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Abstract

Summary: Nonribosomally synthesized peptides (NRPs) are natural products with widespread ap-

plications in medicine and biotechnology. Many algorithms have been developed to predict the

substrate specificities of nonribosomal peptide synthetase adenylation (A) domains from DNA se-

quences, which enables prioritization and dereplication, and integration with other data types in

discovery efforts. However, insufficient training data and a lack of clarity regarding prediction

quality have impeded optimal use. Here, we introduce prediCAT, a new phylogenetics-inspired al-

gorithm, which quantitatively estimates the degree of predictability of each A-domain. We then

systematically benchmarked all algorithms on a newly gathered, independent test set of 434 A-

domain sequences, showing that active-site-motif-based algorithms outperform whole-domain-

based methods. Subsequently, we developed SANDPUMA, a powerful ensemble algorithm, based

on newly trained versions of all high-performing algorithms, which significantly outperforms in-

dividual methods. Finally, we deployed SANDPUMA in a systematic investigation of 7635

Actinobacteria genomes, suggesting that NRP chemical diversity is much higher than previously

estimated. SANDPUMA has been integrated into the widely used antiSMASH biosynthetic gene

cluster analysis pipeline and is also available as an open-source, standalone tool.

Availability and implementation: SANDPUMA is freely available at https://bitbucket.org/chevrm/

sandpuma and as a docker image at https://hub.docker.com/r/chevrm/sandpuma/ under the GNU

Public License 3 (GPL3).

Contact: chevrette@wisc.edu or marnix.medema@wur.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbial nonribosomal peptide synthetases (NRPSs) are an im-

portant source of complex natural molecules of high therapeutic

and biotechnological value. These large, modular protein-systems

are found in a variety of microbes and produce structurally and

functionally diverse specialized peptide metabolites used as antibi-

otics, anticancers, immunosuppressants, food additives and crop
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protection agents. For instance, the NRP vancomycin is used in the

clinic as a first-line treatment for methicillin-resistant

Staphylococcus aureus and other complex, life-threatening infec-

tions (Liu et al., 2011). In their natural setting, NRPs often have po-

tent bioactivity and mediate diverse ecological interactions. For

example, the NRP dentigerumycin is produced by the fungus-

growing ant symbiont Pseudonocardia, which selectively inhibits

the opportunistic pathogen Escovopsis (Oh et al., 2009).

Unlike in ribosomally mediated elongation, the order, identity

and processing of peptides incorporated by an NRPS are dictated by

its assembly-line module and domain structure (Fischbach and

Walsh, 2006; Walsh, 2015). Typically, an NRPS module is com-

prised of at least three domains that together elongate a growing

peptide chain by one amino acid (Walsh, 2015). These core domains

include a peptidyl carrier protein (PCP) that tethers the substrate to

the NRPS, an adenylation (A) domain that confers specificity for an

amino acid substrate, and a condensation (C) domain that catalyzes

the formation of peptide bonds between the amino acid substrate

and the growing peptide chain (Walsh, 2015).

The advent of genome sequencing has fueled the discovery of

thousands of NRPS biosynthetic gene clusters (BGCs). Many NRPS

BGCs have more than ten modules and over 500 unique NRPS sub-

strates have been described (Caboche et al., 2010). These features

underscore the tremendous combinatorial potential and structural

diversity within NRP biosynthesis. Methods utilizing amino acid

motif-based analyses (Bachmann and Ravel, 2009; Knudsen et al.,

2015; Röttig et al., 2011; Stachelhaus et al., 1999), profile Hidden

Markov Models (pHMMs; Khayatt et al., 2013; Minowa et al.,

2007; Prieto et al., 2012), latent semantic indexing (Barana�si�c et al.,

2014) and Support Vector Machines (SVMs; Rausch et al., 2005;

Röttig et al., 2011) have been developed to computationally assign

an A-domain’s substrate specificity directly from its genomic se-

quence. Additionally, predictions for all individual A-domains in a

BGC have been combined to perform predictions of either core or

full NRP chemical structures (Li et al., 2009; Medema et al., 2011;

Skinnider et al., 2015) enabling streamlined discovery and system-

atic prioritization efforts. Moreover, they have been used together

with mass spectrometric data to dereplicate molecules (Ibrahim

et al., 2012; Mohimani et al., 2014) and assign them to their most

probable BGCs (Medema et al., 2014a).

Three problems currently prevent the optimal use of substrate pre-

diction algorithms for NRPS A-domains: (i) no estimations are avail-

able for the reliability of individual predictions, (ii) the accuracy of

available algorithms on novel data is unclear and (iii) training sets

have not seen major updates in years. Here, we address all three of

these issues. To evaluate the predictability of A-domains in an evolu-

tionary context, we designed a phylogenetically driven algorithm,

prediCAT, that calculates a confidence score for each A-domain based

on comparative metrics against A-domains of known specificity.

