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Abstract

Motivation: Genome-wide association studies (GWAS) have played an important role in identifying

genetic variants underlying human complex traits. However, its success is hindered by weak effect

at causal variants and presence of noise at non-causal variants. In an effort to overcome these diffi-

culties, a previous study proposed a regularized regression method that penalizes on the difference

of signal strength between two consecutive single-nucleotide polymorphisms (SNPs).

Results: We provide a generalization to the afore-mentioned method so that more adjacent SNPs

can be incorporated. The choice of optimal number of SNPs is studied. Simulation studies indicate

that when consecutive SNPs have similar absolute coefficients our method performs better than

using LASSO penalty. In other situations, our method is still comparable to using LASSO penalty.

The practical utility of the proposed method is demonstrated by applying it to Genetic Analysis

Workshop 16 rheumatoid arthritis GWAS data.

Availability and implementation: An implementation of the proposed method is provided in R

package MWLasso.

Contact: kai-wang@uiowa.edu

1 Introduction

Genome-wide association studies (GWAS) is a powerful tool in the

identification of genetic factors for complex diseases. It has been

found by numerous studies that many complex diseases are associ-

ated with genetic variants among populations (Welter et al., 2014).

However these identified variants explain only a small fraction of

the heritability for most complex traits (Eichler et al., 2010; Lee

et al., 2011; Manolio et al., 2009; Zuk et al., 2012). Hence there is a

need for improved statistical methods. In this report we present a

method for GWAS that scans the genome with a moving-window.

Usually, GWAS depends on single SNP (single nucleotide poly-

morphism) analysis by testing the association between each SNP and

the trait of interest. Depending on the type of the trait, one can use lin-

ear regression or logistic regression. However, such single SNP ana-

lysis has limitations. A stringent significance level needs to be used in

order to account for multiple testings. Genetic information in neigh-

boring SNPs, such as the extent of linkage disequilibrium (LD), is not

used which results in loss of power and excess of false discoveries.

From a statistical point of view, identifying SNPs associated with

a trait is a variable selection problem in a sparse, high-dimensional

model setting. Genetic variants underlying the trait are deemed to be

rare in comparison with the vast number of SNPs that are geno-

typed. Variable selection is a classical problem in statistics.

Traditional methods include the well-known forward, backward, or

stepwise selection. Unfortunately these methods do not work prop-

erly for high-dimensional problems because the number of pre-

dictors is much larger than the sample size.

Recently regularized regression methods have become more and

more popular for variable selection. In LASSO (least absolute

shrinkage and selection operator) (Tibshirani, 1996), L1-norm is

imposed as a penalty for the regression coefficients. LASSO can re-

turn sparse coefficient estimates and has been widely applied in vari-

able selection. However, LASSO does not handle the correlation

between predictors in a way meaningful in the context of GWAS. If

the predictors are highly correlated, LASSO will tend to select few

of the predictors and omit the others. In GWAS, SNPs in close
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genomic proximity tend to show high correlation due to LD. So

LASSO will select few SNPs in a group of important ones and omit

the rest.

Elastic net (Zou and Hastie, 2005) is an alternative regularized

regression method. The penalty is imposed as a linear combination

of LASSO penalty and the penalty used in the ridge regression

(Hoerl and Kennard, 1970). An advantage of the ridged regression is

that there is an explicit expression for the coefficient estimates.

However, there is no sparse property on these estimates as none of

them will be exactly equal to 0. By incorporating the LASSO penalty

the elastic net regression method is able to achieve sparse coefficient

estimates while handling the correlations among predictors

properly.

Both LASSO and elastic net are convex regularized problems.

Their coefficient estimates are biased as they are shrunken towards

zero. Recently several non-convex regularized regression methods are

developed. For instance, bridge regression (Fu, 1998), SCAD (Fan and

Li, 2001) and MCP (Zhang, 2010). These methods can reduce the

shrinkage effect and hence the bias in the regression coefficients.

In GWAS, there is a natural sequential structure for the SNPs.

SNPs are located sequentially on the genome with known base-pair

location. We note that none of the methods mentioned above takes

into account such valuable information on predictors, i.e. SNPs in

the current context.

If the SNPs can be separated into different groups, then the

group LASSO (Yuan and Lin, 2006) seems to be a reasonable

choice. The group LASSO imposes the L2-norm penalty on pre-

dictors in the same group and the L1-norm penalty on groups.

Therefore, predictors from the same group will be selected or not

selected collectively while predictors within a group are not

forced to be sparse. Along the same idea, there are other group

selection methods in high-dimensional models, such as group

MCP and group bridge (Huang et al., 2012). These non-convex

group selection methods are natural extensions of MCP and

bridge regression. However application of these group selection

methods to GWAS is not straightforward. Due to LD it is not ob-

vious how to group SNPs. One approach might be to group SNPs

based on gene definition and ignore cross-gene correlation. In

this report we are interested in methods that can take advantage

of the SNP structure without the need to group the SNPs in ad-

vance. One possible candidate method might be fused LASSO

(Tibshirani et al., 2005).

