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Abstract

Motivation: Computational methods for phosphorylation site prediction play important roles in

protein function studies and experimental design. Most existing methods are based on feature ex-

traction, which may result in incomplete or biased features. Deep learning as the cutting-edge

machine learning method has the ability to automatically discover complex representations of

phosphorylation patterns from the raw sequences, and hence it provides a powerful tool for im-

provement of phosphorylation site prediction.

Results: We present MusiteDeep, the first deep-learning framework for predicting general and

kinase-specific phosphorylation sites. MusiteDeep takes raw sequence data as input and uses con-

volutional neural networks with a novel two-dimensional attention mechanism. It achieves over a

50% relative improvement in the area under the precision-recall curve in general phosphorylation

site prediction and obtains competitive results in kinase-specific prediction compared to other well-

known tools on the benchmark data.

Availability and implementation: MusiteDeep is provided as an open-source tool available at

https://github.com/duolinwang/MusiteDeep.

Contact: xudong@missouri.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Post-translational modification (PTM) generally refers to the add-

ition of a functional group covalently to a protein as in phosphoryl-

ation, acetylation, methylation or ubiquitination. It is a key

mechanism to increase proteomic diversity (Prabakaran et al.,

2012). The most studied PTM is phosphorylation on serine and

threonine. It has been estimated that one-third of mammalian

proteins may be phosphorylated (Sefton and Shenolikar, 2001). This

modification plays a vital role in intracellular signal transduction,

and is involved in regulating cell cycle progression, differentiation,

transformation, development, peptide hormone response and adap-

tation (Cohen, 2002; Hubbard and Cohen, 1993; Pawson and Scott,

1997). Therefore, identifying and understanding phosphorylation

are critical in cell biology and diseases. In contrast to conventional
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experimental methods, which are expensive and time-consuming,

computational identification of phosphorylation provides an alter-

native strategy for proteome-wide annotation and large-scale experi-

mental design with advantages of fast speed and low cost.

There are two categories of phosphorylation prediction tools:

tools for general phosphorylation site prediction and tools for

kinase-specific phosphorylation site prediction. Given protein se-

quences, the first category of tools predicts sites that can be phos-

phorylated, such as the DISPHOS (Iakoucheva et al., 2004),

ModPred (Pejaver et al., 2014) and AMS 4.0 (Plewczynski et al.,

2012), while the second category of tools predicts sites that can be

phosphorylated by a specific kinase, such as KinasePhos 2.0 (Wong

et al., 2007), the series of GPS methods (Liu et al., 2011; Xue et al.,

2011, 2008; Zhao et al., 2014) and NetPhosK 1.0 (Blom et al.,

2004). Most of the existing methods share a common strategy that

can be summarized as two main steps: (1) to extract features from

the original sequence or other domain knowledge, which is known

as ‘feature engineering’ in machine learning; (2) to choose a

machine-learning algorithm for training and prediction by using the

extracted features. Other than different machine-learning algo-

rithms, such as support vector machine (SVM) and random forest,

the success of the prediction largely depends on the effective feature

extraction and protein representation. Different features are ex-

tracted from protein sequences or domain knowledge: such as the

amino acid substitution matrix used in the series of GPS methods

(Liu et al., 2011; Xue et al., 2010, 2008; Zhao et al., 2014), the

three sets of features (k nearest neighbor scores, disorder scores and

amino acid frequencies) used in the Musite (Gao et al., 2010; Yao

et al., 2012), and the physicochemical properties used in

(Plewczynski et al., 2012; Yao et al., 2015). Although these features

helped many existing methods achieve good performance on phos-

phorylation sites predictions, there is limitation of feature engineer-

ing, which requires human design that may result in incomplete or

biased features.

One promising and attractive solution for such a problem is the

deep-learning approach. Compared with conventional machine-

learning techniques, deep-learning methods allow their computa-

tional models to be fed with raw data and automatically discover

the complex representations needed for classification. There has

been a growing interest in applying deep-learning methods for biolo-

gical sequence analysis. For example, convolutional neural network

(CNN) (LeCun et al., 2010) was used in DeepBind for predicting se-

quence specificities of DNA- and RNA-binding proteins (Alipanahi

et al., 2015); a hybrid of CNN and bidirectional long short-term

memory network (BLSTM) (Graves and Schmidhuber, 2005) was

used in DanQ for predicting properties and functions of DNA se-

quences (Quang and Xie, 2016). These approaches by using only the

raw sequence have achieved significantly better performance than

previous machine learning methods. However, there is no deep-

learning framework for PTM prediction and it is highly nontrivial to

apply a deep-learning framework for a new biology problem, espe-

cially to address the kinase-specific prediction problem by deep

learning using small-sample data. Currently there are only �6000

phosphorylation sites with known catalytic enzyme information in

the public databases (http://phospho.elm.eu.org/).