Moreover, it allows for more confident predictions in cases of recent

evolutionary events. Then, we compiled a large set of experimentally

validated substrate specificities from the Minimum Information about

a Biosynthetic Gene Cluster (Medema et al., 2015; MIBiG) database

and scientific literature, which was used as a test set for accurate

benchmarking of all available algorithms. Furthermore, the newly

identified set of A-domains was combined with previous training data

to retrain all high-performing classes of algorithms, which were then

combined into a single ensemble method, SANDPUMA, to optimize

both precision and recall. This method was designed for automatic re-

training to ensure its training data remains comprehensive as more

NRPS BGCs are experimentally characterized in MIBiG. Finally, to

demonstrate the opportunities of the high-quality predictions made

available by SANDPUMA, the algorithm was applied to 7635 pub-

licly available Actinobacteria genomes to systematically assess NRPS

chemical diversity within this taxonomic group. The analysis of

83589 A-domains in these genomes and the identification of 6049

NRPS BGCs with at least 3 A-domains. These revealed 458 distinct

NRP superfamilies, paving the way for high-quality genome-based

prioritization of NRP structural diversity.

2 Materials and methods

2.1 Individual algorithms
2.1.1 prediCAT monophyly

Individual query domains were aligned to the respective training set via

MAFFT v7.123b (Katoh and Standley, 2013) with a gap open penalty

of 5. Leading and trailing overhangs were identified in the query and

trimmed. A new multiple sequence alignment (MSA) was created via

MAFFT with the default gap open penalty (1.53) and a tree was gener-

ated from this MSA by FastTree v2.1.3 (Price et al., 2010). Internal

nodes were assigned specificities based on their leaves’ annotations and

each leaf node was assigned a grouping based on monophyletic specif-

icities. Branch lengths were calculated between query and training-set

leaves. Queries of branch distance less than 0.005 were assigned the

specificity of the closest neighbor leaf. For queries of branch distance

greater than 0.005, specificity was assigned based on the bounded,

monophyletic group to which it belonged (see Fig. 1C). If no such

group could be identified, no prediction was made (see Fig. 1E).

2.1.2 prediCAT scaled nearest neighbor scores

Trees generated from prediCAT were used to calculate Scaled

Nearest Neighbor (SNN) scores for each query. The branch distance

A B

C D

E F

Fig. 1. Overview of prediCAT. Structural similarities of (A) ornithine (orn) and

(B) 2,4-diaminobutyric acid (dab). Examples of (C) monophyly prediCAT clas-

sification, (D) nearest neighbor (NN) prediCAT classification and (E) an am-

biguous tree for which no prediCAT call is made. (F) Accuracy of prediCAT

across SNN scores (bins of size 0.5)
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between two known reference sequences was used to normalize the

branch length of the query sequence to its nearest neighbor. We

arrived empirically at a nearest neighbor distance cutoff (ce) of 2.5

from cross-validation results, as distances above 2.5 failed to give re-

liable results (see Supplementary Fig. S1). For distances less than this

cutoff, the distance was transformed to be on a scale from 0 (dis-

tance 2.5) to 1 (distance 0). This scoring was repeated for the next n

neighbors that both shared substrate specificity with the nearest

neighbor and had normalized branch lengths less than the 2.5 dis-

tance cutoff. These were summed to give a final scaled nearest neigh-

bor (SNN) score. Together this gives the following equation:

SNN ¼
Xn

i¼1

ce � q�xi

r1�r2

ce
when ce >

q� xi

r1 � r2
(1)

An SNN threshold of 0.5 was used for standalone and ensemble

methods (see Fig. 1F).

2.1.3 Support vector machines

Support Vector Machines (SVMs) were used to predict substrate spe-

cificity as previously described (Röttig et al., 2011). Each SVM model

maximizes the margin of a separating hyperplane between sequence

representations specific to one given substrate or cluster versus repre-

sentations that are specific to others. Sequence representations were

comprised of 34 active site residues situated within 8 Ångström (Å)

of the A-domain binding pocket (Röttig et al., 2011). Training se-

quences and queries are aligned to these A-domain loci using a

pHMM (NRPS A-domain AMP-binding; PFAM ID PF00501.21).

Determined sequence loci were then extracted as signatures and

encoded with a numerical feature representation.

We retrained all NRPSpredictor2 models for sequences that pre-

dict single acid substrate specificity. For this we extended the train-

ing data from the original NRPSpredictor2 with our training

sequences. If a combination of extracted signature with experimen-

tal substrate specificity occurred multiple times in the training data,

we used this combination only once so to not overestimate bench-

mark performance. We used the radial basis function kernel as ker-

nel function for all retrained models. Optimized model parameters

were the penalty parameter, C, and the kernel width parameter, c.

For each specific training set, we determined the optimal parameters

with a nested cross-validation to choose between inductive and

transductive SVM approaches.