Fused LASSO employs a smoothing penalty on the difference

between the coefficients estimates of two consecutive features so

that their effect sizes are close to each other. It can be used in vari-

able selection and signal denoising for both 1-dimensional and

2-dimensional signals. It appears to be appealing for GWAS because

two adjacent SNPs are expected to have similar effect size.

However, the score of SNP depends on the choice of reference allele.

For instance, genotypes aa, aA and AA can be scored as 0, 1 and 2,

or equivalently as 2, 1 and 0, depending on whether allele a or allele

A is chosen to be the reference allele for genotype scoring.

Obviously, these two different ways of scoring yielding two effect

sizes that are of opposite sign. Therefore, fused LASSO is not suit-

able for GWAS.

To smooth effect size at two consecutive SNPs SMCP (Liu et al.,

2013) combines the MCP penalty with a smoothing penalty. This

smoothing penalty is invariant to the choice of the reference allele

for genotype scoring. In this report, we extend SMCP by introducing

a moving-window regression. The smoothing penalty works over

more than two SNPs while SMCP only smoothes two adjacent

SNPs.

This report is organized as follows. We elaborate the details of

the proposed method including the optimization algorithms to min-

imize the loss function. This method is developed for both continu-

ous traits and binary traits. Simulation studies are described and the

results are presented. Finally, the method is applied to a Genetic

Analysis Workshop (GAW) 16 rheumatoid arthritis data.

2 Model

Let p be the number of SNPs and n the total number of subjects. The

SNPs are indexed in their chromosomal order. The genotype score

of subject i at SNP j is denoted by xij. Let nj be the number of sub-

jects whose genotype at SNP j is non-missing and Hj the set of indi-

ces of such subjects. That is,
P

i2Hj
1 ¼ nj. Genotype scores are

normalized as usual such that
P

i2Hj
xij ¼ 0 and

P
i2Hj

x2
ij ¼ nj. The

phenotype of subject i is denoted by yi.

The loss function, denoted by QðbÞ, is defined through a set of

marginal models, one for each SNP. Here b is a vector of regression

coefficients. The main advantage of using marginal models is that it

is very convenient to handle missing genotypes. If all SNPs were

included simultaneously in a joint model, the missing genotypes

would need to be imputed in the first place. Using marginal models

obviates such a need.

Define the (quadratic) loss function QðbÞ by

QðbÞ ¼ 1

2

Xp

j¼1

1

nj

X
i2Hj

ðyi � xijbjÞ2; (1)

where b ¼ ðb1;b2; . . . ;bpÞT . For case-control designs, the trait y is

dichotomous, and the bj in the quadratic loss function can still be in-

terpreted as the effect size of SNP j (Liu et al., 2013), with a slight

loss of power compared to logistic regression.

SMCP (Liu et al., 2013) imposed the following MCP penalty for

SNP selection

qðbj; k; cÞ ¼ k
ðjbj j

0

ð1� x=ðckÞÞþdx:

Here k is the penalty parameter, c is the regularization parameter

which controls concavity and xþ ¼ x � 1fx� 0g. It approaches the

LASSO penalty as c!1 and approaches the hard-thresholding as

c! 1þ. So the LASSO penalty is a limiting case of the MCP penalty.

Let CorrðXj;Xjþ1Þ denote the Pearson correlation coefficient be-

tween genotype scores at SNPs j and jþ1 computed from subjects

whose genotypes are non-missing at both SNPs. SMCP enforces the

effect size of two adjacent SNPs to be similar by using the following

smoothing penalty

Sðbj; gÞ ¼ g �
fj

2
ðjbjj � jbjþ1jÞ2;

where fj ¼ jCorrðXj;Xjþ1Þj measures the strength of LD and g is a

tuning parameter. The objective function of SMCP is

LnðbÞ ¼ QðbÞ þ
Xp

j¼1

qðbj; k; cÞ þ
Xp�1

j¼1

Sðbj; gÞ:

The penalty qðbj; k; cÞ is responsible for SNP selection while the penalty

Sðbj; gÞ is responsible for smoothing the effects of neighboring SNPs.