Here we present MusiteDeep, a novel deep-learning framework

for general and kinase-specific phosphorylation site prediction.

MusiteDeep is a update of our previous tool Musite (Gao et al.,

2010) with a novel deep-learning method. Different from existing

phosphorylation site prediction methods, MusiteDeep predicts dir-

ectly from the raw protein sequence avoiding feature engineering.

To address the small-sample problem in kinase-specific site

prediction, MusiteDeep utilizes the concept of transfer learning

to fine-tune the kinase-specific models from the pre-trained

general phosphorylation model. By augmenting the convolutional

network with an attention mechanism on both sequence dimen-

sion and feature map dimension, a biologically interpretable repre-

sentation of protein sequence is obtained, by which protein

fragments can be clustered into biologically meaningful groups.

To our best knowledge, MusiteDeep is the first deep-learning

framework for general and kinase-specific phosphorylation site pre-

diction. MusiteDeep is provided as an open source tool and imple-

mented in Python at https://github.com/duolinwang/MusiteDeep. At

present, MusiteDeep only provides predictions of human phosphor-

ylation sites; however, MusiteDeep also provides customized model

training that enables users to train other PTM prediction models of

any species by using their own training datasets.

2 Materials and methods

2.1 Benchmark dataset
For general phosphorylation site prediction, phosphorylation data

for Homo sapiens were collected from UniProt/Swiss-Prot (Bairoch

et al., 2005). Phosphorylation sites on serine (S), threonine (T) or

tyrosine (Y) annotated by UniProt/Swiss-Prot were used as positive

data, while the same amino acid excluding annotated phosphoryl-

ation sites from the same proteins were regarded as the negative

data. For kinase-specific phosphorylation site prediction, the protein

sequences were also collected from UniProt/Swiss-Prot, while the an-

notations of human kinases were extracted from RegPhos (Lee

et al., 2011), which contains information of kinase-specific phos-

phorylation sites from six phosphorylation-associated resources

such as Phospho.ELM (Dinkel et al., 2011), PhosphoSitePlus

(Hornbeck et al., 2012), PHOSIDA (Gnad et al., 2011), SysPTM (Li

et al., 2009), HPRD (http://www.hprd.org/) and UniProtKB/Swiss-

Prot. We extracted kinase family data from RegPhos according to

the categorization used in (Xue et al., 2008). For each kinase family,

we trained a specific prediction model and only the sites annotated

by the specific kinase family were used as positive data, whereas all

other residues of the same types (serine, threonine or tyrosine) in the

same substrates were used as negative data.

To compare with different deep-learning architectures and other

existing phosphorylation site prediction methods, we used independ-

ent sets for training and testing. To avoid any overlap of the testing

set with any training processes of other tools, we used the recently

created data as the testing set. In particular, the annotation entries

that were created after the year 2008 were used as the testing set

and the remaining annotation was used as the training set. We con-

structed non-redundant training and testing set, and removed any

protein sequences in the training set having high similarities with the

testing set by using Blastp (2.2.25) (ftp://ftp.ncbi.nlm.nih.gov/blast/

executables/blastþ/) with a sequence identity threshold of 50%.

Table 1 summarizes the collected phosphorylation data used in

this study. Because a serine/threonine-specific kinase typically

can phosphorylate both serine and threonine residues (Shi, 2009),

we combined phosphoserine and phosphothreonine sites in the

data collection and trained one model for both serine and threonine

sites.

2.2 Methods
Figure 1 summarizes our deep-learning framework for both general

and kinase-specific phosphorylation site prediction.
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2.2.1 General phosphorylation site prediction

Given protein sequences, the general phosphorylation site prediction

predicts sites that can be phosphorylated by serine/threonine or tyro-

sine. It can be formulated as a binary classification problem, namely,

each potential phosphorylation site can be classified as either a phos-

phorylation site or a non-phosphorylation site. In contrast to other

traditional phosphorylation prediction tools, our method takes the

raw sequence as input exclusively. Given a protein sequence, a pep-

tide of 33 residues centered at the potential phosphorylation site is

extracted. We choose the window size of 33 (with the potential phos-

phorylation site and 16 residues at each side), since it is long enough

compared with other tools: Musite uses a window size of 27,

NetPhos3.1 uses up to 33 and GPS2.0 uses 15. The protein fragments

were coded by one-of-K coding, i.e. a K-dimensional vector with

value 1 at the index corresponding to the amino acid in the protein

sequence, and with 0 at all other positions. For unknown or non-

standard amino acids, for example amino acids with abbreviation

‘X’, 0.05 was assigned to all positions. Since there are 20 common

amino acids, K is set to 20. However, when the left part or right part

for a potential phosphorylation site is not as long as the window size,

a dash (‘-’) was given and treated at one additional amino acid. Thus,

we actually used the one-of-21 coding.

