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Abstract

Motivation: Increasing amounts of whole exome or genome sequencing data present the challenge

of analysing rare variants with extremely small minor allele frequencies. Various statistical tests

have been proposed, which are specifically configured to increase power for rare variants by con-

ducting the test within a certain bin, such as a gene or a pathway. However, a gene may contain

from several to thousands of markers, and not all of them are related to the phenotype. Combining

functional and non-functional variants in an arbitrary genomic region could impair the testing power.

Results: We propose a Zoom-Focus algorithm (ZFA) to locate the optimal testing region within a

given genomic region. It can be applied as a wrapper function in existing rare variant association

tests to increase testing power. The algorithm consists of two steps. In the first step, Zooming, a

given genomic region is partitioned by an order of two, and the best partition is located. In the se-

cond step, Focusing, the boundaries of the zoomed region are refined. Simulation studies showed

that ZFA substantially increased the statistical power of rare variants’ tests, including the SKAT,

SKAT-O, burden test and the W-test. The algorithm was applied on real exome sequencing data of

hypertensive disorder, and identified biologically relevant genetic markers to metabolic disorders

that were undetectable by a gene-based method. The proposed algorithm is an efficient and power-

ful tool to enhance the power of association study for whole exome or genome sequencing data.

Availability and Implementation: The ZFA software is available at: http://www2.ccrb.cuhk.edu.hk/

statgene/software.html

Contact: maggiew@cuhk.edu.hk or bzee@cuhk.edu.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A nation-wide collection of deep sequencing data was made to facili-

tate investigation and improve understanding of Mendelian and

complex disorders (Ashley, 2015; Auffray et al., 2016; Cyranoski,

2016; Jameson and Longo, 2015). There is a demand for powerful

and efficient methods to draw medical and clinical inferences from

the data. The challenge of analysing genome sequencing datasets,

besides multiple-testing issues arising from high dimensionality,

centres on extreme low allele frequencies—classical statistical tests
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lose power on genetic variants with small variance. In whole genome

or exome sequencing data, over 99% of the variants have minor al-

lele frequency (MAF) below 1% (Consortium, 2015). A number of

rare variant association tests has been proposed to improve power,

either by pulling adjacent variants together and up-weighting the

minor allele (burden tests) (Li and Leal, 2008; Liu and Leal, 2010;

Madsen and Browning, 2009), or by applying a linear mixed model

on a certain genomic region (variance component tests) (Lee et al.,

2012; Neale et al., 2011; Wu et al., 2011). For most rare variant

methods, a fixed genomic region for testing is assumed, such as a

gene or a fixed window. However, in real data application, a gene

may contain from several to thousands of variants. Directly applying

rare variant association tests based on a fixed window may intro-

duce significant amounts of unnecessary noise that could impair the

testing power (Santorico and Hendricks, 2016). Furthermore, many

of the exome sequencing data have unknown gene functions and are

difficult to pool without prior information. Therefore, it is desirable

to optimize the collapsing region so that minimum noise is included

and the power of a test can be enhanced. This approach will be most

effective when the true signals display a certain degree of clustering,

which is not unreasonable as linkage disequilibrium exists among

adjacent variants (Pearson and Manolio, 2008). Large sequencing

studies also indicated that variants in the same gene regulatory elem-

ent would physically cluster in DNA sequences (Allen et al., 2010;

Raab and Kamakaka, 2010; Robertson et al., 2003; Yue et al.,

2010). Scan statistics have been proposed which incorporate a slid-

ing window with varying window size to identify localized signals

(Hoh and Ott, 2000; Ionita-Laza et al., 2014a,b). Since scan statis-

tics typically need permutations to evaluate significance, the com-

puting burden prevents its window size selection to be conducted in

an exhaustive manner for whole genome evaluation. It also does not

provide stand-alone window size optimization for other rare variant

association tests.

In this article, we propose a Zoom-Focus algorithm (ZFA) to

optimize the testing region for any region-based rare variant associ-

ation test as a wrapper function. The algorithm consists of two main

steps, Zooming and Focusing. In the Zooming step, a fixed genomic

region is partitioned by an order of two, and a search is conducted

across all partition levels to identify the region with maximum infor-

mation, evaluated by the smallest association P-value of that parti-

tion. Based on the zoomed partition, the next step, Focusing, refines

the region by adding or subtracting adjacent variants near the boun-

daries. Simulation studies of various genetic scenarios demonstrated

that ZFA could substantially enhance the statistical power of differ-

ent rare variant methods, including the SKAT, SKAT-O, burden test

and W-test. The ZFA was applied on real exome sequencing data of

hypertensive disorder and identified biologically relevant genetic

markers that were undetectable by unoptimized testing regions.