The smoothing penalty Sðbj; gÞ involves only two SNPs. In the

context of GWAS, the effect of LD may well extend beyond two ad-

jacent SNPs. Based on this consideration, we replace Sðbj; gÞ by a

penalty that involves d consecutive SNPs, where the value of d is

determined by data and can be larger than 2. To this end, we

3888 M.Bao and K.Wang

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,


consider a moving window of size d that scans all SNPs from the be-

ginning to the end. For SNPs in the same window, they are con-

sidered to be close enough and are expected to have similar strength

of effects. Therefore, their effect size in terms of jbj are expected

to be similar. Let Ws denote the set of SNP indices in the sth

moving window. The total number of Ws is p� d þ 1: W1 ¼ f1; . . . ; dg;
W2 ¼ f2; . . . ; d þ 1g; � � � ; Wp�dþ1 ¼ fp� d þ 1; . . . ; pg. We define

the following smoothing penalty for Ws; s ¼ 1;2; . . . ; p� d þ 1:

SðWs; gÞ ¼ g � 1

2ðd � 1Þ
X

k;j2Ws ;k< j

fk;jðjbkj � jbjjÞ2;

where the weight fk;j is defined as fk;j ¼ jCorrðXk;XjÞj.
As for the penalty responsible for SNP selection, we choose the

LASSO penalty instead of MCP. This is because the LASSO penalty

is easier to deal with and it is a limiting case of MCP. The LASSO

penalty is defined as:

qðbj; kÞ ¼ kjbjj:

So our objective function is defined as:

LnðbÞ ¼ QðbÞ þ k
Xp

j¼1

jbjj þ
Xp�dþ1

s¼1

SðWs; gÞ: (2)

We also consider the following (logistic) loss function for dichot-

omous traits:

Qða; bÞ ¼ �
Xp

j¼1

1

nj

X
i2Hj

½yi log pij þ ð1� yiÞ log ð1� pijÞ�;

where pij¼Prðyi¼1jxijÞ¼ðeajþxijbj Þ=ð1þeajþxijbj Þ; a¼ða1;a2; .. . ;apÞT

and b¼ðb1;b2; . . . ;bpÞT . Replacing the quadratic loss QðbÞ in (2) by

Qða;bÞ leads to the objective function for dichotomous traits. This

objective function is denoted by Lnða;bÞ.

3 Computing algorithm

As in other high dimensional problems, a major challenge in estimat-

ing the model parameters is to find out a computational feasible way

to optimize the objective function LnðbÞ or Lnða; bÞ. LAR (least angle

regression) has been proposed as a feasible computation method for

LASSO (Efron et al., 2004). Coordinate descent algorithm has been

applied for both LASSO and elastic net (Friedman et al., 2010b) and

some non-convex problems such as SCAD and MCP (Breheny and

Huang, 2011). Block coordinate descent algorithm can be applied to

grouped LASSO (Foygel and Drton, 2010; Friedman et al., 2010a).

For fused LASSO, the coordinate descent algorithm diverges.

Alternative direction method of multipliers (ADMM) (Wahlberg

et al., 2012) and majorization-minimization (MM) algorithm (Chen

et al., 2012) can be applied to minimize the objective function for

fused LASSO. For SMCP, the coordinate descent algorithm is appro-

priate and there is an explicit solution in updating each bj (Liu et al.,

2013). For the proposed moving-window regression, the coordinate

descent algorithm is applicable. Details are described below.

3.1 Continuous traits
Given current values fbkgk6¼j, bj is updated by the minimizer of
~LnðbjÞ which is defined as

~LnðbjÞ ¼
1

2nj

X
i2Hj

ðyi � xijbjÞ2 þ kjbjj þ ~SnðbjÞ

where

~SnðbjÞ ¼
g

2ðd � 1Þ
Xj

s¼j�dþ1

X
k2Ws ;i 6¼j

fk;jðjbkj � jbjjÞ2:

It is straightforward to verify that

~LnðbjÞ ¼ Pjb
2
j þQjbj þ Rjjbjj þ C;

where C represents a term free of bj,

Pj ¼
1

2

1

nj

X
i2Hj

x2
ij þ

g
d � 1

Xj

s¼j�dþ1

X
Xk2Ws;k 6¼j

fk;j

0
@

1
A;

Qj ¼ �
1

nj

X
i2Hj

xijyi;

and

Rj ¼ k� g
d � 1

Xj

s¼j�dþ1

X
Xk2Ws ;k6¼j

fk;jjbkj:

The minimizer of ~LnðbjÞ is the same as that of Pjb
2
j þQjbj þ Rj

jbjj over bj, which is

bbj ¼ �sgnðQjÞ �
ðjQjj � RjÞþ

2Pj
:

We note that Pj and Qj are free of bk;k ¼ 1; . . . ; p. They can be

computed once in advance. The coordinate descent algorithm pro-

ceeds as Algorithm 1.