In the deep-learning architecture of MusiteDeep, the multi-layer

CNN encodes an input protein sequence into a fixed two-dimensional

hidden state (as shown in Fig. 1). Then, one copy of the two-

dimensional hidden state (hidden state 1) is input into attention-1, and

another copy of the hidden state (hidden state 2) is trans-positioned and

input into attention-2. The implementation of the attention-based de-

coder is inspired by (Bahdanau et al., 2014), which extended a basic

RNN encoder-decoder architecture by introducing an attention mechan-

ism to neural machine translation. By augmenting with the attention

mechanism, it allows their model to automatically search for important

positions to learn a soft transformation between the input and output se-

quences. We modified their approach by (i) replacing the RNN encoder

with a multi-layer CNN; (ii) providing a two-dimensional attention

mechanism on both sequence dimension and feature map dimension;

and (iii) changing the RNN decoder into a feedforward neural network

to generate a single representation vector. The two independent atten-

tion mechanisms built on top of the multi-layer CNN were designed to

quantitatively estimate the contributions of each element on both

sequence and feature map dimensions and finally to obtain a merged

soft-weighted representation of protein sequence. These two attention

mechanisms work in the same way. Taking the attention-2 as an ex-

ample, the graphical illustration of the attention-based decoder is shown

in Figure 2. The output H’ is a weighted sum of the hidden states:

H0 ¼
XT

t¼1

htat (1)

where ht is a hidden state (hidden state 2) from the multi-layer

CNN, t¼1, 2,. . .T (T¼200 for attention-2). at is the softmax

weight of each hidden state ht, which is formulated by:

at ¼
exp ðetÞ
PT

k¼1

ek

(2)

et ¼ f f ðhtWÞUT
� �

(3)

where et is generated from the hidden state ht by a feedforward

neural network function (3), W is an attention hidden matrix, U is

an attention hidden vector and f represents the linear activation

function. The attention-based decoder decodes the two copies of the

Table 1. Phosphorylation data collected in this study

General phosphorylation sites

Homo sapiens Data source Residue type # of positive sites # of negative sites

Training Swiss-Prot S/T 34 401 677 157

Y 1883 128 007

Testing Swiss-Prot S/T 2074 60 880

Y 47 9174

Kinase-specific phosphorylation sites

Kinase family Data source Residue type # of positive sites # of negative sites

CDK Swiss-Prot S/T 315 15 878

RegPhos

PKA Swiss-Prot S/T 354 20 321

RegPhos

CK2 Swiss-Prot S/T 303 9687

RegPhos

MAPK Swiss-Prot S/T 399 16 572

RegPhos

PKC Swiss-Prot S/T 456 19 779

RegPhos

Fig. 1. Deep-learning architecture of MusiteDeep. The input layer is the one-

of-K coding of a 33-residue protein fragment centered at the prediction site.

Multi-layer CNN is used as the feature extractor but no pooling layers are

used. The last hidden state of multi-layer CNN is copied twice, where one dir-

ectly inputs into the attention mechanism (attention-1) and the other first

trans-positioned and then inputs into another attention mechanism (atten-

tion-2). The output of the two attention mechanisms is combined and input

into the fully connected neural network layers. The final layer is a single neu-

ral network layer with the softmax output
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hidden state (ht) into a merged representation (H’), which is used as

input to the following fully connected neural network layers and the

softmax output layer (Fig. 1).

Different deep-learning architectures were explored in this work to

compare them with the proposed architecture, including one-layer

CNN architecture as in DeepBind (Alipanahi et al., 2015), the hybrid

CNN and LSTM as in DanQ (Quang and Xie, 2016) and a multi-

layer RNN (multi-layer LSTM) with a deep neural network. The exact

same hyperparameters in their models will not be applicable to our

problem since they were designed for different applications. Hence,

we need to choose optimal hyperparameters for these architectures to

fit our task. The selection of hyperparameters in deep learning could

be a tedious task. After the main architecture of each model has been

decided, we applied one of Bayesian optimization methods (Snoek

et al., 2012) to guide the selection of the hyper-parameters for these

architectures; specifically, the Spearmint package (https://github.com/

HIPS/Spearmint) was used. Bayesian optimization is an automatic tun-

ing approach for optimizing the performance of a given learning algo-

rithm by modeling the algorithm’s generalization performance

through sampling the hyperparameters from a Gaussian process. For

each model, a small subset of training data was used to train different

models with different hyperparameters suggested iteratively by the

Bayesian optimization. After enough iterations, the best performance

will not improve and the optimal hyperparameters which get the best

performance were used in the final model. All the details about the

architectures and parameters for these models can be found in Section

1 in Supplementary Material.

