WashU

Epigenome Browser. EpiCompare makes Roadmap reference epige-

nomes more easily usable by experimental biologists in order to en-

hance their research.

2 Materials and methods

2.1 Datasets
The Roadmap Epigenomics Consortium uses the ChromHMM tool

to generate chromatin states for different tissue and cell types. The

type and number of chromatin states depends on the histone modi-

fication data provided. The 15-state ChromHMM model inte-

grates histone modifications H3K4me1, H3K4me3, H3K9me3,

H3K27me3, and H3K36me3, while the 18-state ChromHMM

model integrates the five marks in the 15-state model plus H3K27ac

(Roadmap Epigenomics et al., 2015). From the Roadmap

Epigenomics Project, we obtained 15-state and 18-state

ChromHMM models, and processed peak data [obtained from

MACS (Zhang et al., 2008)] for H3K27ac, H3K4me1, H3K4me3

and H3K27me3 marks for all tissue and cell types. Chromatin states

are predicted for each 200 base pair (bp) window. The 15-state

ChromHMM model defines enhancers as state numbers 6, 7, 12,

corresponding to genic enhancers, enhancers, and bivalent enhan-

cers, respectively. The 18-state ChromHMM model defines enhan-

cers as state numbers 7, 8, 9, 10, 11, 15, corresponding to genic

enhancer 1, genic enhancer 2, active enhancer 1, active enhancer 2,

weak enhancer, and bivalent enhancer, respectively. Further, for all

processed peak data, the coordinates are mapped to 200bp windows
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by requiring at least 50bp overlapping. Only peaks with q-value less

than 0.01 are considered. Each feature above—the enhancer state or

epigenomic modification peak—is converted into binary presence or

absence of the feature in each 200 bp window, denoted by 1 or 0. A

table is generated for each feature by summarizing the presence or

absence of the feature in all samples across windows where at least

one sample has the feature.

2.2 Classification methods
EpiCompare contains three methods for identifying regions with

epigenomic features specific to combinations of tissue or cell types

(Supplementary Fig. S1). All methods require the definition of fore-

ground samples and background samples by users. Foreground sam-

ples are the group of samples for which we identify specific regions.

Background samples are the group of samples against which we

compare foreground samples. The principle of all methods is, to de-

fine regions with features specific in foreground samples, the fea-

tures should be enriched in the foreground samples but depleted in

the background samples.

The first method implements a frequency cutoff. For each region

(in this case each 200bp genomic window), the percentages of sam-

ples having the feature in the foreground samples and background

samples are calculated. If the percentage of samples having the fea-

ture in the foreground samples is greater than or equal to the defined

minimal foreground cutoff (default is 80%) and the percentage of

samples having the feature in the background samples is less than or

equal to the defined maximal background cutoff (default is 20%),

then the region is defined as a positive region. These positive regions

are further ranked by the difference between the percentage of sam-

ples having the feature in the foreground samples and background

samples so users can prioritize top-ranked regions.

The second method implements Fisher’s exact test. For each

200 bp window, a contingency table composed of the number of

samples with or without the feature in foreground samples and

background samples is calculated. Fisher’s exact test is used to

examine whether the percentage of features in the foreground sam-

ples is significantly greater than in the background samples. The

p-value is corrected by multiple hypothesis testing using the

Benjamini–Hochberg procedure, and regions with q-value less than

a cutoff (default is 0.01) are identified and ranked by their q-values.

The statistical power of the test depends on the number of fore-

ground samples and background samples and having more samples

can provide more statistical power to identify more significant q-val-

ues (See Supplementary Note S6). Therefore, when the number of

foreground samples or background samples is small, investigators

can use q-value as a ranking measure and obtain the top candidates

by setting a higher q-value threshold. We also evaluated the false

positive rate of Fisher’s exact test (See Supplementary Note S7).