The convergence of the coordinate descent algorithm can be

shown as follows: the objective function can be written in the form

of f0ðb1; . . . ; bpÞ þ f1ðb1; . . . ;bpÞ. Here f0 is the summation of the

loss function and the smoothing penalty, while f1ðb1; . . . ;bpÞ ¼
k
Pp

j¼1 jbjj. Since f0ðb1; . . . ;bpÞ is a regular function and f1ðb1; . . . ;

bpÞ is separable, the coordinate descent algorithm will converge to a

stationary point, which should be a local minimal point of the ob-

jective function (Tseng, 2001).

3.2 Dichotomous traits
For dichotomous traits, we can use the quadratic loss function and

hence apply Algorithm 1 described in the previous subsection. Now

we introduce the coordinate descent method for the logistic loss

function that applies only to dichotomous traits.

In the marginal logistic regression which tests the strength of as-

sociation between the jth SNP and the phenotype, we define aj as the

coefficient for the constant effect and bj as the coefficient for the

SNP effect. Let a ¼ ða1; a2; . . . ; apÞT and b ¼ ðb1; . . . ; bpÞT . The co-

ordinate descent algorithm to minimize the Lnða;bÞ depends on

Algorithm 1. Coordinate Descent Method for Continuous

Traits

1. Compute Pj, Qj, j ¼ 1; . . . ; p for t¼0

2. Input the initial values ðbbð0Þ1 ; . . . ; bbð0Þp Þ
3. repeat

4. for j ¼ 1; . . . ; p do

5. Fix bbðtÞk ; k 6¼ j

6. Compute Rj

7. Update bbðtÞj

8. end for

9. t t þ 1

10. until bb converges
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iteratively reweighted least squares. We use the following quadratic

approximation to Qða; bÞ:

~Qða; bÞ ¼
Xp

j¼1

1

2nj

X
i2Hj

wijðzi � aj � xijbjÞ2;

where

zi ¼ aj þ xijbj þ
yi � pij

pijð1� pijÞ
;

wij ¼ pijð1� pijÞ:

So the ‘working’ objective function is

~Lnða; bÞ ¼ ~Qða;bÞ þ k
Xp

j¼1

jbjj þ
Xp�dþ1

s¼1

SðWs; gÞ:

The optimization problem is transformed to minimize an iteratively

reweighted penalized linear squared function. Note that in this function,

the intercept terms fajgj¼1;...;p can not be omitted. This is different from

the case of continuous traits discussed earlier. To ease computation bur-

den, we fixed the values of fajgj¼1;...;p at their respective estimates com-

puted from their marginal logistic regressions. The optimization of
~Lnða; bÞ is conducted with respect to b only as follows.

Given current values fbkgk6¼j, bj is updated by the minimizer of
~LnðbjÞ which is given by

~LnðbjÞ ¼
1

2nj

X
i2Hj

wij zi � aj � xijbj

� �2
þ kjbjj

þ g
2ðd � 1Þ

Xj

s¼j�dþ1

X
Xk ;Xj2Ws ;k 6¼j

fk;j jbkj � jbjj
� �2

¼ Pjb
2
j þQjbj þ Rjjbjj þ C;

where C is a term free of bj,

Qj ¼ �
1

nj

X
i2Hj

wijxijðzi � ajÞ;

and Pj and Rj are defined in the same way as in the case of continu-

ous traits. The minimizer of ~LnðbjÞ is

bbj ¼ �sgnðQjÞ �
ðjQjj � RjÞþ

2Pj
:

To summarize, the coordinate descent algorithm proceeds as

Algorithm 2.

Such algorithm can be considered as two nested loops: the outer

loop is to update the quadratic approximation ~Ln by using the cur-

rent parameters bb, while the inner loop is to run the coordinate des-

cent algorithm on the penalized weighted quadratic function.

Note that in this case Qj needs to be updated in each iteration.

This is because now Qj depends on bj through zi.

3.3 Selection of tuning parameters k and g

There are various ways for determining the value for tuning param-

eters. Common methods include AIC, BIC and cross-validation.

These methods are intended to measure the prediction ability of the

covariates. In GWAS, it is very likely that the covariates, i.e. the

genotypes of disease-causing variants, are not directly observed al-

though they are expected to be in LD with the observed SNPs.

Furthermore, the goal of GWAS is to identify associated SNPs rather

than prediction. Most importantly, the loss functions considered in

this report are both marginal. Given these considerations, AIC, BIC

and cross-validation are not suitable for the proposed method. A bi-

section method has been used to search for the values of tuning par-

ameters (Liu et al., 2013; Wu et al., 2009). We use the same method

here. This method needs a specification of a number of SNPs to be

selected upfront. Let m denote this number. The tuning parameters

are then determined so that the number of SNPs is no less than m

(while keeping it as close to m as possible).