2.2.2 Kinase-specific phosphorylation site prediction

For kinase-specific phosphorylation prediction, the challenge is how

to train a highly accurate generalized model with small sample of

kinase-specific training data. According to the RegPhos database, only

kinase families, CDK, PKA, CK2, MAPK and PKC have more than

100 known phosphorylation sites. To compare with other kinase-

specific prediction tools, we focused on these five big kinase families.

Because the size of the training data is much smaller than that of the

parameters of the model, it is very easy to overfit the training data. As

shown in (Yosinski et al., 2015), the multi-layer CNN in the general

model can be regarded as feature extraction layers and easily general-

ized to other datasets for transfer learning (Caruana, 1995). Instead of

frozen all the transferred layers, fine-tuning the transferred layers im-

proves generalization (Yosinski et al., 2014). Therefore, to solve the

small-sample problem of kinase-specific phosphorylation site

prediction, we trained a base network on the general phosphorylation

data and then transferred the whole layers except for the last output

layer of the base network to kinase-specific models. At last we fine-

tuned the whole network using the kinase-specific data. In this way,

the kinase-specific models learn from the general feature representa-

tions and the overfitting problem is relieved. This approach has suc-

cessfully been applied to a number of image classification problems

and demonstrated good classification performance by using small-

sample data (Esteva et al., 2017; Zeiler and Fergus, 2014).

2.2.3 Bootstrapping

The sizes of positive and negative data in this study were highly imbal-

anced. The size of negative data was more than two orders of magni-

tude larger than the positive data as shown in Table 1. To address this

issue, we extended our deep-learning framework with a bootstrapping

method. The realization of the bootstrapping is similar to (Yan et al.,

2015), but was implemented in a different way. Given the training

samples from positive and negative datasets, the bootstrap procedure

is as follows. Let n and p be the number of negative and positive sam-

ples in the imbalanced training dataset with n� p. For each bootstrap

iteration, the same number (Sp) of samples of positive data and nega-

tive data were selected and one model was trained on this balanced

dataset. To go through all the negative data, the n negative samples

were divided into N bins according to Sp; therefore, N ¼ bn=Sp c.
Totally, N times of bootstrap iterations will be trained to generate one

classifier. This procedure will be repeated for m times (m¼5 by de-

fault) and m classifiers will be generated. When predicting for a query

site, the average output calculated by the m classifiers was taken as the

final prediction. For each bootstrap iteration i, early stop strategy

(Yao et al., 2007) was used to control the number of epochs for each

bootstrap training (patience¼20 by default).

3 Results

Although MusiteDeep is realized based on deep learning, a method

well-known for being time-consuming in training, the prediction

time is actually less than other feature-extraction based tools due to

saving of feature calculations. For example, the running time was

less than 5 minutes for predicting general phosphorylation sites on

1000 protein sequences using a 8 GB GeForce GTX 1080 machine,

although it took nearly 24 h to train the model. It is worth noting

that the training process is only needed once for a prediction model.

3.1 Evaluating the performance of MusiteDeep for

general phosphorylation site prediction
To evaluate the performance of MusiteDeep against Musite and

other deep-learning architectures described in Section 2.2.1, a five-

fold cross-validation was performed. For all the methods, the same

training sets and same testing sets were used. The average ROC (re-

ceiver operating characteristic) and precision-recall curves of the

five tests were plotted in Figure 3. It shows that all the deep-learning

architectures outperformed the feature-extraction based tool

Musite. The performance of MusiteDeep was better than other

deep-learning architectures. By using the L1 regularization and

dropout (Srivastava et al., 2014), MusiteDeep relieved the overfit-

ting by showing very similar performance in the training and valid-

ation processes for long epochs, as shown in Supplementary Figure

S1 in Supplementary Material. Furthermore, the early stop mechan-

ism monitored on the cost of validation set broke off the training

process when the cost of validation set did not decrease for some

epochs.

Fig. 2. Graphical illustration of the attention-based decoder on the feature

map dimension. It decodes the feature maps (h1, h2 . . ., hT) from the last hid-

den state of multi-layer CNN into a single target representation (H’). All the

parameters within each layer are scaled between 0 and 1. The grey scale is

shown according to the values of parameters
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We compared MusiteDeep with several well-known and publicly