2 Materials and Methods

2.1 The Zoom-Focus algorithm
The ZFA can best be explained with an example. Suppose a gene or a

fixed window contains 64 variants, among which 8 are causal. For the

simplest scenario, the eight causal markers cluster together, as shown

in Diagram 1. (Other causal marker distributions are considered in the

simulation study.) The ZFA first performs an exhaustive search in all

possible binary partitions of the initial region to locate the best parti-

tion (Zooming), and then adjusts the zoomed region by considering

the increment or decrement of the bounds (Focusing) (Diagram 1).

We will first define some notations, and then introduce the algo-

rithm. Let P be the total number of variants in a fixed window; R is

the maximum order of binary partitions for P, and R¼ arg

max{r: 2r�1 < P, r ¼ 1, 2, . . .}; r is the order of partitions. At a cer-

tain r, the number of partitioned regions is nr ¼ 2r�1, and the size of

partition d is the number of variants in a partitioned region, d ¼ P/

nr ¼ P/2r�1. A higher order gives a smaller partitioned region size. c

is the index for the cth partition, c ¼ 1,. . ., nr. For Diagram 1, P ¼
64; the causal region is located at the fourth order and the second

partitioned region, at which r ¼ 4, d ¼ 8 and c ¼ 2. (A complete cor-

respondence of partition order and size can be found in

Supplementary Material S1.) We denote /(d, c) ¼ {xcj, j ¼ 1,. . .,d}

as the region that contains variants in a partition size d and index c,

in which xcj denotes the jth variant located in the cth partitioned re-

gion. The causal region in this example is /(8, 2). Let f(�) be the

Bonferroni corrected P-value calculated by rare variant method F(�)
measured on region /(d, c):

f ðd; cÞ ¼ nr F½/ðd; cÞ�; (1)

where nr is the number of partitions at order r. The scalar ensures

P-values at the different partition orders can be compared.

Therefore, we have:

Step 1: Zooming. Search for an optimal (bd;bc) among all parti-

tions of a given initial region such that f (�) is minimized:

ðbd ;bcÞ ¼ arg minff ðd; cÞ; r ¼ 1; . . . ;R; c ¼ 1 to nrg (2)

The number of tests T(P) in a window of P number of variants is:

TðPÞ ¼
XR�1

x¼0
2x ¼ 20 þ � � �2R�1 ¼ 2R � 1 � 2 log2ðPÞ � 1 ¼ P� 1

Therefore, the computational complexity of Zooming is O(P).

Step 2: Focusing. Refine the boundaries of (bd;bc) by extending

both lower and upper bounds, outwardly by bd=2, and inwardly bybd=4. Let LB denote the lower bound of (bd;bc), and UB denote the

upper bound of (bd;bc). The focused lower bound (LBf) and upper

bound (UBf) are:

LBf ¼ arg minff ðLB’; UBÞ;LB’¼LBþ i; i¼ ½�bd=2; bd=4�g; and

UBf ¼ arg minff ðLBf ;UB’Þ;UB’¼UBþ i; i¼ ½�bd=4; bd=2�g
(3)

Then the P-value of ZFA on a given window of P variants is:

P-value ¼ ðkþ P� 1Þ FðLBf ;UBf Þ; (4)

Diagram 1. The ZFA first performs an exhaustive search in all possible binary

partitions in a given genomic region (Step 1: Zooming); then adjusts the

boundary of the zoomed region by considering increment or decrement of

bounds (Step 2: Focusing)
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where P – 1 is the number of tests in the Zooming step; and k is the

number of tests in the Focusing step, 0 � k � 3bd=2. k ¼ 0 when

Focusing is not performed; k ¼ 3bd=2 when Focusing searches the

surroundings of both bounds.

In the Focusing step, the worst-case scenario contains 3P/2 calcu-

lations. Thus, the overall computation complexity of the ZFA is

O(P). This is much more efficient than searching all possible win-

dow sizes, by which the computation complexity is O(P!). In sum,

the Zooming step locates the best partition from the global search,

and the Focusing step refines the boundaries of the zoomed region

from local linear optimization. The terms are motivated by optical

zooming lens.

2.2 An alternative fast-Zoom method
The previous Zooming algorithm exhaustively searches binary parti-

tions of a given region. The computing speed of different statistical

tests varies: some inherit probability distributions such as the W-test

(Wang et al., 2016), while some incorporate approximation tests to

obtain the P-values such as the SKAT (Wu et al., 2011). To assist

the computing extensive methods to perform ZFA, we propose a

fast-Zoom method. Instead of searching all possible partitions, the

fast-Zoom performs a binary search, such that at each partition

order r, the region is divided into two parts, only the part with the

smaller P-value is considered for the next level search, as illustrated

in Diagram 2. The computation complexity of fast-Zoom reduces to

O(log2(P)).