We begin by re-parameterizing the tuning parameters k and g as

follows: c1 ¼ kþ g; c2 ¼ k=c1. To proceed, c2 is fixed at 0.05. This

is the value used for SMCP (Liu et al., 2013). The value of c1 is

determined by the bisection method. Let c1max be the largest value of

c1 under which at least one SNP is selected. It is known that

c1max ¼ maxjj
P

i2Hj
xijyij=ðnjc2Þ. Since c1 cannot be zero, the lower

bound of c1 is set to be c1max ¼ �c1max. We set � ¼ 0:1. The bisection

method involves an iterative process. Set c1u ¼ c1max and c1l ¼ c1min.

We compute c1mid ¼ 1
2 c1u þ c1lÞð . Let rðc1Þ be the number of selected

SNPs under c1. If rðc1midÞ < m, replace c1u by c1mid. Otherwise, if

rðc1midÞ > m, replace c1l by c1mid. Repeat the process until

rðc1midÞ ¼ m. As a result, we are able to select the value of tuning

parameters k and g.

3.4 Selection of tuning parameter d
The window size d controls the number of SNPs to be included in a

window. When d¼0, the penalty for the moving-window model is

equivalent to the LASSO penalty. When d¼2, the smoothing pen-

alty reduces to the one used in SMCP. Here we apply the empirical

mean of the absolute value of lag-ðd � 1Þ autocorrelations to select

d. Let

sðdÞ ¼ 1

p� d þ 1

Xp�dþ1

j¼1

jCorrðXj;Xjþd�1Þj:

s(d) is expected to be a non-increasing function of d. If so, its largest

value occurs at d¼2. For any given value q which is not too small

but is less than s(2), there would be a value d0 > 2 such that

sðd0Þ < q. The value of d is determined by d ¼ maxfd : sðdÞ � qg.
Technically, the value of q is restricted to be no smaller than ql,

which is equal to � � sð2Þ for a small value �. The value of q is pre-

specified. In the simulation study, we will try

q ¼ 0:4;0:35; 0:3; 0:25; 0:2 and 0.15. In the empirical study to be re-

ported later, we use q ¼ 0:3 and 0.4.

Since d takes only integer values, it should be pretty fast to select

its value. If necessary, this procedure can be sped up by using a bi-

section method. Starting with qu ¼ sð2Þ and ql ¼ �qu, set d¼2 as dl.

Algorithm 2. Coordinate Descent Method for Dichotomous

Traits

1. Estimate ða1; . . . ; apÞ from the marginal logistic regres-

sions. These values are then fixed.

2. t 0

3. Input the initial values ðbbð0Þ1 ; . . . ;bbð0Þp Þ
4. Compute zij, wij, j ¼ 1; . . . ; p

5. Compute Pj, Qj, j ¼ 1; . . . ; p

6. repeat

7. repeat

8. for j ¼ 1; . . . ; p do

9. Fix bbðtÞk ; k 6¼ j

10. Compute Rj

11. Update bbðtÞj

12. end for

13. until bb converges

14. Update zij and wij by using the current estimates bbðtÞj

15. Update Pj, Qj, j ¼ 1; . . . ; p

16. t t þ 1

17. until bb converges
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s(d) are evaluated at d ¼ 2; 22;23; . . .. The smallest d that satisfies

sðdÞ < q is denoted by du. Then we apply the bisection method. We

set dmid ¼ ðdu þ dlÞ=2. If sðdmidÞ < q, replace du by dmid. Otherwise

if sðdmidÞ � q, replace dl by dmid. As a result, we will find out the

largest d such that sðdÞ � q faster.

4 Simulation

In the simulation study, we use part of the real genotype data from

the rheumatoid arthritis (RA) study that were made available

through Genetic Analysis Workshop (GAW) 16 (Amos et al., 2009).

Only the trait values are simulated. In the next section, this data will

be analyzed in whole for association with the observed trait.

There are 2062 subjects. 400 subjects are randomly selected.

5000 consecutive genotypes are selected from chromosome 6 arbi-

trarily. The reason they are consecutive is to maintain their LD

structure. The genotypes are standardized in advance such that
P

i

xij ¼ 0 and
P

i x2
ij ¼ 400. The continuous trait y is generated from

the linear model:

yi ¼ xT
i bþ �i; i ¼ 1; . . . ;400; (3)

where xi 2 R5000 is a vector of SNP scores of subject i, b is the vector

of genetic effects for these SNPs. �i is the random residual sampled

from a normal distribution with mean 0 and variance 1. The elem-

ents of b are all 0, except that ðb1501; . . . ; b1512Þ¼ (-0.3, 0.2, -0.25,

0.2, -0.6, 0.7, -0.5, 0.1, -0.5, 0.3, -0.6, 0.2) and ðb1514; . . . ;b1532Þ¼
(0.25, -0.4, 0.2, -0.1, -0.25, 0.3, -0.4, -0.4, 0.15, 0.3, -0.4, 0.4, -0.5,

0.2, -0.3, 0.16, 0.36, -0.2, 0.1). That is, the number of truly non-

zero bs is 31.

