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Abstract

Motivation: Genomics features with similar genome-wide distributions are generally hypothesized

to be functionally related, for example, colocalization of histones and transcription start sites indi-

cate chromatin regulation of transcription factor activity. Therefore, statistical algorithms to per-

form spatial, genome-wide correlation among genomic features are required.

Results: Here, we propose a method, StereoGene, that rapidly estimates genome-wide correlation

among pairs of genomic features. These features may represent high-throughput data mapped to

reference genome or sets of genomic annotations in that reference genome. StereoGene enables

correlation of continuous data directly, avoiding the data binarization and subsequent data loss.

Correlations are computed among neighboring genomic positions using kernel correlation.

Representing the correlation as a function of the genome position, StereoGene outputs the local

correlation track as part of the analysis. StereoGene also accounts for confounders such as input

DNA by partial correlation. We apply our method to numerous comparisons of ChIP-Seq datasets

from the Human Epigenome Atlas and FANTOM CAGE to demonstrate its wide applicability. We

observe the changes in the correlation between epigenomic features across developmental trajec-

tories of several tissue types consistent with known biology and find a novel spatial correlation of

CAGE clusters with donor splice sites and with poly(A) sites. These analyses provide examples for

the broad applicability of StereoGene for regulatory genomics.

Availability and implementation: The StereoGene Cþþ source code, program documentation,

Galaxy integration scripts and examples are available from the project homepage http://stereo

gene.bioinf.fbb.msu.ru/

Contact: favorov@sensi.org

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Modern high-throughput genomic methods generate large amounts

of data, which can come from experimental designs that compare

tissue-specific or developmental stage-specific phenomena.

An important challenge of genome-wide data analysis is to

reveal and assess the interactions between biological processes,

e.g. chromatin profiles and gene expression. An emerging ap-

proach to this challenge is to represent the biological data as

functions of genomic positions (we use terms profile or track for

the functions) and to estimate correlations between these

functions.

In recent years, the bioinformatics community has actively de-

veloped methods for assessment of colocalization of genomic fea-

tures (Chikina and Troyanskaya, 2012; Favorov et al., 2012;

Kravatsky et al., 2015; Sch€afer et al., 2012; Zhang et al., 2011). The

features are typically represented as a set of intervals on the genome

(genes, repeats, CpG islands, etc.), as point profiles (binding sites,

TSS, splice sites) or as continuous (numeric) profiles (coverage of ex-

pression, ChIP, etc. from high-throughput sequencing experiments).

A common approach to investigating genomic features is to repre-

sent these features as intervals, computed from the original continu-

ous coverage data using a threshold or more sophisticated

algorithms (Zhang et al., 2008). The tracks resulting from this dis-

cretization are sensitive to algorithm parameters, including thresh-

olds and therefore are unable to account different levels of genomic

coverage or gene usage.

In addition, most genome-wide correlation algorithms

(Kravatsky et al., 2015; Zhang et al., 2011) compare genomic fea-

tures at identical genomic coordinates (called overlapping coordin-

ates). However, biologically regulatory relationships may often

occur between features within a neighborhood of genomic coordin-

ates (called adjacent coordinates). For example, gene expression

profiles (RNA-seq coverage) correlate with transcription factor

binding sites or chromatin state in nearby promoter regions or dis-

tant enhancer regions. Interval and point-based approaches de-

veloped for genome-wide correlation account for associations

between adjacent coordinates by estimating distance-based statistics

(Chikina and Troyanskaya, 2012; Favorov et al., 2012; Kravatsky

et al., 2015).

Here, we propose a fast universal method—StereoGene—to cor-

relate numeric genomic profiles. The data can be genome-wide

tracks with discrete features (e.g. intervals) or continuous profiles,

e.g. coverage data. The method is based on kernel correlation (KC),

which provides an estimate of spatially smoothed correlation of two

features. The statistical significance of correlations with StereoGene

is evaluated by a permutation-based test. StereoGene provides add-

itional functionality, including a track representing correlation as a

function of genomic coordinate [called the local correlation (LC)];

calculation of positional cross-correlation function; account for gen-

ome-wide confounders by partial correlation. Our implementation

is computationally efficient: the calculation of the KC with permuta-

tions for a pair of profiles over the human genome takes �1–3 min

on a personal computer. We demonstrate the effectiveness of

StereoGene for estimation of genome-wide epigenetic profile data

correlations pairwise correlations between all human samples in the

Roadmap Epigenomics Project (Bernstein et al., 2010) dataset and

on other open data. These examples describe some potential applica-

tions of StereoGene for regulatory genomics to provide a template

for its broad utility.