2.1.4 Active site motifs

Stachelhaus et al. have previously described specificity-conferring

primary amino acid loci within A-domains which are putative con-

stituents of the binding pocket (Stachelhaus et al., 1999). Of these

10 loci, the lysine residue at alignment position 517 was found to be

invariant and thus excluded from further analysis. The remaining 9

loci were extracted from query sequences and assigned a specificity.

Queries were aligned to four A-domains from the Stachelhaus study

(GrsA, SrfAB-2, GrsB3 and CssA9; Stachelhaus et al., 1999) by

MAFFT with a gap open penalty of 3.40. MSAs were automatically

checked for alignment quality and passing active site motif (ASM)

sequence signatures were assigned based on known specificities.

Subsequent ASM searches looked first for motif matches of 9

(exact), 8, or 7 residues, whichever was highest.

2.1.5 Profile hidden Markov models

Profile Hidden Markov Models (pHMMs) were generated per meth-

ods described in Khayatt et al. (2013). Briefly, training sequences

were aligned by default MAFFT. Sequences were iteratively trimmed

and realigned to eliminate leading and trailing gaps (to a minimum

of 360 positions). A tree was created from the final MSA by

ClustalW (Larkin et al., 2007) and monophyletic groupings of

shared substrate specificities were identified. pHMMs of each

monophyletic group were created (and subsequently searched) with

HMMER3 (Eddy, 2011). Performance of pHMMs was checked

against the published Khayatt pHMMs and returned near identical

results (192 correct versus 191 correct for Khayatt and this study

respectively).

2.2 Benchmarking existing methods
prediCAT and pHMMs were trained as previously described on the

A-domain dataset described in Khayatt et al. (2013). Manually cura-

ted and MIBiG sequences were used to benchmark prediCAT (both

monophyly and SNN�0.5) and pHMM methods against existing

Bachmann-Ravel (Bachmann and Ravel, 2009), Minowa (Minowa

et al., 2007), NRPSpredictor2 (both Stachelhaus and SVM; Röttig

et al., 2011), NRPSsp (Prieto et al., 2012) and SEQL-NRPS

(Knudsen et al., 2015) algorithms in both accuracy and coverage.

For sequences with shared coverage, methods were compared pair-

wise and used to calculate significant differences in sequence predic-

tions by a McNemar’s test.

2.3 Full dataset cross-validation performance
The full dataset was randomized and broken into �10% subsets (ei-

ther 93 or 92 A-domain sequences). For each subset, prediCAT,

SVM, ASM and pHMM algorithms were trained on the remaining

90% of the data. Method accuracy was assessed by querying the

subset against these models. 100 query sets and training sets were as-

sessed (10 randomizations each with 10 subsets) totaling 9280 indi-

vidual queries for each method to robustly estimate the performance

of each method (see Supplementary Fig. S2).

ASM, SVM, prediCAT (monophyly and SNN�0.5) and

pHMM methods were subjected to ten cross-validation resampling

analyses, as described above. Precision was calculated as tp/(tpþ fp)

and recall was calculated as tp/(tpþ fn) where tp, fp and fn are the

number of true positives, false positives and false negatives, respect-

ively. F-scores were calculated as the harmonic mean of precision

and recall. Corresponding taxonomic data was gathered from NCBI

and taxon-specific performance was quantified.

2.4 SANDPUMA ensemble method
A decision tree incorporating percent identity to the best match in

the training set and results from each algorithm (ASM, SVM,

prediCAT monophyly, prediCAT SNN�0.5 and pHMM) was used

to calculate an ensemble specificity call through the supervised

machine learning package scikitlearn (Pedregosa et al., 2012).

Maximum depths of 20, 30, 40 and 50 nodes and minimum

leaf supports of 2, 5, 10, 15 and 20 were tested (see Supplementary

Fig. S3) and maximum depth of 40 and minimum leaf support of 10

was selected to minimize overfitting and maximize accuracy.

SANDPUMA was then trained with all permutations of three out of

four individual methods (of ASM, SVM, prediCAT and pHMM) to

assess the contribution of each individual method to accuracy (see

Supplementary Fig. S4). The maximum depth of these subsetted

methods was scaled to 30 (0.75*40) so to avoid overfitting in this

comparison. Accuracy of individual decision paths within the full

ensemble algorithm was quantified (see Supplementary Fig. S5) and

paths less than 50% accurate were deemed unreliable and removed.

A second cross-validation was used to benchmark the individual and
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SANDPUMA methods. Accuracy and coverage were compared to

the constituent methods and specificity precision and recall were

calculated.

2.5 NRPS categorization of Actinobacteria
Open reading frames (ORFs) were predicted with prodigal v2.60

(Hyatt et al., 2010) in closed end mode from 7635 Actinobacteria

genomes downloaded from NCBI. A-domains were identified

through scanning against PF00501.21, CoA-ligase domain and pep-

tidyl carrier protein pHMMs (described in antiSMASH; Blin et al.,

2017) with HMMER3 (Eddy, 2011). Hits with higher bitscores for

PF00501.21 than CoA-ligase which also had a PCP in the same

ORF were called true A-domains and used in further analysis.