The third method implements k-means clustering based on a

Jaccard-index distance, similar to the clustering method used in

HoneyBadger2 (Roadmap Epigenomics et al., 2015). First, k-means

clustering is performed on regions in the binary data table for each

feature. R package flexclust is used for clustering (Leisch, 2006). We

determined the optimal cluster number by the elbow method and

the silhouette method (Kodinariya and Makwana, 2013) (See

Supplementary Note S8). The optimal cluster number for all features

is close and around 140, so we provide the optimal cluster number

for all features to be 140. In addition to the default number, we pro-

vide several other options (i.e. cluster number 90, 200, and 250) to

give users flexibility. Next, the percentage of regions having the fea-

ture is calculated for each cluster and defined as a feature density

table (number of clusters times number of samples). Finally, a cluster

specific for a tissue/cell type should have higher feature density in

that tissue/cell type than in the background samples. Specifically, to

identify clusters specific for foreground samples, we select clusters

satisfying the following two conditions: first, the median of feature

densities of foreground samples in a cluster is greater than or equal

to a threshold (default is 0.4); second, it should also be greater than

or equal to the highest feature density in the background samples of

that same cluster (this threshold can be set to any percentile of fea-

ture densities in the background samples).

3 Results

3.1 Performance comparison
To identify regions with epigenomic features specific to combin-

ations of tissue or cell types, we applied three different methods: fre-

quency cutoff, Fisher’s exact test, and k-means clustering, as

described in Methods. The most important parameters for all the

methods are choices of foreground samples and background samples

(see Methods). The main assumption we make is that the epige-

nomic features we focus on are enriched in foreground samples but

depleted in background samples. Identified regions were tested using

the following validation methods: GREAT analysis, enrichment for

DNase I hypersensitive sites (DHS) and H3K27ac peaks, and the tis-

sue enrichment index, contribution measure (CTM) (see

Supplementary Note S1). CTM measures how much a sample or a

group of samples contributes to the total amount of signal (e.g. read

density for H3K27ac) combined by all samples in a region (Pan

et al., 2013). To further evaluate the performance directly, we ran-

domly picked 20 identified regions and visualized them in WashU

Epigenome Brower with chromatin states and histone modification

tracks. We used adult brain tissues as foreground samples and eval-

uated the efficacy of the three methods in identifying adult brain-

specific enhancers using enhancers defined by 15-state ChromHMM

model. Seven adult brain samples were available from the Roadmap

Epigenomics Project. We compared them to 91 other samples with

available H3K27ac data. Since the clustering method does not pro-

vide ranks, we obtained a list of adult brain-specific enhancers using

the clustering method with default settings. We then picked an equal

number of regions in ascending order of ranks using the frequency

cutoff and Fisher’s exact test methods.

First, we examined the overlap of enhancers found by three

methods (Supplementary Fig. S2). Out of 188 076 identified adult

brain-specific enhancers (i.e. 200 bp windows), 148 170 overlapped

between the frequency cutoff and Fisher’s exact test; 133 370 over-

lapped between k-means clustering and Fisher’s exact test; and

144 182 overlapped between frequency cutoff and k-means cluster-

ing. 123 746 were shared across all three methods.

Next, we tested our predicted brain-specific enhancers using the

three validation methods. Using the GREAT (McLean et al., 2010),

we found that adult brain-specific enhancers identified by each of

three methods were strongly associated with brain functions such as

myelination, regulation of action potential and regulation of synap-

tic plasticity (Fig. 1(a); Supplementary Fig. S3). The brain-specific

enhancers predicted by all three methods also had much higher en-

richment for H3K27ac peaks in brain tissues compared to other tis-

sues (Fig. 1(b) and Supplementary Fig. S4). Overall, the enrichment

in brain tissues was higher for the frequency cutoff and Fisher’s

exact test methods than for the clustering method. The brain-

specific enhancers predicted by all three methods also had much

higher CTM index in brain tissues than in other tissues for
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H3K27ac-based CTM distribution (Fig. 1(c); Supplementary Fig.