2 Materials and methods

2.1 Kernel correlation
We consider each genomic feature as a numeric function (profile) of

the genomic position x. The standard Pearson correlation of two

profiles f ¼ f ðxÞ and g ¼ gðxÞ is defined as:

CCðf ; gÞ ¼ 1

rf rg

1

jGj

ð

G

~f ðxÞ~gðxÞdx ¼ Qð~f ; ~gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qðf ; f ÞQðg; gÞ

p (1)

where ~f ¼ ðf ðxÞ � �f Þ; �f is the mean value of f; rf is the SD of f,

Qðf ; gÞ ¼
Ð
Gf ðxÞgðxÞdx; the integration is performed over the gen-

ome G. The Pearson correlation relates profile values on exactly the

same genomic positions. In biological systems, the relationships of

values at proximal but non-overlapping (in genomic coordinates)

positions are also important. These correlations may be result from

transcriptional regulation, chromatin looping or other interactions.

To account for correlations between profiles at proximal coordin-

ates, we generalize the Pearson correlation from Equation (1) to the

covariation integral as follows:

Qqðf ; gÞ ¼
ð

G

ð

G

~f ðxÞ~gðyÞqðx� yÞdxdy (2)

where qðx� yÞ reflects the common sense expectations of the

interaction of features at adjacent positions. Formally, it is a func-

tion of the distance x � y between the interacting positions. In the

case qðx� yÞ ¼ dðx� yÞ, we get the standard Pearson correlation

integral as in Equation (1). In theory, any non-negative kernel

function can be used. The default kernel we use is the Gaussian

qðzÞ ¼ 1
r
ffiffiffiffi
2p
p expð� x2

2r2Þ, it is the most intuitive representation of the

closer is the position, the more important it is. The r of the

Gaussian reflects the interaction scale and it a user-defined par-

ameter with a reasonable default of 1000 bp.

Based on the Q covariation value (Equation 2), we introduce the

KC defined as:

KC ¼ Qqðf ; gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qqðf ; f ÞQqðg; gÞ

p (3)

The two-dimensional integral Qqðf ; gÞ can be rapidly calculated

using a complex Fourier transform (Supplementary File S1,

Section S1).

Qqðf ; gÞ ¼
X
k¼1

f �k gkqk; (4)

where f �k ; gk; qk are Fourier coefficients; * means complex conjugate.

The value KC(f, g) satisfies the inequality: �1 � KCðf ; gÞ � 1. The

marginal values 1 and �1 correspond to f¼ g and f ¼ �g (see

Supplementary File S2, Section S7.3 for the test) Fourier transform

can be calculated by the discrete Fast Fourier Transform (FFT) algo-

rithm (Loan, 1992) and therefore has computational cost of OðjGj�
log jGjÞ where jGj is the length of the genome.

2.2 Cross-correlation
Sometimes, in addition to the overall value of the correlation, an in-

vestigator needs information about its local structure, e.g. either the

value emerges from a strong position-to-position overlap of it comes

from a smooth interaction of neighboring positions and what is the

scale of interaction if it exists. To address the questions for our two
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profiles, f(x) and g(x), StereoGene calculates the cross-correlation

function c(x) as follows.

cðxÞ ¼ 1

rf rg

1

jGj

ð

G

~f ðtÞ~gðt � xÞdt ¼

1

rf rg

1

jGjFT�1ðfk � g�kÞ
(5)

where FT�1 means the inverse Fourier transform and � is element-

wise product of fk and g�k vectors of the Fourier coefficients.

2.3 LC profile
The correlation itself shows the similarity of the features at the scale

of the genome. The cross-correlation function (see earlier) reflects

the fine-scale structure of correlation. The distribution of the correl-

ation as a function of the genomic position is also relevant to deter-

mine the nature of interactions. To provide this information,

StereoGene generates a new track that describes the local KC of two

original profiles as a function of the genomic position, called the

‘LC’.

LCðxÞ ¼
gðxÞ

Ð
G qðx� tÞf ðtÞdt þ f ðxÞ

Ð
G qðx� tÞgðtÞdt

2rf rg
¼

1

2rf rg
gðxÞ � FT�1ðqk � fkÞ þ f ðxÞ � FT�1ðqk � gkÞ
� � (6)

Note that the value of LC is not restricted by 61 boundaries and can

take any values. The scale of LC depends on the data nature, the dir-

ect comparison of LC values makes sense only inside one LC track.

To give the user ability to select regions with significant enrichment

of LC, StereoGene outputs the FDR LC value (see Section 2.5).