To construct a reference species tree, HMMER3 was used to

search the Actinobacteria genomes using TIGRFAM HMMs of 92

genes conserved across bacteria. Hits were concatenated and used to

build a multi-locus protein alignment with MAFFT. These were con-

verted to nucleotide alignments and a phylogeny was created with

RAxML 8.1.24 (Stamatakis, 2014) under a GTRGAMMA substitu-

tion model with 100 bootstraps. Deinococcus geopthermalis DSM

11300 was used as an outgroup.

SANDPUMA was employed to make substrate specificity predic-

tions. Groupings of A-domains within 10 kb of each other were

marked as putative BGCs. Pairwise percent identity comparisons

were made using DIAMOND (Buchfink et al., 2015) and a sequence

similarity matrix was created. Distance between clusters was calcu-

lated a combination of the Jaccard index (Lin et al., 2006) and

Domain Duplicate Score (DDS) of substrate specificity groups of A

domains (not of Pfam domains, as previously described by

Cimermancic et al., 2014), weighted at 0.667 and 0.333 respect-

ively. Distances of less than 0.1 were used to construct an NRPS

BGC superfamily network, which was visualized in networkx

(https://networkx.github.io/) and Cytoscape (http://www.cytoscape.

org/).

Alignments from the reference species tree were used to segregate

genomes into taxonomic bins of 97% nucleotide identity. Bins were

chosen at random (with replacement) and a genome from within

this bin was chosen at random (without replacement). Rarefaction

curves (and extrapolation to 15 000 genomes) was performed on

samplings of 3000, 4000, 5000, 6000, 7000 and 7635 by EstimateS

(Colwell et al., 2012) with 100 randomizations and 750 knots.

3 Results

3.1 A new algorithm to assess substrate predictability

and recent evolutionary events
While various computational methods for predicting NRPS A-do-

main substrates exist, no algorithms report a quantitative level of

confidence associated with their predictions. Furthermore, since cur-

rent methods rely on limited training data, they often struggle to ac-

curately predict substrates of A-domains that have undergone recent

evolutionary shifts in specificity. Duplication, divergence, recom-

bination events, (Crüsemann et al., 2013; Diminic et al., 2014;

Medema et al., 2014a; Rounge et al., 2008) and mutations in or

around the active site (Cruz-Morales et al., 2016; Stachelhaus et al.,

1999) are the major evolutionary mechanisms by which substrate

switching and expansion can occur. Confidently predicting the ef-

fect of mutations on substrate specificity relies on the breadth of

data used for training and the model’s ability to accurately reflect

biology.

To address these challenges, we developed prediCAT (Predictions

through Comparative A-domain Trees) which leverages comparative

genomics to predict substrate specificity. In prediCAT, phylogenetic

reconstructions of A-domain evolutionary histories are used to predict

substrates in one of two ways: (i) query A-domains which fall within

monophyletic clades of shared substrate specificities are assigned the

specificity of that clade, and (ii) if this does not apply, a query is as-

signed the specificity of its nearest-neighbor. A scaled nearest-

neighbor (SNN) scoring metric was developed (see Fig. 1) to assess

and report the confidence of prediCAT predictions. The SNN score is

a summation of the normalized, reversed branch lengths between a

query and the nearest neighbors that share substrate specificities (i.e.

the SNN score increases as more neighboring training sequences of

short branch length share the nearest-neighbor’s specificity; see meth-

ods for details). An analysis of the relationship between SNN scores

and prediction accuracies showed that query A domains with scores

below 0.5 show low predictability, with a steep rise at a value around

0.5 (see Fig. 1F). Based on this result, we implemented an SNN cutoff

of equal to or greater than 0.5. Queries with SNN scores lower than

this threshold will not be given a prediction. We observed 84.1% ac-

curacy after introduction of the SNN score cutoff compared to 50.7%

without it. 40% of input sequences were no longer given a prediction.

Moreover, the SNN score was implemented to quantitatively estimate

the probability that a given query domain is predicted correctly, based

on the average results of other queries at the same SNN score window

(see Supplementary Table S1). All in all, the prediCAT-SNN algo-

rithm thus provides a means for high-precision substrate specificity

prediction (by design opting for a lower recall), while the SNN metric

accurately quantifies the predictability of any A domain sequence.