S5), underscoring the brain specificity of the enhancer histone modi-

fication in the identified regions. The brain tissue CTM distributions

for regions identified by the three methods almost superimposed

each other (Supplementary Fig. S5). A visualization of randomly

picked 20 brain-specific enhancers identified from Fisher’s exact

test showed most regions had much stronger H3K4me1/H3K27ac

peaks in the foreground samples than the background samples

(Supplementary Fig. S6). In summary, the validation results con-

firmed that our methods can effectively identify tissue-specific en-

hancers. Similarly, the same methods can be applied to identify

other epigenomic modifications that are tissue or cell-type specific.

Since FANTOM5 defined active enhancers for a variety of tissue

and cell types by their differential expression patterns, we compared

brain-specific enhancers identified by Fisher’s exact test on enhan-

cers defined by 15-state ChromHMM model and the FANTOM5.

First, we examined the overlap between these two methods. The

FANTOM5 enhancers were not binned on 200bp windows, so

we mapped them onto 200bp windows. 89 of 208 804 regions

by ChromHMM-based method overlapped with 1578 binned

FANTOM5 brain enhancers (hypergeometric test, p¼10�26). The

overlap was small because only 11% of H3K4me1/H3K27ac loci

overlapped the FANTOM5 enhancers (Andersson et al., 2014), and

enhancers defined by ChromHMM included active enhancers (char-

acterized by H3K4me1/H3K27ac loci), poised enhancers (character-

ized by H3K4me1/H3K27me3 loci), and other types of enhancers

(single H3K4me1 mark or single H3K27ac mark). Although the

overlap with the FANTOM5 brain enhancers was small, it was

highly significant. In contrast, 35 regions by ChromHMM-based

method overlapped with 3409 binned FANTOM5 blood enhancers

(hypergeometric test, P¼0.98), suggesting the overlap was specific

to brain. Second, we plotted enrichment of H3K27ac for the shared

regions, as well as regions unique to each method (Supplementary

Fig. S7). Finally, we randomly picked 20 regions that were unique to

each method, and visualized them on the WashU Epigenome

Browser in gene set view (Supplementary Figs S8 and S9).

Interestingly, we found that many FANTOM5-defined brain-spe-

cific enhancers are defined as promoters by using Roadmap

Epigenomics data, with clear and strong promoter histone mark

support (i.e. H3K4me3). Moreover, these regions also have high

H3K27ac in the background samples.

Using similar analysis as above, we compared identifying brain-

specific enhancers using Fisher’s exact test and ChromDiff (See

Supplemental Note S9). We found enhancers identified from

Fisher’s exact test and ChromDiff largely overlapped (80%).

Enhancers that were unique to Fisher’s exact test had much stronger

enrichment of H3K27ac in brain samples than ChromDiff but

also had higher enrichment in the background samples. Therefore

anecdotally EpiCompare seems to have better sensitivity, while

ChromDiff seems to exhibit better specificity, at a comparable statis-

tical cutoff. ChromDiff is a command line only program, while

EpiCompare provides a much more user-friendly interface and in-

cludes access to WashU Epigenome Browser, allowing biologists to

better explore their result.

The k-means clustering method in our tool is similar to the clus-

tering method used in HoneyBadger2 tool with the exception that

enhancers defined by the 15-state ChromHMM model in

HoneyBadger2 were further filtered by DHS before used for cluster-

ing. To demonstrate that our clustering method is comparable to

HoneyBadger2, we compared adult brain-specific enhancers identi-

fied by the two approaches. We used 250 clusters as a close approxi-

mation of 246 clusters in HoneyBadger2 tool. We identified 158 110

regions with our approach and 86 019 regions with HoneyBadger2.

For the comparison, we randomly picked 86 019 regions from the

total regions identified by our approach. By comparing the enrich-

ment of H3K27ac peaks in the foreground samples and background

samples between our clustering method and HoneyBadger2, we

found that both methods had similar enrichment in the foreground

samples (t-test, P¼0.87) and also in the background samples (t-test,

P¼0.98) (Supplementary Fig. S10a). When we examined the CTM

distribution of H3K27ac, we found that the brain tissue CTM distri-

butions for regions identified by the two methods almost superim-

posed each other (Supplementary Fig. S10b). Thus our clustering

method is comparable to the clustering method in HoneyBadger2

tool.