For the dichotomous trait, the systematic component for the lo-

gistic regression model is the same as that for the continuous trait.

In particular, the dichotomous trait yi for subject i is generated from

the Bernoulli distribution with probability yi¼1 given by

Prðyi ¼ 1jxiÞ ¼ 1=ð1þ exp ð�ðaþ xT
i bÞÞÞ, where a is set to equal 0.

For the continuous trait, we used the marginal quadratic loss.

For dichotomous trait, both the quadratic loss and the logistic loss

were used.

To assess and compare the performance of different methods, we

use recall and precision. Both measurements are derived from the

number of true positives (TPs), the number of false positives (FPs)

and the number of false negatives (FNs) as follows:

PPV ¼ TP=ðTPþ FPÞ;

TPR ¼ TP=ðTPþ FNÞ:

They measure the magnitude of TP relative to FP and FN, respect-

ively. Both values are in the range ½0; 1� with larger values indicative

of better performance. PPV and TPR are also known as precision

and recall, respectively.

The tuning parameter c2ð¼ k=c1Þ is fixed at 0.05. After several

trials, the tuning parameter c1ð¼ kþ gÞ is chosen such that the num-

ber of selected SNPs (i.e. those with non-zero coefficients) is m¼45.

The size d of the moving-window is determined for

q ¼ 0:4;0:35; 0:3; 0:25 and 0.2 (see section ‘Selection of tuning par-

ameter d’). The corresponding values of d are 2; 4; 6;10 and 15, re-

spectively. Simulation results based on 100 simulation replicates are

shown in Table 1.

First of all, there is indeed a performance improvement as more

SNPs are included in the smoothing window. From LASSO penalty

(i.e. d¼1) to the moving-window method with d¼6, both TPR and

PPV are increasing for both the continuous trait and the binary trait

with either quadratic loss or logistic loss. For the binary trait, this

trend continues up to d¼10. After d¼6 the performance for the

continuous trait starts to decrease. The same is also true for the

binary trait for d>10. This phenomenon is probably due to over-

smoothing. Overall, d¼6 seems to be a suitable choice of the mov-

ing window size for this data.

At d¼6, the PPV for continuous trait is increased by 52%, com-

pared to LASSO penalty (from 0.446 to 0.679) and by 12% com-

pared to the case of d¼2 (from 0.6024 to 0.679). The TPR also

increases 52 and 12%, respectively, compared to LASSO penalty

(from 0.6477 to 0.9887) and the case of d¼2 (from 0.8745 to

0.9887).

For the binary trait with quadratic loss, at d¼6 the PPV in-

creases 47 and 29%, respectively, compared to LASSO penalty

(from 0.4312 to 0.6352) and the case of d¼2 (from 0.4940 to

0.6352) while the TPR is increased by 47 and 29%, respectively.

For the binary trait with logistic loss, the PPV in increased by 57

and 17%, respectively, compared to LASSO penalty and the

case of d¼2 while the TPR is increased by 57 and 17%, respect-

ively, as well. The performance with logistic loss is better than the

performance with quadratic loss in terms of both PPV and TPR.

The downside of the logistic loss is that it involves more computa-

tion time.

Next, we consider a simulation study in which neighbouring

SNPs do not have similar coefficients in the true model. The geno-

types are the same as the previous simulation study. The elements of

b are all 0, except that ðb1501; b1524;b1530; b2400;b2403Þ¼ (-0.8, 0.4,

-0.4, 1.2, -0.8). The number of truly non-zero bs is 5. Unlike the pre-

vious simulation study, the truly non-zero bs are not consecutive.

b1524 and b1530 will be smoothed only if d � 7, while b2400 and

b2403 will be smoothed only if d � 4. The tuning parameter c2ð¼ k=
c1Þ is fixed at 0.05. The tuning parameter c1ð¼ kþ gÞ is chosen such

that the number of selected SNPs (i.e. those with non-zero coeffi-

cients) is m¼7. Simulation results based on 100 simulation repli-

cates are shown in Table 2.