3.2 A large set of new A-domains with known

specificities
To accurately assess and compare the various versions of the

prediCAT algorithm (monophyly assignment only, nearest-neighbor

forced assignment, or with SNN score cutoff; see Methods) and all

previously designed algorithms for A-domain substrate specificity

prediction, we set out to gather a large set of A-domains that are

confidently linked to substrates by experimental evidence yet have

not been included in previous training sets. In this study, sufficient

experimental evidence was defined as structure-based inferences,

confirmatory activity assays, and/or other genetic validations of

structure. To add A-domain sequences to the set previously

described by Khayatt et al. (2013), we used two sources: experimen-

tally supported A-domains from MIBiG NRPS BGCs (published

after Khayatt, 2013) and an additional set of manually curated, ex-

perimentally verified domains from recent scientific literature. The

set was checked for redundancy (100% protein identity), after

which a total dataset of 928 unique A-domain sequences was estab-

lished, made up by 494 domains from the Khayatt dataset and 434

newly added ones (see Fig. 2; for the full dataset with accession

numbers, see Supplementary Table S2). The new data constituted an

increase of 139 A-domains from Actinobacteria and 162 from

Proteobacteria (increases of 104% and 141% respectively).

Together, the newly added A-domains covered 116 unique substrate

specificities and increased the total number of available sequences

by 87%.

3.3 Systematic benchmarking shows key differences in

accuracy between algorithms
The availability of this large new set of A domains that were all ex-

perimentally supported and not part of previous training sets
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provided a unique opportunity to systematically assess and compare

the accuracies of all prediction methods. The range of methods

tested employed either prediCAT, ASM, pHMM, SVM, or greedy

coordinate-descent algorithms (see Supplementary Table S3); to

compare them, all algorithms were run on each of the 434 A do-

mains, and the results were compared to the experimental data from

literature to estimate their accuracy.

We hypothesized that some algorithms might perform relatively

better for query sequences with high percent identity (PID) to their

nearest neighbor in the training set, while others might perform bet-

ter for sequences distantly related to all sequences in the training set.

Indeed, the PrediCAT SNNþmonophyly method, which empha-

sizes the identification of recent evolutionary events, was more ac-

curate than all other algorithms for query sequences of high percent

identity to the training set, while the NRPSPredictor2 SVM, which

uses general physicochemical properties of amino acids close to the

active sites, performed better at low PID (see Fig. 3A). PrediCAT

SNN and monophyly methods did suffer from poor coverage (they

often gave no prediction), especially at low PID, and were unable to

make a confident prediction for many query sequences (see Fig. 3B).

A prediCAT nearest neighbor prediction with no SNN cutoff

(prediCAT monophylyþNN) greatly improved coverage at the cost

of accuracy. In pairwise comparisons of shared coverage,

NRPSPredictor2 ASM, NRPSPredictor2 SVM, prediCAT SNN and

prediCAT monophyly were the best performing methods (see Fig.

3C). The most significant discrepancies in sequence-to-sequence pre-

diction exist between NRPSPredictor2 ASM/SVM and pHMM-

based methods, with pHMMs vastly underperforming against other

methods (see Fig. 3C, Supplementary Table S4).

3.4 SANDPUMA: an ensemble method that

outperforms individual algorithms
The subclassification in PID classes during benchmarking made clear

that the various algorithms may have complementary strengths, rather

than a single algorithm outperforming all others in all cases. Hence,

we hypothesized that an ensemble method might outperform individ-

ual methods. Therefore, we developed SANDPUMA (Specificity of

AdenylatioN Domain Prediction Using Multiple Algorithms), which

combined versions of the prediCAT SNN, prediCAT monophyly,

ASM, pHMM and SVM methods that were all retrained on all 928

experimentally supported A domains.

A cross-validation of all 928 domains (see Fig. 4 and

Supplementary Fig. S6) served as training data for ensemble sub-

strate predictions. ASM, SVM, prediCAT monophyly and prediCAT

SNN methods shared considerable coverage, with 91.4% of queries

covered by two or more algorithms and only 5.6% of queries not

covered by any method (see Supplementary Fig. S6A). As in the ear-

lier analysis, both prediCAT methods performed well at over 80%

accuracy, but had considerable drops in coverage under 80% PID

A B C

Fig. 2. Dataset (A) source, (B) phylum distribution of the total dataset and (C) phylum distribution of the train and test datasets

Fig. 3. Comparison of current NRPS prediction algorithms. (A) Accuracy and

(B) coverage distributions of NRPS prediction methods at different sequence

percent identity to the training set. Solid and dashed lines indicate means

and quartiles, respectively. Training data for prediCAT methods from Khayatt

dataset. All other algorithms were used as released. Test data was comprised

of A-domains from MIBiG (post-Khayatt) and manual sources. PID was calcu-

lated as protein sequence identity of test queries to the Khayatt dataset.

(C) Pairwise accuracy ratios of shared coverage. Ratio calculated as (fraction

correct method A) / (fraction correct method B)
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(see Supplementary Fig. S6B and C). On average, ASMs performed

best against similar sequences (>60% PID) while prediCAT

Monophyly returned the most accurate predictions at lower PIDs

(<60%) (see Supplementary Fig. S6B).