After demonstrating that our methods can identify tissue-specific

enhancers, we determined the impact of sample size on performance:

i.e. the impact of the number of foreground samples and the number

of background samples (see Supplementary Note S2). First, to exam-

ine how the number of foreground samples affects the performance,

we predicted adult brain-specific enhancers by using different

Fig. 1. Validation of predicted brain-specific enhancers by Fisher’s exact test

method. (a) Enriched GO terms and their binomial p-values based on GREAT.

The top 10 GO terms are displayed here. (b) Enrichment of H3K27ac peaks in

brain tissues and non-brain tissues for predicted adult brain-specific enhan-

cers by Fisher’s exact test. (c) The distribution of tissue enrichment index

CTM based on H3K27ac expression data for predicted adult brain-specific en-

hancers by Fisher’s exact test
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number of foreground samples while fixing background samples. To

assess performance, we computed the average enrichment of

H3K27ac peaks in the seven adult brain samples and also in selected

background samples because we expect that tissue-specific enhan-

cers should have higher enrichment in the foreground samples and

lower enrichment in the background samples. We found that with

increasing foreground samples, the performance of all three methods

increased. This is illustrated by increasing H3K27ac enrichment in

the foreground samples, and relatively stable depletion in the back-

ground sample (Fig. 2a).

To examine how the number of background samples affects the

performance, we predicted adult brain-specific enhancers by using

different number of background samples while fixing foreground

samples. The enrichment of H3K27ac in the foreground samples

seemed to be quite stable across a range of numbers of background

samples used (Fig. 2b). However, depletion of H3K27ac in back-

ground samples seemed to be quite sensitive to the number of back-

ground samples used. A larger number of background samples did

improve the specificity effectively, underscoring the importance of

having a comprehensive collection of epigenomes, such as those

made available by the Roadmap Epigenomics project.

Finally, we demonstrate that our simple but versatile framework

allows investigators to design any combination of epigenome com-

parison to identify specific epigenomic features associated with spe-

cific biological entities. For example, by combining samples that

share the same developmental origin, one might be able to identify

specific regulatory mechanisms for this developmental lineage.

This is particularly useful when samples representing cells in early

development are difficult to obtain. Here we set out to define

endoderm-specific enhancers by comparing nine adult tissues

derived from the endoderm to other background tissues (see

Supplementary Note S3). The enhancers were defined using 18-state

ChromHMM model. We identified 13 728 regions using frequency

cutoff method, 46 859 regions using Fisher’s exact test method, and

29 386 regions using k-means clustering method with 140 clusters.

We picked top 13 728 from Fisher’s exact test for the following ana-

lysis. The predicted regions exhibited much stronger enrichment of

DHS in endoderm-derived tissues than in other tissues (Fig. 3a;

Supplementary Fig. S11). Moreover, when subjected to analysis by

the GREAT tool, these regions were strongly associated with biolo-

gical processes related to epithelial cell functions (Fig. 3b), a well-

known derivative function common for endoderm-derived tissues

(Zorn and Wells, 2009). A visualization of randomly picked 20

endoderm-specific enhancers identified from Fisher’s exact test

showed most regions had much stronger H3K4me1/H3K27ac

peaks in the foreground samples than the background samples

(Supplementary Fig. S12).