Standard peak calling tools (e.g. MACS, Zhang et al., 2008) can be

applied to the LC. The result is suitable for gene set enrichment

analysis.

2.4 Partial correlation
Non-random correlation of the two profiles may occur due to their

correlation with a third profile (confounder) that systematically

biases both signals (e.g. level of mapability). An example of such

confounding would be the case with ChIP-seq for a sample with the

signal from two antibodies (the profiles to correlate) and a common

input track (the confounder). StereoGene can computationally ex-

clude such a confounding using the partial correlation (projection)

approach. For this calculation, StereoGene correlates the projections

both profiles in the subspace, that is orthogonal to the profile a of

the confounder as follows:

faðxÞ ¼ f ðxÞ � aðxÞ ða; f Þða; aÞ ; ða; f Þ ¼
ð

G

aðxÞ � f ðxÞdx (7)

where (a, f) means a scalar product of the functions a, f. Then, the

KC, the LC track, and the cross-correlation between two projection

is calculated in a standard way. The statistical significance (see later)

is calculated as for a regular two-way comparison.

2.5 Statistical significance
All the calculations we described earlier are executed independently

in large (we recommend a size of 100 kb.1M) windows (Fig. 1). This

approach allows the FFT to be really fast and at the same time, it

provides us with the statistical significance of all the observations.

We apply a permutation test to obtain significance for the computed

correlation coefficients. Specifically, the correlations (foreground

distribution) are calculated in a set of pairs of windows with the

same genome positions on the tracks we compare (matched win-

dows). To obtain the null distributions of the values, a shuffling pro-

cedure is used that randomly matches windows on one profile to the

windows on another profile and then the correlations (background

distribution) are computed for these randomly matched window

pairs in the same way as they are calculated for the original

(matched) window pairs. The statistical significance for KC is pro-

vided by a Mann–Whitney test of these two sets of values. The FDR

for LC is estimated by using the background distribution as null-

hypothesis and the foreground as the signal.

2.6 Program implementation
StereoGene is implemented as a command-line tool, and it is distrib-

uted as Cþþ source code under MIT 2.0 license. StereoGene proc-

esses the input data in two passes. On the first pass, StereoGene

converts input profiles to an internal binary format and saves the

binary profiles for the future runs. The second pass does the Fourier

transforms as well as permutations and calculates all the correl-

ations and statistics. If a project refers to a track that has its binary

profile already calculated and the parameters have not been

changed, StereoGene omits the first pass and reuses the saved pro-

files. The time required for the first pass depends on the input file

size. On a standard computer, for a typical ChIP-Seq track, the first

pass takes from a few seconds up to 1–2 min. The second pass takes

less than one-half a minute on the human genome.

Input. As input, StereoGene accepts two or more input files in

one of the standard genomic tracks formats: BED, WIG, BedGraph

and BroadPeak. If more that two track files are provided,

StereoGene makes all the pairwise comparisons. StereoGene can

take a linear model, which combines a number of profiles to get one

of the tracks to compare, as an input. For a batch processing,

StereoGene accepts a text file containing a list of the tracks. A linear

combination of input tracks (model) described by a text file can be

used instead of a track.

Output. StereoGene reports the KC over all the genome; KC

values for matched and for shuffled windows, averaged KC over

the matched windows and P-value. StereoGene produces the fol-

lowing files: the foreground and background distributions for

KC; the cross-correlation function; the LC track; table of FDR

values for the LC values and some additional files. The informa-

tion can be presented on the whole genome as well as by

chromosomes.

Fig. 1. The procedure that is used for the estimation of P-values for KC and for

the estimation of FDR values for the LC is based on shuffling of windows. Left

pane: shuffling procedure. Right pane: background and foreground

distributions
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StereoGene command-line run. The only parameter that does

not have a default value and thus is required for a run is a file with

the chromosome names and lengths. For the partial correlation, the

confounder track should be defined. All other parameters are op-

tional and have reasonable defaults. The less technical of them are

the window size and the kernel width. Detailed information about

input and output files and parameters is presented in the program

documentation at the StereoGene homepage http://stereogene.bio

inf.fbb.msu.ru/. The homepage also contains an archive with the ex-

ample run scripts along with all the necessary files. A general pro-

gram description is presented in the Supplementary File S2.