SANDPUMA, a decision tree schema, was built to predict specif-

icities based on the protein percent identify (PID) to the training A-

domain set and the predictions of the individual ASM, SVM,

prediCAT SNN, prediCAT monophyly and pHMM methods. A

maximum tree depth of 40 nodes and a minimum leaf support of 10

samples was chosen to maximize accuracy while minimizing the po-

tential of overfitting (see Supplementary Fig. S3). Accuracy assess-

ment of each decision tree path based on cross-validation was used

to identify and exclude unreliable paths from the algorithm (see

Supplementary Fig. S5), as we reasoned that it would be preferable

not to give a prediction if the probability of accurate assignment

would be low. A second cross-validation was performed to bench-

mark the decision tree method, performing individual and ensemble

predictions with newly randomized training data. As above, using

trusted decision tree paths from the first cross-validation resulted in

high accuracy and coverage predictions (see Supplementary Fig. S7).

Importantly, the observation that an independent cross-validation

does not significantly impact performance provides confidence that

our predictive model is robust and accuracy is fairly estimated.

Importantly, low coverage issues that some individual

high-precision methods exhibited were no longer present in the

SANDPUMA ensemble implementation (see Supplementary Fig.

S6C). Also, SANDPUMA exhibits high accuracies across many taxo-

nomic groups and has greater precision, recall and F-scores than

its constitutive methods across taxonomic groups (see Fig. 4). The

expanded dataset and new method implementation resulted in

improved F-scores for many amino acids (see Supplementary

Table S5) and showed improvements over all individual methods

(see Supplementary Table S6), while expanding the number of

amino acid specificities for which predictions are available (see

Supplementary Table S7).

3.5 NRPS diversity of Actinobacteria
As NRPS BGCs are a large and important biosynthetic class of sec-

ondary metabolites, we sought to showcase the scalability of

SANDPUMA’s NRPS classification by describing the diversity of

NRPS biosynthesis across all publicly available Actinobacteria gen-

omes. Actinobacteria are prolific producers of secondary metabol-

ites with diverse biological activities. Many of these compounds

have been used in medical and biotechnological contexts, and study-

ing their ability to mediate community dynamics has deepened our

understanding of microbial interactions (Lewin et al., 2016).

83 589 A-domains of NRPS BGCs were analyzed in 7635

Actinobacteria genomes from 69 genera (see Supplementary Fig. S8)

and clustered by Jaccard and Domain Duplicate Score (DDS) simi-

larity metrics into superfamilies. Rather than using Pfam domains as

basic units (Cimermancic et al., 2014), A-domain classes were used

A

B

Fig. 4. Cross-validation. Ten independent random shuffles were performed to

segregate the full dataset into tenths (92 or 93 sequences). Each 1/10 was

used to test methods trained on the remaining 9/10. (A) Accuracy of methods

across different taxonomic groups. (B) Means are weighted by frequency in

the cross-validation set. Weighted means of precision, recall and F-score are

shown across individual and ensemble methods

Fig. 5. NRP biosynthesis across Actinobacteria. (A) Representative low, medium

and high diversity subgraphs colored by genus with their respective compos-

itions and A-domain specificities. (B) Rarefaction curve of NRP Superfamilies.

Solid lines denote the sampled data and dashed lines denote values that are

extrapolated. The full genome set (with no random sampling) is shown in yellow

(Color version of this figure is available at Bioinformatics online.)
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(according to methods previously published in Nguyen et al., 2016)

for superfamily clustering. From the 6049 NRPS BGCs with at least

three A-domains, 458 superfamilies were identified, 71 of which

were comprised of five or more BGC examples. Interestingly, 273

superfamilies had only a single BGC representative. Furthermore,

correction for NRP BGCs at contig breaks suggests these estimates

are not biased by gene cluster fragmentation (see Supplementary

Fig. S9). We see that many cluster superfamilies are genus-specific or

of low genus diversity while others are dispersed across many genera

within Actinobacteria (see Fig. 5A). A rarefaction analysis and ex-

trapolation from a random sampling of taxonomic bins (97% pair-

wise identity across 92 conserved genes) suggests current estimates

of NRP superfamily diversity are undercounted and there are many

more chemical scaffolds to be found (see Fig. 5B).

4 Discussion

The addition of experimentally characterized datasets from the lit-

erature and MIBiG provided a unique opportunity to perform a fair

and comprehensive comparison of the wide range of published al-

gorithms for A-domain substrate specificity prediction. Multiple

conclusions can be drawn from the results: (i) in pairwise compari-

sons of the performance of existing methods on recently published

experimental data (see Fig. 3C), NRPSPredictor2 and prediCAT

SNN methods performed best and hierarchically cluster together;

(ii) Minowa and SEQL-NRPS methods also cluster together, repre-

senting the group in which observed performance was poorest; (iii)

various methods based on pHMMs (Khayatt, NRPSsp and Minowa)

do not cluster closely in terms of performance. Minowa represents

the pHMM method with the oldest training data (2007), and the sig-

nificant differences in performance to NRPSsp (2012) and Khayatt

(2013) (see Supplementary Table S4) suggest the importance of com-

prehensive training data in whole-domain predictive methods, espe-

cially when integrated as structure prediction models in widely used

BGC analysis suites such as antiSMASH (Blin et al., 2017) and

PRISM (Skinnider et al., 2015).