available tools for general phosphorylation site prediction, such as

the original Musite, NetPhos 3.1 (http://www.cbs.dtu.dk/services/

NetPhos-3.1/), ModPred (Pejaver et al., 2014) and one recently pub-

lished tool PhosPred-RF (Wei et al., 2017). We used one training set

to train our model and predicted on one independent testing set, as

described in Table 1. Because these tools did not provide customized

model training, we used their tools and their pre-trained model as is to

do prediction for the testing set. We also trained MusiteDeep on one

strict training set in which sequences have no more than 10% identity

with the testing set (removed 1590 additional proteins from the train-

ing set). By taking different thresholds according to the scores provided

by each method, the ROC curves and the precision-recall curves were

plotted in Figure 4 and used for calculating the AUC (area under the

ROC curves) and the mean precision (area under the precision-recall

curves). Figure 4 shows that MusiteDeep had much better performance

than other methods in both ROC and precision-recall estimators. The

performance using the training set of 10% identity threshold had a

very similar performance to that of the original training set, which

demonstrates that the redundancy of sequences in the training set had

little effect on its performance of the testing set in this case.

We evaluated the contribution of different strategies that affect

the performance of MusiteDeep by five-fold cross-validation. We com-

pared the performance of MusiteDeep with and without different at-

tentions, including using a two-dimensional attention, no attention

and two single-dimensional attentions by training on the same bal-

anced training set. Supplementary Figure S2 shows that the two-

dimensional attention obtained the best performance (average

AUC¼0.886, average mean precision¼0.372), while no attention

got the second best results (average AUC¼0.884, average mean preci-

sion¼0.363). Interestingly, no attention performed better than the

single-dimensional attention. This result is similar to (Sønderby et al.,

2015), in which the regular LSTM performed better than the LSTM

with an attention mechanism on the sequence dimension. This result

may be because that all the information of the previous hidden state

was kept for the next layers with no attention, while the information

of either dimension would be weaken through the weighted sum oper-

ation (Equation (2)) by the single dimensional attention mechanism.

The two-dimensional attention obtained the best performance prob-

ably because it got more information back through attention mechan-

isms on both dimensions. We also compared the performance of

MusiteDeep with and without bootstrapping. The bootstrapping ver-

sion contained 10-ensemble classifiers. It was compared with two ver-

sions of non-bootstrapping. One was trained directly on the

unbalanced datasets (unbalanced training). The other was trained on

the balanced datasets (balanced training), which selected 1: 1 positive

and negative training data randomly for one cross-validation run.

Supplementary Figure S3 shows that the bootstrapping strategy with

10-ensemble classifiers improved MusiteDeep from 0.886 (and 0.372)

of the balanced training and 0.888 (and 0.388) of the unbalanced

training without bootstrapping to 0.897 (and 0.404) with bootstrap-

ping in terms of AUC (and mean precision).

3.2 Comparison with other kinase-specific

phosphorylation site prediction tools
We compared MusiteDeep with several well-known tools for

kinase-specific prediction, including Musite, NetPhos3.1, GPS 2.0

(Xue et al., 2008) and GPS 3.0 (http://gps.biocuckoo.org/). The five

big kinase families, CDK, PKA, CK2, MAPK and PKC were used for

the comparison. Since known kinase-specific sites were limited, we

could not just separate one training dataset from one testing dataset

according to their creation dates as what we did for the general pre-

diction. Thus, to evaluate the performance for each of the five kinase

families, a five-fold cross-validation test was performed. Each time, the

four-fifths of the data were used to train MusiteDeep, and the remain-

ing one-fifth of the data were used as the testing set for MusiteDeep,

and other tools by using their pre-trained models to do the prediction.

During the training process of MusiteDeep, a separate validation set

was extracted from the four-fifth of the data. Furthermore, to make

sure there was no overlap between the testing set and the data used

during any training procedure, we used separate pre-trained general

models which were trained from data without including any proteins

of the five kinase annotations. Some of the testing proteins might have

been trained in other tools, and thus the performance could be biased

in favor of them. In the practical application, we can use all the avail-

able sites for each kinase family to train the model and the performance

is expected to be improved. The ROC curves and the precision-recall

curves were plotted for kinase families CDK and PKA in Figure 5, and

for CK2, MAPK and PKC in Supplementary Figure S4. Figure 5 and

Supplementary Figure S4 show that MusiteDeep has a comparable sen-

sitivity with other tools under certain specificity, and has superior pre-

cision than other tools in most cases.

We present all the AUCs and the mean precisions for all these

five kinase families in five-fold cross-validation (Supplementary Fig.

S5) to show the robustness of MusiteDeep comparing with GPS 3.0

and MusiteDeep without the transfer learning. The average AUCs,

average mean precisions and the ranges (difference between the low-

est and highest values) were labeled in the plots. Supplementary

Figure S5 shows that MusiteDeep had comparable ranges with GPS

3.0 under the five-fold cross-validation, which means MusiteDeep

had comparable robustness with traditional machine-learning

method on small sample of training data. On the other hand, the

MusiteDeep without transfer learning could not achieve good gener-

alization in most cases compared with the other two, which

Fig. 3. ROC and precision-recall curves comparing MusiteDeep with Musite

and other deep-learning architectures by five-fold cross-validation
Fig. 4. ROC and precision-recall curves comparing MusiteDeep with other

well-known general phosphorylation site prediction tools on the testing set
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demonstrated the important role of the transfer learning in small-

sample learning. A set of novel kinase-specific phosphorylation sites

with high confidence is reported in Supplementary Table S1 in

Supplementary Material for future experimental verification.