To further explore the functions of these endoderm-specific en-

hancers, we identified potential regulatory transcription factors

(TFs) interacting with these regions by HOMER (Heinz et al.,

2010). The top enriched TFs are all important for endoderm specifi-

cation, including FoxA family TFs (FoxA1, FoxA2), GATA family

TFs (Gata4), HNF1, HNF4a, and others (Fig. 3c). FoxA family and

GATA family TFs are key players in the transcriptional regulatory

network of the endoderm (Zorn and Wells, 2009). FoxA1 and

FoxA2 are pioneer TFs that remodel chromatin environment and fa-

cilitate recruitment of other TFs (Cirillo et al., 2002). FoxA1 and

FoxA2 are homologous and required for the development of endo-

derm tissues such as liver, lung, intestine and pancreas (Gao et al.,

2008; Gosalia et al., 2015; Lee et al., 2005; Wan et al., 2005). Like

FoxA1 and FoxA2, HNF1 and HNF4a play key regulatory roles in

liver, pancreas, and intestine development (DeLaForest et al., 2011;

Fig. 2. The effect of sample size on the performance of adult brain specific-enhancer predictions. (a) How the number of foreground samples influences the per-

formance with fixed background samples. (b) How the number of background samples influences the performance with fixed foreground samples
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Pontoglio, 2000; Yang et al., 2016). Moreover, the foregut markers

PDX1 and the hindgut marker CDX2 were also highly enriched

(P ¼10�5 for PDX1 and CDX2 motifs) (Spence et al., 2011).

To further support the function of the top enriched TFs in endoderm

tissues, many of them were highly expressed in endoderm tissues

comparing to non-endoderm tissues, ESCs and ESC-derived

multipotent endoderm cells (Roadmap Epigenomics et al., 2015)

(Supplementary Fig. S13).

Using top enriched TFs that were also highly expressed in adult

endoderm tissues compared to non-endoderm adult tissues, we

identified 4 upstream TF candidates - FoxA1, FoxA2, HNF1b,

HNF4a, and were able to build a transcriptional regulatory network

for them and shared target genes by linking enhancers with TF bind-

ing sites to nearest genes (Fig. 3d; Supplementary Table S1) using

previously described methods (Lee et al., 2015). The reconstructed

network recapitulated many important gene regulation relationships

in endoderm development and differentiation. For example, the

FoxA family TFs cooperate with HNF1b and HNF4a to regulate in-

testinal epithelial cell function (Yang et al., 2016). FoxA2, HNF1b,

and HNF4a were shown to bind to a large number of target regions

Fig. 3. Identification of endoderm-specific enhancers by Fisher’s exact test method. (a) Enrichment of DHS for endoderm-specific enhancers identified by Fisher’s

exact test. (b) Enriched GO terms and their binomial p-values based on GREAT. Top 10 terms are displayed. (c) Enrichment of TF binding motifs in endoderm-spe-

cific enhancers by Fisher’s exact test. Top 15 TFs are displayed. (d) The putative gene regulatory networks for endoderm tissues based on identified enhancers.

(e) The expression profiles of epigenetic marks for enhancers in the network in endoderm tissues and non-endoderm tissues, ESCs and ESC-derived endoderm

cells. (f) A browser example of merged endoderm-specific enhancers. Blue is endoderm tissues, brown is non-endoderm tissues, and red is ESCs and ESC-

derived endoderm cells
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in intestinal epithelial cell line (Yang et al., 2016). The 72 shared

target genes for the 4 TFs were enriched for signaling pathways

required for cell proliferation and differentiation including WNT,

BMP, VEGF and Hippo signaling (Supplementary Table S2)

(Kamburov et al., 2009). The median expression level of these genes

was significantly higher in endoderm tissues than that in non-

endoderm tissues (t-test, P¼5e�5) (Supplementary Fig. S14). To

further confirm that the network was activated in endoderm tissues,

we examined the profile of epigenetic marks (DNase I, H3K27ac

and DNA methylation) on all enhancers in this network across dif-

ferent tissues, including adult endoderm tissues, fetal endoderm tis-

sues, endoderm cells, non-endoderm tissues and ESCs. These

enhancers showed strong expression of DNase I and H3K27ac mark

and low DNA methylation only in adult endoderm tissues and fetal

endoderm tissues (Fig. 3e). Figure 3f gave an example of merged

endoderm-specific enhancers. The enhancers had strong DHS and

H3K27ac peaks and low DNA methylation level in both adult and

fetal endoderm tissues but not others. The evidence suggests that

this regulatory cascade is active in fetal and adult endoderm tissues,

but not in ESC-derived endoderm cells which presumably have not

committed to a special endoderm cell type and also not in non-

endoderm tissues.