The integrated SANDPUMA ensemble algorithm, which com-

bines results from ASM, SVM, pHMM and prediCAT methods into

a single prediction, is significantly more accurate than individual

methods (see Table 1). Importantly, SANDPUMA’s improved ac-

curacy likely reflects the strengths of the individual algorithms in

certain taxonomic groups (see Fig. 4A). For example, while the

SVM method is strong for fungi and weak for proteobacteria,

SANDPUMA performs well on sequences from both taxa. The abil-

ity to perform well across taxa is especially important as genomic in-

formation for an increasing number of species grows exponentially

and NRP biosynthetic discovery increases from non-traditional

sources such as protists (O’Neill et al., 2016) and even metazoans

(Shou et al., 2016). Similarly, NRPSs from certain important ecosys-

tems such as the human microbiome (Donia et al., 2014) are poorly

covered by current training data. To better cover uncharted taxo-

nomic and biosynthetic areas of NRP diversity in the future, projects

for large-scale and systematic experimental characterization of un-

known A-domains would be highly beneficial. In such an approach,

uncharacterized A-domains would be selected to maximize taxo-

nomic and functional coverage, be codon-optimized and synthesized

for expression in a suitable heterologous host, and be profiled in de-

tail using ATP-PPi exchange assays. Besides characterization of A-

domains of unknown function, it would also be highly beneficial to

perform similar high-throughput profiling of A-domains whose sub-

strate specificity has been inferred from the final natural product

structure, as the amino acid observed in the final structure is not al-

ways identical to the amino acid selected by the A-domain (Challis

et al., 2000). The amino acid can be subject to post-assembly-line

modifications by tailoring enzymes which obscure the true sub-

strates for these domains (Challis et al., 2000). With currently avail-

able data, it is difficult to reliably distinguish recent evolution of

A-domain substrate specificities from recent evolutionary changes in

post-assembly-line modifications in such cases.

The goal of a supervised machine learning decision tree is to cre-

ate a predictive model from multivariate inputs by inferring decision

rules from the data features. In SANDPUMA, these features are a

query A-domain’s percent identity to the training set and its classifi-

cations by each individual algorithm. In contrast to unsupervised

machine learning approaches, SML frameworks build models from

user-defined training data only. This distinction is especially import-

ant in SANDPUMA, as only structurally supported or experimen-

tally validated A-domain substrate specificities are used to fit the

model, which eliminates the incorporation of unverified classifica-

tions into the predictive model. Overfitting remains a concern for

large tree networks with many decision nodes, and we have ad-

dressed this by constraining the model to a maximum tree depth

(40) and a minimum number of leaves that support a given decision

path (10) (see Supplementary Fig. S3). The accuracy achieved by

SANDPUMA leverages the strengths of ASM, SVM, prediCAT and

pHMMs and is reliant on all these methods (see Supplementary Fig.

S4). This is especially true of A-domain specificities with few exam-

ples in the training data (see Supplementary Fig. S4B). Furthermore,

the ensemble SANDPUMA outperforms the best individual methods

for shared queries (those queries for which predictions are returned

by both SANDPUMA and the individual method; see Table 1).

In cross-validation, unreliable decision paths (<50% accurate)

are followed for only 13.7% of the total data (see Supplementary

Fig. S5), so their removal further improved overall accuracy of

SANDPUMA while only slightly decreasing coverage (see

Supplementary Fig. S7). We feel that, in general, high precision is

more important than high recall, and that algorithms should not

be forced to output predictions in cases where no confident pre-

diction can be made. The accuracy of the followed decision tree

path is reported to the end user to help assess the confidence of a

given prediction. The decision tree architecture of SANDPUMA

allows for an elegant way of incorporating this into its classifica-

tions. Furthermore, the reporting of both prediCAT SNN score

and SANDPUMA decision tree path accuracy allows for users to

estimate both how closely and consistently a query clades with

training data and how accurately current algorithms are able to

make predictions for the specificity finally assigned by

SANDPUMA.