3.3 Effect of transfer learning on small-sample data

learning
From the concept of transfer learning, the base network trained

using the general phosphorylation data is expected to generate gen-

eral feature representations. Meanwhile, the attention mechanism

built on top of the multi-layer CNN is designed to generate a com-

prehensive representation for the peptide of 33 residues by soft

weights on both sequence and feature map dimension. In this sec-

tion, we will show how the general feature representations from the

base network can be transferred and helps the small-sample data

learning for the kinase-specific phosphorylation site prediction.

Using t-SNE (Maaten and Hinton, 2008), the merged representa-

tions of two dimensions (H’ in Equation (1)) for the five kinase fami-

lies calculated from the same general model are plotted in Figure 6a.

The original one-of-K representations are presented in Figure 6b. A

more detailed representation of Figure 6 with each kinase family

highlighted in one plot is shown in Supplementary Figure S6.

Through t-SNE, these two representations were projected to their

corresponding two-dimensional space. The between/within class

scatter ratio (Johnson and Wichern, 2002) is labeled in each figure.

From Figure 6 and Supplementary Figure S6, it is apparent that the

protein fragments from the same kinase family generally grouped to-

gether by the merged representation learned from the base network,

while the original one-of-K representation could hardly distinguish

these kinase families apart. Here, PKA and PKC are from the AGC

group and CDK and MAPK are from the CMGC group (Xue et al.,

2008); therefore, it is not surprising that they tend to overlap within

each other. Based on the base networks, after we fine-tuned the net-

work using the kinase-specific data, the specific kinase family stood

out further from other kinase families, as shown in Supplementary

Figure S7. Through visualizing the representations generated by the

two-dimensional attention mechanism, we show that the raw pro-

tein fragments can be transformed into a biologically meaningful

representation; in particular, even without the kinase labels, it could

classify unknown kinase families to some extent.

4 Discussion

In this paper, we present MusiteDeep as a novel method for both

general and kinase-specific phosphorylation site prediction.

MusiteDeep takes raw sequence data as input without using other

tools to generate features. MusiteDeep has been demonstrated to

significantly outperform some other well-known tools on bench-

mark datasets. Especially in the general phosphorylation site predic-

tion, MusiteDeep achieves over a 50% relative improvement in the

area under the precision-recall curve. After justifying the perform-

ance of MusiteDeep by running it with different strategies separ-

ately, we believe the superior performance is mainly due to the

following three aspects: (1) our deep-learning architecture captured

the underlying sequence patterns related to phosphorylation better

than feature engineering-based methods; (2) the bootstrapping inte-

grated deep-learning method utilized all the negative data in an un-

biased way; and (3) the dual-attention mechanism further improved

the performance. To our best knowledge, this is the first application

of any deep-learning method in general or kinase-specific phos-

phorylation site prediction. Besides the human phosphorylation site

prediction in the pre-trained model, MusiteDeep also provides cus-

tomized model training that enables advanced users to train other

PTM prediction models by their own data.

In this work, we have explored different deep-learning architec-

tures, including the one-layer CNN architecture as in DeepBind, the

hybrid of CNN and LSTM as in DanQ and a multi-layer RNN

architecture. In both DeepBind and DanQ, the one-layer CNN is

used as motif detectors, and the LSTM in DanQ is used to capture

the global features of a sequence. Notice that DeepBind and DanQ

were designed for different applications both taking longer DNA se-

quences as input, while in our study the input is just the 33-residue

protein fragments, and hence these architectures are not suitable for

our application, which was also demonstrated by Figure 3.

Although in general, the CNNs are ideal for images that contain

spatial invariant features while RNNs are ideal for text that contains

sequential features, there are some successful examples of pure

CNNs that obtain start-of-the-art performance when applied to se-

quential data (Gehring et al., 2017; Sainath et al., 2013).

Comparing with the RNNs, CNNs are easier to interpret and faster

to train. In addition, the multi-layer CNN has shown very powerful

in extracting complex features. Therefore, in this study, the multi-

layer CNN architecture was used and better performance was ob-

tained compared with the multi-layer RNN architecture.

In most deep-learning frameworks, the attention mechanism is

typically introduced in an RNN model and applied to only the input

dimension; for example, only the sequence dimension can be re-

garded as the time steps instead of the feature dimension. However,

the feature maps of a CNN model are regarded as independent

feature detectors which can capture features from different aspects.