Visualization and interface. For a quick and intuitive depiction

of results, the StereoGene provide an optional mode that prepares

an R script, which represents the output in a multipanel plot

(Supplementary File S1, Section S2). The first panel displays fore-

ground and background distributions of genomic windows by the

KC. If the foreground distribution is shifted to the right of the

background distribution, the plot represents the positive correl-

ation and the left shift shows anticorrelation. The significance of

the observation is represented by the Mann–Whitney test that is

described in Section 2.5. The second panel, which is the cross-

correlation function, represents spatial relationships between the

tracks. The third panel represents the LC distribution for the

observed (foreground) and the null (background) LC distributions

and the FDR q-values. We provide two tool definition files to use

StereoGene in Galaxy (Afgan et al., 2016): one to compute and to

visualize the correlation of a pair of tracks and another to com-

pute and to visualize the partial correlation given a confounding

track.

2.7 Gene set analysis by the LC track
To detect the gene sets that are overrepresented around the areas

of high LC of a pair of tracks, we do the following. We take the

LC track (*.wig StereoGene output file) convert the track to the

BED format using bedops software, version 2.4.16 (Neph et al.,

2012) and selected 3000 of the highest peaks using MACS-1.4.2

(Zhang et al., 2008) with the default parameters. Next, we select

the genes whose transcription start sites fell within 5 kb of the

correlation peak. The resulting list of genes is mined for biolo-

gical enrichment using DAVID 6.7 software (Huang da et al.,

2009). Eventually, we obtain a list of gene-related terms (gene

sets), that are significantly overrepresented around the high LC

regions, with some statistical measures (adjusted P-value, FDR)

for each term.

2.8 Data source
Data from the Roadmap Epigenomics Project (Bernstein et al.,

2010) are downloaded from the Human Epigenome Atlas (http://

www.genboree.org/). Data for FANTOM4 CAGE clusters (Ravasi

et al., 2010) are obtained from the UCSC website (RIKEN CAGE

tracks, GEO accession IDs are GSM849326 for nucleus

GSM849356 for cytosol in H1 human embryonic stem cell line,

RRID:CVCL_9771). The datasets with the tracks are listed in

Supplementary File S1, Section S10.

3 Results

StereoGene enables a variety of genome-wide correlation techniques

to account for different types of interrelationships between pairs of

continuous genomic features. We summarize the major types of cor-

relations enabled by StereoGene in Table 1.

3.1 StereoGene application examples

3.2 Human Epigenome Atlas pairwise correlation

anthology
To demonstrate the wide-range of applications of StereoGene, we

have built a pipeline that applies StereoGene to the Human

Epigenome Atlas in the Roadmap Epigenomics Project (Bernstein

et al., 2010). This database is comprehensive, containing 2423 dif-

ferent data types for 186 different tissues (263 077 pairs total). For

our analysis, we correlate data from all pairs of data types in the

same tissue (or cell line), and we correlate all pairs of tissues and cell

lines from the same data type. All the results are available from

http://stereogene.bioinf.fbb.msu.ru/epiatlas.html. Although this

database is large, StereoGene compute the correlations efficiently

(�30 s per each comparison). Therefore, the algorithm well-suited

to query intersample correlations in large databases. In addition to

testing the computational efficiency of StereoGene on large data-

bases, the comprehensive analysis enables us to compare the

StereoGene findings to well-established biological associations.

Genome-wide KC analysis. We first use StereoGene to assess the

correlation between distinct epigenetic tracks from the same tissue

type. We focus this part of the analysis on pairwise correlations be-

tween the most frequently studied tracks in the Roadmap

Epigenomics Project, namely, H3K4me1, H3K4me3, H3K9me3,

H3K27me3, H3K36me3 epigenetic features and the RNA-seq and

on comparisons of the distributions of the KC values for the same

epigenetic tracks across fetal and across adult tissues. The distribu-

tions of the correlations are presented separately for fetal tissues and

for adult tissues (Fig. 2A, Supplementary File S1, Section S10).

Generally, the epigenetics marks are more correlated in adult tissues

in comparison with the fetal tissues. The statistical significance of

this observation is shown on Figure 2B. The highest difference of

feature-to-feature correlation between the collections is observed for

the H3K9me3 versus H3K27me3 pair: they are significantly more

correlated in adult tissues than in fetal ones. A comparison of correl-

ation between H3K9me3 and H3K27me3 in the same tissue for fetal

and adult gave a P� value ¼ 3:2 � 10�5 (Wilcoxon test). This result

is consistent with the prior observation that at early stages, different

genomic regions are separately regulated by H3K9me3 and

H3K27me3, but during tissue maturation, these heterochromatin

marks became more synchronized (Chen and Dent, 2014). One pos-

sible explanation is that H3K27me3 initiates chromatin compaction

by recruitment of H3K9me3. The colocalization of H3K27me3

Table 1. Types of correlations produced by StereoGene

Type of correlation Eq. Description

KC (3) The genome-wide correlation coefficient,

which is calculated with the kernel; it re-

flects overall relationship between two

tracks.