3.2 Web server
The tool EpiCompare is freely available online. It was written in R

using the Shiny framework and hosted by open source shiny server

(Chang, 2015). The home page includes a simple and intuitive user

interface for the selection of foreground samples and background

samples from a list of human tissue and cell types available from the

Roadmap Epigenomics Consortium (Supplementary Fig. S15).

Options for selecting different classification methods and param-

eters are also provided. It also provides the option of uploading

user’s data for analysis. The results page provides analysis results,

including H3K27ac enrichment and tissue enrichment index using

H3K27ac expression data. Results are presented as a table of identi-

fied regions, and can be downloaded for further analysis. Each re-

gion is linked to the WashU Epigenome Browser (Zhou et al., 2011)

where users can visualize, explore, and compare their epigenomic

patterns in different tissue/cell types. The help page gives a tutorial

on how to use EpiCompare.

4 Discussion

We have developed an online tool EpiCompare to help investigators

to analyze the Roadmap Epigenomics data. The presented data

showed that the tool can easily identify regulatory elements such as

enhancers, promoters, and regions occupied by epigenetic features

that are unique to a specific tissue or cell type, as well as those that

are shared by multiple tissue and cell types. Our tool is designed spe-

cifically for biologists in such a way that no programming or data

processing capacity is required to perform genome-wide analysis.

We demonstrated that our tool could identify endoderm-specific en-

hancers and analysis on these enhancers revealed the regulatory net-

work common to all endoderm tissues.

In identifying regions with epigenomic features specific to com-

binations of tissue or cell types, EpiCompare has several advantages

over existing methodologies reported in the FANTOM5, Roadmap,

and others. First, investigators can compare enhancers, promoters,

and specific histone marks using any combination of tissue and cell

types depending on their needs. This enables the identification of

specific epigenomic features associated with specific biological

entities, such as lineage-specific enhancers. Second, the tool is user-

friendly so that an experimental biologist with little or no program-

ming experience can easily use. Investigators can test a variety of

hypotheses by designing specific combinations of epigenome com-

parisons using Roadmap data and/or their own data, and

EpiCompare provides a quality assessment of the predictions. The

predicted regions can be readily visualized and further explored

using the WashU Epigenome Browser.

EpiCompare has some limitations. First, the regulatory elements

used in this tool are defined based on the ChromHMM model.

Although considered the state-of-the-art, ChromHMM model still

has limited sensitivity and specificity, especially for identifying en-

hancers (Song and Chen, 2015). The performance of predicting tis-

sue or cell type-specific enhancers is clearly dependent on the

performance of ChromHMM. Second, EpiCompare is based on

comparison of binary data including chromatin states and histone

mark peaks. It could potentially miss regions with quantitatively dif-

ferent signal between samples. For example, it could not distinguish

a weak enhancer from a strong enhancer if both had signals over the

threshold. It could also not distinguish two quantitatively different

weak enhancers which were below the threshold. These cases are

false negatives for EpiCompare. The comparison of binary data can

also lead to false positives if two samples had very similar signal at

one region, with one above the threshold and the other below the

threshold. Third, we implemented three very simple statistical mod-

els, and potentially could oversimplify the problem of identifying tis-

sue or cell type-specific features. Frequency cutoff method uses

simple cutoffs, and Fisher’s exact test assumes the occurrence of fea-

tures as hypergeometric distribution while k-means clustering

method assumes certain number of clusters in the data and groups

them based on similarity. All of them assume the independence of

samples, but biological samples are clearly not independent from

each other. The statistical models also do not consider the distribu-

tion of each feature along the genome of each sample. However, we

are encouraged by the strong performance of these simple models,

and anticipate that development of more sophisticated models will

surely improve the accuracy of feature identification.
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