Fig. 5. ROC and precision-recall curves comparing MusiteDeep with other

well-known kinase-specific phosphorylation site prediction tools by five-fold

cross-validation of CDK (left) and PKA (right)

Fig. 6. t-SNE plot of the merged representation and the original one-of-K

representation
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By applying an independent attention mechanism on the feature map

dimension, we can assign soft weight to each feature map for a specific

input sequence. The two-dimensional attention mechanism built on

top of the same CNN hidden state provides a more comprehensive

way for representing protein sequence and also obtains superior per-

formance than single-dimensional attention mechanisms and without

attention, as shown in Supplementary Figure S2.

By visualizing the representations generated by the two-

dimensional attention mechanism (Fig. 6 and Supplementary Fig. S6),

the base network shows some ability to extract biological interpretable

representations that tend to distinguish kinase families even without

the kinase labels. Since the pre-trained base network is effective in gen-

eral phosphorylation feature representations, the transfer learning

strategy is powerful in transferring the base network to achieve a ro-

bust kinase-specific phosphorylation site prediction model by fine-

tuning on the significantly smaller kinase-specific data (Supplementary

Figs S5 and S7). We expect this architecture and framework of deep

learning to be useful for other PTM predictions and even some other

biological sequence analyses.

Although deep-learning method has improved the performance

of classification and become a promising approach, there are still

significant challenges for its applications in biological sequence ana-

lyses, especially its interpretability and biologically meaningful dis-

coveries. In the future work, we will collaborate closely with

biologists and continue to modify the architecture to make the mod-

els more interpretable and realizable to reveal the underlying identi-

fication mechanism between a kinase and its substrates.

Funding

This work was partially supported by National Institutes of Health grant

R01-GM100701. The high-performance computing infrastructure is sup-

ported by the National Science Foundation under grant number CNS-

1429294.

Conflict of Interest: none declared.

References

Alipanahi,B. et al. (2015) Predicting the sequence specificities of DNA- and

RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831–838.

Bahdanau,D. et al. (2014) Neural machine translation by jointly learning to

align and translate, arXiv preprint arXiv: 1409.0473.

Bairoch,A. et al. (2005) The Universal Protein Resource (UniProt). Nucleic

Acids Res., 33, D154–D159.

Blom,N. et al. (2004) Prediction of post-translational glycosylation and phos-

phorylation of proteins from the amino acid sequence. Proteomics, 4,

1633–1649.

Caruana,R. (1995) Learning many related tasks at the same time with back-

propagation. In: Advances in Neural Information Processing Systems, 7, pp.

657–664.

Cohen,P.T. (2002) Protein phosphatase 1-targeted in many directions. J. Cell

Sci., 115, 241–256.

Dinkel,H. et al. (2011) Phospho.ELM: a database of phosphorylation

sites–update 2011. Nucleic Acids Res., 39, D261–D267.

Esteva,A. et al. (2017) Dermatologist-level classification of skin cancer with

deep neural networks. Nature, 542, 115–118.

Gao,J. et al. (2010) Musite, a tool for global prediction of general and

kinase-specific phosphorylation sites. Mol. Cell. Proteomics MCP, 9,

2586–2600.

Gehring,J. et al. (2017) Convolutional Sequence to Sequence Learning, arXiv

preprint arXiv: 1705.03122.

Gnad,F. et al. (2011) PHOSIDA 2011: the posttranslational modification

database. Nucleic Acids Res., 39, D253–D260.

Graves,A. and Schmidhuber,J. (2005) Framewise phoneme classification with

bidirectional LSTM and other neural network architectures. Neural Netw.

Off. J. Int. Neural Netw. Soc., 18, 602–610.

Hornbeck,P.V. et al. (2012) PhosphoSitePlus: a comprehensive resource for

investigating the structure and function of experimentally determined

post-translational modifications in man and mouse. Nucleic Acids Res., 40,

D261–D270.

Hubbard,M.J. and Cohen,P. (1993) On target with a new mechanism for

the regulation of protein phosphorylation. Trends Biochem. Sci., 18,

172–177.

Iakoucheva,L.M. et al. (2004) The importance of intrinsic disorder for protein

phosphorylation. Nucleic Acids Res., 32, 1037–1049.

Johnson,R.A. and Wichern,D.W. (2002) Applied Multivariate Statistical

Analysis. Prentice hall Upper Saddle River, NJ.

LeCun,Y. et al. (2010) Convolutional networks and applications in vision. In:

Proceedings of 2010 IEEE International Symposium on Circuits and

Systems (ISCAS). IEEE, 2010, pp. 253–256.