Accurate A-domain substrate predictions are critical in fueling

high-throughput NRP discovery and in describing nature’s

Table 1. Comparison of SANDPUMA to individual methods

Individual

method

Shared cross-

validation

queries

Individual

accuracy

SANDPUMA

accuracy

McNemar

P-value

ASM 7255 0.905 0.922 6.59E�07

SVM 7201 0.824 0.908 1.95E�90

prediCAT

Monophyly

4846 0.899 0.945 4.25E�36

prediCAT SNN

� 0.5

5116 0.879 0.939 1.27E�52

pHMMs 7935 0.727 0.899 2.03E�246
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chemical ecology. Actinobacteria represent a major source of bio-

active small molecules and BGCs encoding NRP biosynthesis are

found in most major Actinobacteria genera (see Supplementary

Fig. S8). Almost 60% of the NRP superfamilies identified within

publicly available Actinobacteria genomes were comprised of only

a single example which argues that despite the exponential growth

of sequencing data, genomic NRP BGC discovery efforts are no-

where near saturation. Our metrics for superfamily diversity re-

main high when analyzing only NRP BGCs that are more than

10 kb from a contig break (see Supplementary Fig. S9), suggesting

these estimates reflect the true natural diversity. The low genus-

level diversity observed in many NRP superfamilies (see Fig. 5A)

further suggests many novel NRP superfamilies have yet to be un-

covered. Rarefaction analysis and extrapolation of NRP superfa-

milies across genomes (see Fig. 5B) supports this hypothesis.

Moreover, it highlights the implicit taxonomic biases in available

genomes that impact such analyses. With random sampling from

taxonomic bins to correct for these biases, as fewer genomes are

sampled the rarefaction curve exhibits a much steeper slope (and

thus is more difficult to accurately extrapolate). Together, these

findings suggest much NRP chemical diversity remains to be dis-

covered, especially in sparsely sampled genera, and previous re-

ports (Doroghazi et al., 2014) of NRP chemical diversity are likely

underestimated.

With the increasing frequency of metagenomic analyses and

large-scale genome studies, SANDPUMA provides a robust tool

for guiding prioritization and dereplication of NRPs within large

datasets. The ability to prioritize novel scaffolds and analogs

within superfamilies of interest greatly increases the power of gen-

omic natural product discovery efforts. Furthermore, studies eluci-

dating the evolutionary mechanisms through which A-domain

specificities evolve have the potential to inform rational engineer-

ing and strategies. These advances rely on accurate predictions.

SANDPUMA provides a powerful framework that optimizes cur-

rent capabilities for adenylation domain substrate specificity pre-

diction, and (through its connection to MIBiG) is designed to be

easily extendable with new data from both low- and high-

throughput experimental sources in the future. Therefore, it pro-

vides a key step in the optimization of approaches to connect gen-

omic and metabolomic data (Doroghazi et al., 2014; Medema

et al., 2014b; Mohimani et al., 2014; Wang et al., 2016), which

will be key drivers of future efforts in genome-based natural prod-

uct discovery.

SANDPUMA is offered as open-source software and has been

integrated into the antiSMASH (Blin et al., 2017) biosynthetic gene

cluster analysis platform to provide both flexibility and general ap-

plicability for expert and non-expert users alike.

Acknowledgements

The authors thank Xiaowen Lu for inspiring BGC distance calculations, Aldo

Gonzalez-Ortiz for data retrieval and Heidi Horn for constructive comments

and suggestions.

Funding

M.G.C. was supported by National Institutes of Health National Research

Service Award T32 GM008505. M.H.M. was supported by VENI grant

863.15.002 from The Netherlands Organization for Scientific Research

(NWO) M.G.C. and C.R.C were supported by National Institutes of Health

U19 Al109673.

Conflict of Interest: none declared.

References

Bachmann,B.O. and Ravel,J. (2009) Chapter 8. Methods for in silico predic-

tion of microbial polyketide and nonribosomal peptide biosynthetic path-

ways from DNA sequence data. Methods in enzymology, 458, 181–217.

Barana�si�c,D. et al. (2014) Predicting substrate specificity of adenylation do-

mains of nonribosomal peptide synthetases and other protein properties by

latent semantic indexing. J. Ind. Microbiol. Biotechnol., 41, 461–467.

Blin,K. et al. (2017) antiSMASH 4.0––improvements in chemistry prediction and

gene cluster boundary identification. Nucleic Acids Res., 1854, 1019–1037.

Buchfink,B. et al. (2015) Fast and sensitive protein alignment using

DIAMOND. Nat. Methods, 12, 59–60.

Caboche,S. et al. (2010) Diversity of monomers in nonribosomal peptides: to-

wards the prediction of origin and biological activity. J. Bacteriol., 192,

5143–5150.

Challis,G.L. et al. (2000) Predictive, structure-based model of amino acid rec-

ognition by nonribosomal peptide synthetase adenylation domains. Chem.

Biol., 7, 211–224.

Cimermancic,P. et al. (2014) Insights into secondary metabolism from a global

analysis of prokaryotic biosynthetic gene clusters. Cell, 158, 412–421.

Colwell,R.K. et al. (2012) Models and estimators linking individual-based and

sample-based rarefaction, extrapolation and comparison of assemblages.

J. Plant Ecol., 5, 3–21.
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