In this simulation study, the assumption that neighboring SNPs

have similar jbj values is not true. From LASSO penalty to the

moving-window method with d¼4, both TPR and PPV decrease

slightly for both the continuous trait and the binary trait with either

Table 1. Positive predictive value and true positive rate over 100

replicates in mean (standard deviation)

Continuous trait Binary traita Binary traitb

Positive predictive value

LASSO 0.4460(0.0423) 0.4312(0.0399) 0.4313(0.0400)

d¼2 0.6024(0.0453) 0.4940(0.0561) 0.5787(0.0536)

d¼4 0.6611(0.0349) 0.5612(0.0526) 0.6399(0.0392)

d¼6 0.6790(0.0229) 0.6352(0.0429) 0.6753(0.0260)

d¼10 0.6779(0.0247) 0.6498(0.0441) 0.6756(0.0275)

d¼15 0.6649(0.0421) 0.6378(0.0520) 0.6580(0.0440)

True positive rate

LASSO 0.6477(0.0618) 0.6261(0.0580) 0.6261(0.0580)

d¼2 0.8745(0.0658) 0.7171(0.0812) 0.8400(0.0778)

d¼4 0.9597(0.0507) 0.8145(0.0764) 0.9293(0.0570)

d¼6 0.9887(0.0332) 0.9223(0.0624) 0.9803(0.0378)

d¼10 0.9855(0.0424) 0.9432(0.0640) 0.9809(0.0399)

d¼15 0.9652(0.0611) 0.9258(0.0755) 0.9551(0.0638)

Note: The number of truly non-zero bs is 31. Truly non-zero bs are con-

secutive. ‘LASSO’ refers to LASSO penalty.
aBinary trait with quadratic loss.
bBinary trait with logistic loss.
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quadratic loss or logistic loss. For the continuous trait, the PPV

decreased from 0.5557 (LASSO penalty) to 0.5343 (d¼4). The TPR

decreased from 0.778 (LASSO penalty) to 0.748 (d¼4), respect-

ively. After d¼4, the PPV and TPR remain stable up to d¼15, for

both the continuous trait and the binary trait with either quadratic

loss or logistic loss. The differences in the PPV and TPR are not sig-

nificant, suggesting that the moving-window method performs no

worse than using LASSO penalty even when neighboring SNPs do

not have similar jbj values.

5 Empirical study of GAW 16 rheumatoid
arthritis data

Rheumatoid arthritis is a complex human disorder with a prevalence

ranging from around 0.8% in Caucasians to 10% in some native

American groups (Amos et al., 2009). Several studies showed that

rheumatoid arthritis was associated with genetic markers (Huizinga

et al., 2005; Silman and Pearson, 2002). GAW 16 data are from the

North American Rheumatoid Arthritis Consortium (NARAC). It is

the initial batch of the whole genome association data for the

NARAC cases (N¼868) and controls (N¼1194) after removing

duplicated and contaminated samples. There are 531 689 SNPs

across 22 autosomes. The phenotype y is binary, where y¼0 for

controls and y¼1 for cases. The SNP scores were standardized in

advance. We first did a regular genome wide association study in

which each SNP was tested for association individually. Their nega-

tive log p-value computed from a simple logistic regression were pre-

sented in Figure 1. A strong association signal is present on

chromosome 6. We apply LASSO penalty and the proposed moving-

window method for the purpose of selecting SNPs and compare

their results.

For LASSO penalty, the tuning parameter k is 0.0516 and g is 0 in

order to choose m¼800 SNPs. The 800 SNPs chosen by LASSO pen-

alty are identical to the 800 SNPs which are most strongly correlated

with the phenotype in the marginal regression shown in Figure 1. The

estimated bs are presented in Figure 2. Most of the selected SNPs are

located on chromosome 6. On all other chromosomes, there are few

non-zero bs.

Here is what we did with the proposed moving-window method.

Simulation study in the previous section suggest q ¼ 0:3 is an appro-

priate choice for the GAW 16 data. In the simulation study only

chromosome 6 data were used to determine the size d of the

moving-window and we got d¼6 for q ¼ 0:3. Now we use data

from all chromosome to determine d. The value for d is turned out

to be again 6 given that sð6Þ ¼ 0:3068 and sð7Þ ¼ 0:2891. In add-

ition, we also considered the case of q¼0.4. This is also a value of q
considered in the simulation study where the corresponding d was 2.

Interestingly, the value of d for q¼0.4 remains 2 when data from all

genomes are used. The tuning parameter c2ð¼ k=c1Þ is set at 0.05

and the tuning parameter c1ð¼ kþ gÞ was chosen such that the num-

ber of selected SNPs (i.e. those whose bs are not equal to 0) is 800.

When d¼2, the tuning parameters are k ¼ 0:0524 and g ¼ 0:9964.

When d¼6, we have k ¼ 0:0531 and g ¼ 1:0094. The estimated bs

for these two situations are presented in Figures 3 and 4,

respectively.