Lee,T.Y. et al. (2011) RegPhos: a system to explore the protein kinase-substrate

phosphorylation network in humans. Nucleic Acids Res., 39, D777–D787.

Li,H. et al. (2009) SysPTM: a systematic resource for proteomic research on

post-translational modifications. Mol. Cell. Proteomics MCP, 8,

1839–1849.

Liu,Z. et al. (2011) GPS-YNO2: computational prediction of tyrosine nitra-

tion sites in proteins. Mol. bioSystems, 7, 1197–1204.

Maaten,L.vd. and Hinton,G. (2008) Visualizing data using t-SNE. J. Mach.

Learn. Res., 9, 2579–2605.

Pawson,T. and Scott,J.D. (1997) Signaling through scaffold, anchoring, and

adaptor proteins. Science (New York, N.Y.), 278, 2075–2080.

Pejaver,V. et al. (2014) The structural and functional signatures of proteins

that undergo multiple events of post-translational modification. Protein Sci.

Publ. Protein Soc., 23, 1077–1093.

Plewczynski,D. et al. (2012) AMS 4.0: consensus prediction of

post-translational modifications in protein sequences. Amino Acids, 43,

573–582.

Prabakaran,S. et al. (2012) Post-translational modification: nature’s escape

from genetic imprisonment and the basis for dynamic information encoding.

Wiley Interdiscipl. Rev. Syst. Biol. Med., 4, 565–583.

Quang,D. and Xie,X. (2016) DanQ: a hybrid convolutional and recurrent

deep neural network for quantifying the function of DNA sequences.

Nucleic Acids Res., 44, e107.

Sainath,T.N. et al. (2013) Deep convolutional neural networks for LVCSR. In:

2013 IEEE International Conference on Acoustics, Speech and Signal

Processing. IEEE, pp. 8614–8618.

Sefton,B.M. and Shenolikar,S. (2001) Overview of protein phosphorylation.

Curr. Protoc. Protein Sci., Chapter 13, Unit13 11.

Shi,Y. (2009) Serine/threonine phosphatases: mechanism through structure.

Cell, 139, 468–484.

Snoek,J. et al. (2012) Practical bayesian optimization of machine learning al-

gorithms. In: Advances in Neural Information Processing Systems. 25,

pp. 2960–2968.

Sønderby,S.K. et al. (2015) Convolutional LSTM networks for subcellular lo-

calization of proteins. In: International Conference on Algorithms for

Computational Biology. Springer, pp. 68–80.

Srivastava,N. et al. (2014) Dropout: a simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res., 15, 1929–1958.

Wei,L. et al. (2017) PhosPred-RF: a novel sequence-based predictor for phos-

phorylation sites using sequential information only, In: IEEE Transactions

on Nanobioscience.

Wong,Y.H. et al. (2007) KinasePhos 2.0: a web server for identifying protein

kinase-specific phosphorylation sites based on sequences and coupling pat-

terns. Nucleic Acids Res., 35, W588–W594.

Xue,Y. et al. (2011) GPS 2.1: enhanced prediction of kinase-specific phosphor-

ylation sites with an algorithm of motif length selection. Protein Eng. Des.

Select. PEDS, 24, 255–260.

Xue,Y. et al. (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation

sites in hierarchy. Mol. Cell. Proteomics, 7, 1598–1608.

Xue,Y. et al. (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation

sites in hierarchy. Mol. Cell. Proteomics MCP, 7, 1598–1608.

MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction 3915



Yan,Y. et al. (2015) Deep learning for imbalanced multimedia data classifica-

tion. In: IEEE International Symposium on Multimedia (ISM). IEEE,

pp. 483–488.

Yao,Q. et al. (2012) Predicting and analyzing protein phosphorylation sites in

plants using musite. Front. Plant Sci., 3, 186.

Yao,Q. et al. (2015) Phosphorylation site prediction in plants. Methods Mol.

Biol. (Clifton, N.J.), 1306, 217–228.

Yao,Y. et al. (2007) On early stopping in gradient descent learning. Construct.

Appr., 26, 289–315. p

Yosinski,J. et al. (2014) How transferable are features in deep neural net-

works? Adv. Neural Inf. Process. Syst. 27, 3320–3328.

Yosinski,J. et al. (2015) Understanding neural networks through deep visual-

ization, arXiv preprint arXiv: 1506.06579.

Zeiler,M.D. and Fergus,R. (2014) Visualizing and understanding convolu-

tional networks. In: ECCV volume 8689 of Lecture Notes in Computer

Science, pp. 818–833.

Zhao,Q. et al. (2014) GPS-SUMO: a tool for the prediction of sumoylation

sites and SUMO-interaction motifs. Nucleic Acids Res., 42, W325–W330.

3916 D.Wang et al.