Cross-correlation (5) The cross-correlation function shows the

structure of the correlation that reflects

distance dependence of the tracks values.

LC (6) This output track shows the KC as a func-

tion of the genome position. The track

can be displayed in genome browsers and

it can used in further analysis.

Partial correlation (7) The correlation computed between a pair of

profiles, excluding the impact of a third

confounding genomic track.
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versus H3K36me3 relates to the monoallelic gene expression (Nag

et al., 2013). Figure 2 also shows a significant increase of correlation

of these marks in adult tissues in comparison with fetal tissues. The

observation is consistent with the recent studies (Nag et al., 2015).

KC windows distribution. To look at the KC difference between

adult and fetal tissues in more details, we compare the H3K4me3

and H3K27me3 KC distributions over the windows of the genome

in the adult lung tissue, fetal lung tissue and their common back-

ground (Fig. 3A). In this analysis, we observe a higher correlation

between H3Kme4 and H3K27me3 in adult in than fetal tissues. This

observation is consistent with chromatin changes during develop-

ment. Specifically, adult tissues have more regions with ‘poised pro-

moters’ in which both marks are active than do fetal tissues (Sachs

et al., 2013).

LC analysis. StereoGene enables positional interpretation of the

correlation results providing the LC functionality (see Section 2).

Here, we analyze the LC track between the data for H3K4me3 and

H3K27me3 marks in adult lung tissue discussed in the previous

example. Namely, we compute the LC track to define peaks that de-

fine the correlation between these two chromatin marks. We then

analyze its function through gene set enrichment analysis (as

described in Section 2) of these peaks in resulting LC track

(Supplementary File S3). We found that 53 gene sets have FDR ¡5%.

In particular, we see the sets ‘cell motion regulation (FDR < 10�4)’

and ‘positive regulation of cell migration’ (FDR < 10�3) that are

associated with lung development. Specifically, the cell motion is

very active during lung development, then it stops in adult lung and

its regulation genes are poised, i.e. switched off.

Cross-correlation analysis. Nucleosome dependency of epigen-

etic marks. As a part of the standard result, StereoGene returns the

cross-correlation function between the pairs of samples that were

compared. In the Roadmap Epigenomics Project data analysis (see

http://stereogene.bioinf.fbb.msu.ru/epiatlas.html), in many cases, we

observe the cross-correlation function that has a narrow peak cen-

tered at zero. For example, Supplementary Figure S1 shows the dis-

tributions of the KC and the cross-correlation function for tracks

H3K27me3 versus H3K36me3 in fetal brain cells. Both H3K27me3

and H3K36me3 are covalent histone modifications, they are pos-

itioned inside a nucleosome. The zero-peak could reflect frequent

cooccurrence of the marks that results from their colocalization in-

side one nucleosome. This possibility is supported by recent results

from reChIP (Kinkley et al., 2016).

Simulations. Nucleosome dependency of epigenetic marks.

Widespread application of StereoGene to epigenetic data indicates

that positive correlations between histone marks are far more com-

mon than negative correlation (Fig. 2) for all histone marks and tis-

sue types. To test whether the pervasive positive correlations has the

same nature as the zero-position peak of the cross-correlation func-

tion and that they both occur due to the nucleosome positioning, we

perform a simulation experiment (Supplementary File S1, Section

S8). We simulate a ‘genome’ that is 60 Mbases long and contains

100 000 randomly distributed ‘nucleosomes’. Then we generate two

independent signals that are located only on ‘nucleosomes’. As a re-

sult, we have obtained simulated data with true positive correlation

and with zero peaks. When the signals are produced independently

of the ‘nucleosomes’, the peak is not observed and the KC approxi-

mately equals to zero. On the other hand, when the simulated sig-

nals are colocalized in the simulated nucleosomes we observe a

sharp cross-correlation peak at zero. Thus, this simulation suggests

that the prevalence of positive KC values and the zero-positioned

peak on the cross-correlation observed earlier arise from nucleosome

positioning rather than from artifacts.
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Fig. 2. Distributions of genome-wide KCs values of pairs of epigenetic marks

across the fetal and across the adult tissues. Twelve fetal and 39 adult cell

types data are used. (A) Boxplots of the KC value distribution for adult and

fetal tissues. Gray horizontal lines near the zero show the maximal and the

minimal background correlations that are observed over all the datasets. (B)