There is a shrinkage effect on the estimates of jbjs. For LASSO

penalty, the max value of jbjs is about 0.19. It becomes 0.14 and

0.11 for d¼2 and d¼6, respectively. Such effect comes from the

smoothing penalty. As window size d increases, the effect of

the smoothing penalty becomes stronger. The moving-window re-

gression model also has a clustering effect. It tends to choose adja-

cent SNPs with high LD together. For instance, as d increases from 0

Table 2. Positive predictive value and true positive rate over 100

replicates in mean (standard deviation)

Continuous trait Binary traita Binary traitb

Positive predictive value

LASSO 0.5557(0.1283) 0.5786(0.1258) 0.5786(0.1258)

d¼2 0.5557(0.1283) 0.5743(0.1251) 0.5736(0.1254)

d¼4 0.5343(0.1229) 0.5586(0.1302) 0.5593(0.1296)

d¼6 0.5357(0.1241) 0.5600(0.1246) 0.5571(0.1227)

d¼10 0.5314(0.1285) 0.5586(0.1237) 0.5571(0.1243)

d¼15 0.5343(0.1278) 0.5586(0.1237) 0.5571(0.1227)

True positive rate

LASSO 0.778(0.1796) 0.810(0.1761) 0.810(0.1761)

d¼2 0.778(0.1796) 0.804(0.1752) 0.802(0.1764)

d¼4 0.748(0.1720) 0.782(0.1822) 0.782(0.1822)

d¼6 0.750(0.1738) 0.784(0.1745) 0.780(0.1717)

d¼10 0.744(0.1800) 0.782(0.1731) 0.780(0.1741)

d¼15 0.748(0.1789) 0.782(0.1731) 0.780(0.1717)

Note: The number of truly non-zero bs is 5. Truly non-zero bs are not con-

secutive. ‘LASSO’ refers to LASSO penalty.
aBinary trait with quadratic loss.
bBinary trait with logistic loss.

Fig. 1. P values (�log 10-transformed) across the genome for the GAW 16

data. P¼ 5� 10�8 is indicated by the horizontal dashed line

Fig. 2. Estimated value of jbj across the genome for the GAW 16 data using

LASSO penalty

Fig. 3. Estimated value of jbj across the genome for the GAW 16 data using

moving-window regression with d¼2
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(i.e. LASSO penalty), 2, to 6, more and more selected SNPs are

located on chromosome 6. The number of selected SNPs is 489 for

LASSO penalty, 513 for the case of d¼2 and 540 for d¼6. In order

to show the shrinkage effect and clustering effect more clearly, the b
estimates on part of chromosome 6 are displayed in Figure 5 for

LASSO penalty, d¼2, and d¼6.

6 Discussion

We have proposed a penalized moving-window regression method

that incorporates adjacent LD information in genome-wide

association studies. This method is an extension to the SMCP

method in that the smoothing penalty considers more than two

SNPs. By including more SNPs in a smoothing window, it is ex-

pected that valuable LD information among neighboring SNPs can

be better utilized. For dense SNPs typically seen in nowadays associ-

ation studies, LD information captured by two SNPs may be rather

limited. Indeed, our simulation has demonstrated that including

more than two SNPs in a moving-window does improve the preci-

sion and recall rate of association studies. The proposed moving-

window regression also has a clustering effect in which SNPs in LD

tend to be selected together. The simulation study also confirms the

intuition that including too many SNPs has a negative effect on the

performance of the proposed method as true signals tend to be

smoothed out while false signals tend to be picked up.

Kim et al. (2014) proposed a hypothesis testing approach related

to penalized regression called TLP-SG. The penalized regression

shrinks the difference of jbjjs only if the difference is relatively small

as compared to a tuning parameter s. Thus, it avoids severely biasing

the coefficient estimate towards zero by shrinking it towards a null

coefficient. In the moving-window method, the strength of the

smoothing penalty is controlled by fk;j. Thus, jbjs are smoothed only

if there exist high correlations. A possible future work is to apply

the moving-window method on hypothesis testing (Kim et al.,

2014).

We also described two coordinate descend algorithms for the

proposed method: one for quadratic loss and the other for logistic

loss. To enhance the computation speed, explicit expressions for

updating parameter estimates are given for each step of the

algorithm.

We have used a constant window size d across the genome in

order to achieve computation efficiency. In theory, it is possible to

make d adaptive to local features of genetic structure such as the

density of SNPs and the strength of LD at the cost of extra computa-

tion time.

We note that
P

k;j2Ws ;k< j ðjbkj � jbjjÞ2 is proportional to the sample

variance of the jbjs that are in window Ws. So the smoothing penalty

SðSs; gÞ /
P

k;j2Ws ;k< j fk;jðjbkj � jbjjÞ2 can be regarded as a measure of

variation in jbjs that are in Ws but with pair-wise weights ffk;jg.
The proposed method has been implemented in a freely available

R package named MWLasso.
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