P-values for difference of these correlation distributions between fetal and

adult tissues (Wilcoxon test)
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Fig. 3. Distributions of correlations. (A) H3K27me3 versus H3K4me3 in lung

tissues. Solid black line—adult lung; dotted line—fetal lung; gray—the back-

ground distribution that coincides for both cell types. (B) Correlation distribu-

tion for H3K27me3 versus H3K4me3 in female adult lung cells with

chromosome specification. Gray—background distribution; solid line—correl-

ation distribution over genome; dashed—correlation distribution for

Chromosome 19, dotted line—correlations for X-chromosome
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3.3 Chromosome-specific correlation of the histone

modifications
The relation between epigenetic marks can differ from chromosome

to chromosome. StereoGene allows to provide the analysis separ-

ately by chromosomes. To show this feature, we compared the rela-

tionship between two well-investigated histone marks: the

promoter-related H3K4me3, and the heterochromatin polycomb-

related H3K27me3, in the adult lung, chromosome by chromosome

(Fig. 3B). The window KC value distribution for these marks over

all genome has a high peak on positive correlations. At the same

time, the distribution on Chromosome 19 has a significantly differ-

ent shape and it is shifted to lower values. This could be explained

by the high-gene density, especially, high-housekeeping genes dens-

ity on the Chromosome 19. The correlation distribution on

Chromosome X also differs from the distribution over genome and

the Chromosome X distribution has a peak on very high correlations

(Fig. 3B), that can be due to the two copies X-chromosome, one is

repressed by H3K27me3 mark, while another is active. This obser-

vation is consistent with known suppression of Chromosome X in

female origin somatic cells as part of development.

3.4 Partial correlations
A pair of features in genome never exist in isolation. Interactions of

biological features with other genome-wide features will skew the

spatial correlation. For example, differences in mappability of short

regions to different regions of the genome will impact the signal of

all genome-wide data that requires alignment, and the correlations

that can be computed in different regions. The influence of add-

itional and sometimes technical genome-wide features sometimes

shadows the effect or can cause an apparent new effect that is unre-

lated to the biology. We call these additional features that impact

correlation of biological features ‘third players’ or ‘confounders’.

When the third player genome-wide track is provided, StereoGene

uses the partial correlation use-case to eliminate its impact on correl-

ation. Here, we provide examples where using this third track en-

ables StereoGene to both uncover shadowed effects and remove

technical associations between unrelated tracks.

The H3K4me3 is an ‘active promoter’ mark and it is expected to

be positively correlated with RNA-seq. Indeed, Figure 4A shows

some weak positive, though statistically significant correlation in

Brain Hippocampus Middle. This tissue is an adult one, and we sup-

pose that a significant share of the promoters is ‘poised’ (Sachs

et al., 2013) (see the LC Analysis). In other words, the H3K4me3 ef-

fect on the expression is shaded by the H3K27me3 presence. We

used the partial correlation mode to remove H3K27me3 influence

(Fig. 4B), and the correlation we observe is much stronger. This sug-

gests that the relationship of H3K4me3 to gene expression is modu-

lated by H3K27me3.

As we observed in the cross-correlation analysis, exact nucleo-

some positioning confounds all the pairwise histone marks.

Therefore, correlations between histone marks often occur because

of detection near nucleosome coordinates rather than biological sim-

ilarities between histone marks in the cell. Using a nucleosome track

as the confounder for partial correlation in StereoGene decreases the

correlation between H3K27me3 and H3K4me3 in GM12878 cells

(Fig. 4C and D, Supplementary Fig. S2). Removing the effect of the

nucleosome positioning is limited to datasets that contain nucleo-

some track data, which are regrettably few. More detailed descrip-

tion about the influence of the confounders and their removal with

partial correlation functions in StereoGene is presented in the

Supplementary File S1, Section S3. Another promising application

of the partial correlation to the ChIP-seq data is to exclude the input

DNA track as a confounder (Supplementary Fig. S2).

3.5 Cross-correlation function: chromatin marks versus

gene features
The local regulation of transcription by chromatin marks usually de-

pends on the positioning of the modified nucleosome relative to the

transcription start site. Similar dependence may also occur for other

gene features, including gene end sites or exons–introns boundaries. We

apply the cross-correlation function in StereoGene to assess the relation-

ship of such gene features to expressed and silenced genes in the brain

cingulate gyrus. To compute this correlation, we first define a set of ex-

pressed genes as those with the top 25% of mRNA-seq gene values of

gene counts and silenced genes as those with gene counts in the bottom

25%. All other genes are called moderately expressed. Then, we plot

the cross-correlation function of histone marks versus gene features—

start/end and intron beginning/end (Supplementary File S1, Section S4)

aggregated for each group of genes. We observe the following.

• The distribution of H3K4meX and H3K9ac near TSS of the ac-

tive genes has two high peaks left and right from TSS and a gap

at TSS position. This behavior is in an agreement with other re-

search (Ernst and Kellis, 2015).
• Both H3K4meX and H3K9ac density have a sharp break near in-

tron ends. This behavior may be related to epigenomic splice site

definition (Brown et al., 2012).
• H3K27me3 has a rather narrow peak downstream from TSS of

active genes, while for the low-expressed and for the silent genes

the peak is wider and it covers TSS. This peak in active genes

may be related to a monoallelic expression (Nag et al., 2013).

3.6 DNA-binding proteins: cohesin and histone

modifications
One of the promising applications of StereoGene is the analysis of re-

lations of DNA-binding protein with other genomic features. We use

the KC from StereoGene to determine the positional correlations of

cohesin protein Rad21 ChIP-seq track with CTCF track and with

Fig. 4. Distributions of the KC values over the windows: (A) correlation of

H3K4me3 versus mRNA-seq in Brain Hippocampus Middle; (B) the same cor-

relation, where the H3K27me3 track is accounted for as a confounder by the

partial correlation procedure. (C) KC values distribution for H3K27me3 versus

H3K4me3 in GM12878 cells; (D) the same with the nucleosome track ac-

counted for as a confounder. Black line—foreground distribution; gray line—

background correlation distribution
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different histone modifications in H1 stem cells (RRID:CVCL_9771)

and in the K562 (RRID:CVCL_5145) cell line (Supplementary File

S1, Section S5). We observe a very strong positional correlation of the

CTCF binding with Rad21 binding (P-value �0, see Supplementary

File S1, Section S5, Table 1). Another observation is that promoter

and enhancer marks (H3K4meX) are colocalized with cohesin bind-

ing (P-value < 10�16), while actively transcribed gene regions and re-

pressed gene regions are not. These observations are consistent with

(Steiner et al., 2016) and suggest that StereoGene is a robust tool to

associate DNA protein bindings.

3.7 Genome-wide expression: CAGE versus gene

annotation
CAGE FANTOM4 (Ravasi et al., 2010) data (CAGE clusters) repre-

sents a genome-wide map of capped mRNA. The CAGE data is ex-

pected to estimate mRNA that are prevented from degradation and

promoted for translation genomewide. As a result, these data are

hypothesized to correlate strongly with transcription start sites. To

determine whether there is a statistically significant CAGE signal in

gene start sites and other gene features, we analyze the positional re-

lationship of CAGE data, for the nucleus and for cytosol of H1-

hESC cells with the RefSeq (Pruitt et al., 2009) gene annotations

with the StereoGene KC. As hypothesized, CAGE clusters are highly

correlated with gene starts. We do not see any signal at the promoter

regions but we observe less obvious phenomena, namely, strong pos-

itional correlation of CAGE clusters with the intron start sites

(donor splice sites) and strong positional correlation of CAGE clus-

ters with transcription termination sites, see Supplementary File S1,

Section S6 for more details. CAGE association with intron starts

may be explained by the activity of debranching enzymes (Ruskin

and Green, 1985). After lariat debranching, the freed 50 end of the

intron may become available for capping, and this cap would be de-

tected by CAGE. Indeed, short (18–30 nt) RNAs with the 30 end that

exactly maps to donor splice sites are observed (Taft et al., 2010).

The transcriptional termination site correlation is less evident,

though it suggests that occasional capping of the free 50 end after

cleavage by the polyadenylation complex is possible. The

StereoGene analysis of CAGE data enables unprecedented associ-

ations of CAGE with gene annotations to assess the function on

mRNA capping in different gene features.

3.8 Comparison with other methods
We compare (Table 2) the StereoGene functionality with that of com-

monly used tools. Notably, very few programs can compute on con-

tinuous data and require the establishment of often arbitrary

thresholds to create intervals for analysis. KLTepigenome (Madrigal

and Krajewski, 2015) is able to work with the continuous profiles but

it is limited to sparse data and is quite slow even when being com-

pared to StereoGene doing the same computation on the full profile.

We test consistency of our results with the results, which are

described in (Zhou and Troyanskaya, 2014) on modENCODE

(Gerstein et al., 2014) S2-DRSC cell line dataset. We find the nu-

meric agreement to be satisfactory. The Pearson correlation coeffi-

cient of the KC values and the interaction energy score (Zhou and

Troyanskaya, 2014) is 0.48. Our results are summarized and visual-

ized in the Supplementary File S1, Section S7.

4 Discussion

We present a new method, StereoGene, with unprecedented speed for

estimation of genome-wide positional correlations. A comprehensive

description of the mutual positioning of genome-wide tracks requires

a set of statistical test on different scales. For that to happen,

StereoGene provides a collection of genome-wide correlation tech-

niques (see Section 3).

We apply the program for a variety of datasets including con-

tinuous (ChIP-seq) and interval (genome annotation) data. The re-

sults are consistent with recent biology knowledge. In addition, we

observe the changes in the correlation between epigenomic features

across developmental trajectories of several tissue types, and we find

an unexpected strong spatial correlation of CAGE clusters with

splicing donor and poly(A) sites. Both observations require verifica-

tion and both are in concordance with the biological intuition of

other authors.

In contrast with other methods in the literature, StereoGene is

unique in its ability to rapidly compute correlations of continuous

genome-wide features in addition to discrete gene intervals used in

most correlation techniques. As seen on public datasets, the ap-

proach yields biologically plausible results. The most common appli-

cation of StereoGene is the association of distinct genomic features

from the same individual or common genomic feature between indi-

viduals. The correlation distribution plots enable assessment of dir-

ectionality in addition to statistical significance, to depict multiple

varieties in these genome-wide associations. In addition, LC tracks

can be used for traditional gene enrichment analysis or to describe

the relationship between genomic features. The partial correlation

allows excluding of a known confounder. Other features of

StereoGene, such as batch analysis and using of linear models, make

this tool useful for mass and diverse analysis of the genomic tracks.

As far as we work with the continuous tracks directly, we do not

lose information on the binarization approaches as the most meth-

ods do. In these other methods, the choice of the binarization thresh-

old is usually supported by reasonable statistical considerations.

However, despite the threshold quality, the dependency of the

Table 2. Comparison of functionality for correlation analysis

programs
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Correlate non-local features þ þ þ þ þ þ � þ þ
Interval profiles þ þ þ þ þ þ þ þ þ
Work with continuous data � � � � � þ � � þ
Statistical evaluation þ � � þ þ þ þ þ þ
Partial correlation � � � � � � � � þ
Stratification by annotation þ � � � � � � � �
Liquid correlation � � � � � � � � þ
Produce correlation profile � � � � � � � � þ
Cross-correlation function � � � � � � � � þ

aChikina and Troyanskaya (2012);
bQuinlan and Hall (2010);
cLawrence et al. (2013);
dFavorov et al. (2012);
eKravatsky et al. (2015);
fMadrigal and Krajewski (2015);
gSandve et al. (2010);
hHeger et al. (2013).
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results the threshold should be checked before conclusions of biolo-

gical associations are drawn with these threshold-based methods.

The biological data are obtained on a large population of cells,

which can be very inhomogeneous, see, e.g. the phenomenon of gene

expression bursts (Bahar Halpern et al., 2015). Thus, even small

averaged signals can be biologically significant. We test

(Supplementary File S1, Section S9) the dependency of the correl-

ation (KC) value on the binarization threshold. High thresholds lead

to overestimated correlations.

Currently, StereoGene is widely applicable for analysis of simi-

larity of genomic–track-represented biological data, including mas-

sive analysis. The track-to-track distance results can be aggregated

to compare different tissues and different time course points.

Quite often, we observe bimodal KC distribution, and a question

whether the modes correspond to some global chromatin states is

naturally raised. The first hypothesis we intend to test in this way is

a relation to the chromatin A/B compartmentalization (Dekker

et al., 2013). The LC track can be compared with some third data

source by the next run of StereoGene; the result of the sequential

runs is a three-way correlation that is analogous to the liquid correl-

ation (Li et al., 2004). This analysis will enable, particularly, more

fine testing of the relations of epigenetic features mutual positioning

along the chromosome with the 3D positioning of the chromatin.

We intend to add statistical tests that compare the distributions of

observed correlations from different track pairs (e.g. input tracks).

It is a natural differential mode without the permutation-based esti-

mations. For the case when the researcher has a collection of tracks

for the same tissue, we plan to computationally estimate their com-

mon component to use it as a common input track. These new

approaches will extend StereoGene beyond robust genome-wide asso-

ciations to a comprehensive platform for continuous data analysis of

genome-wide tracks for cross-platform, integrated genomics analyses.
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