2.3 Simulation study design
Each simulation dataset consists of 2000 subjects and 128 rare vari-

ants. The MAF of variants is between 0.01 and 1%. Simulated

phenotypes are generated using a logistic regression on causal vari-

ants (Wu et al., 2011):

LOGIT½PrðY ¼ 1Þ� ¼ b0 þ 0:5X1 þ 0:5X2 þ R8
i¼1biGi;

where X1 is a standard normal covariate, X2 is a dichotomous cova-

riate that takes the value 0 with probability 0.5 and the value 1

otherwise. Gi is a causal rare variant and bi is the effect size,

bi ¼ jlog10MAFj � 0.3, such that rarer variants have greater effects.

The prevalence is controlled by setting b0 to 10%.

The power of the rare variant association test is also influenced

by the distribution of causal variants in the evaluation region

(Sham and Purcell, 2014). To fully explore all methods’ perform-

ance with ZFA, three scenarios are considered, with varying distri-

butions and different effect sizes and directions (Diagram 3):

Scenario I: eight causal variants cluster together in a same effect

direction.

Scenario II: eight causal variants cluster in two groups in a same ef-

fect direction.

Scenario III: eight causal variants cluster together in opposite effect

directions (five variants display risk effect and three variants show

protective effect).

To evaluate the effect of Focusing, distribution of causal variants is

simulated to follow the setting of Scenario I but with uneven

boundaries.

2.4 Statistical tests considered
The ZFA is applicable to all region-based rare variant association

tests. Four representative methods are selected for ZFA to be applied

in simulation studies, including the SKAT of variance component

test, the SKAT-O, a composite burden and variant component

method, the classical weighted burden test, and the W-test of burden

test category. The SKAT is a quadratic score test that is composed of

a weighted prediction error from a linear mixed model; it follows a

mixture of Chi-squared distributions, and the P-value is obtained

through Davies approximation (Wu et al., 2011). The SKAT is ad-

vantageous when a few large effect variants are located in a genomic

region, and when the effect directions are not identical (Lee et al.,

2014). The SKAT-O combines the SKAT and burden test by a linear

model, and computes the asymptotic P-value with 1D numerical in-

tegration (Lee et al., 2012). The burden test sums the minor allele

counts within a region, and conducts testing based on the collapsed

unit with adjusted weight, which is suitable for the scenario when

the majority of causal variants have the same effect direction (Sha

et al., 2012). The W-test collapsing method is a fast and model-free

genetic association test for rare variants. The test calculates a

W-statistic on the summed contingency table of variants from a

given region, and follows a Chi-squared distribution (Sun et al.,

2016; Wang et al., 2016).

2.5 Power, type I error calculation and receiver

operating characteristic
For the power calculation, 1000 datasets are generated for each

scenario. The power before Zooming is the proportion of initial re-

gion (gene-based) tests having a significant P-value (Lee et al., 2012;

Wu et al., 2011). The power after Zooming is the proportion of true

positives in 1000 simulated datasets. An outcome is regarded as a

true positive if the final optimal region overlaps with the causal re-

gion and has a Bonferroni corrected P-value smaller than a. The sig-

nificance level a is set to be 1%. Y is permuted 105 times for type I

error estimation. A receiver operating characteristic (ROC) curve is

used to assess the improvement of the Focusing step after the

Zooming step.

2.5.1 Zooming performance under varying sample sizes and causal

variants proportions

The power of rare variants association testing with Zooming is com-

pared when the sample size is allowed to vary. Under scenario I, at

causal variant proportion 6.25%, the sample sizes tested are: 1000,

2000, 3000 and 4000 subjects, respectively. The performance of the

rare variant association test is also compared at different causal vari-

ant proportions using the fast-Zoom. The proportions of causal

Diagram 2. Fast-ZFA. In fast-Zoom, a binary search replaces the exhaustive

search—only shaded regions are evaluated. Fast-ZFA’s computation com-

plexity is O(log2(P)), compared with Zooming’s O(P)

2332 M.H.Wang et al.

Deleted Text: &hx2009;
Deleted Text: &hx2264;
Deleted Text: &hx2009;
Deleted Text: <italic>&hx2009;</italic>
Deleted Text: <italic>&hx2264;&hx2009;</italic>
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: s
Deleted Text: Z
Deleted Text: <italic>p</italic>
Deleted Text: <italic>p</italic>
Deleted Text:  
Deleted Text: ,
Deleted Text: &hx0025;
Deleted Text: &hx003D;&hx007C;
Deleted Text: 8
Deleted Text: 8
Deleted Text: 8
Deleted Text: 5
Deleted Text: 3
Deleted Text: Zoom-Focus algorithm
Deleted Text: <italic>p</italic>
Deleted Text: <italic>p</italic>
Deleted Text: one
Deleted Text: -dimensional
Deleted Text: ROC
Deleted Text: ,
Deleted Text:  
Deleted Text: <italic>p</italic>
Deleted Text: ,
Deleted Text:  
Deleted Text: <italic>p</italic>


variants are set to be 3.18%, 6.25%, 12.50% and 18.75%, respect-

ively, under scenario I and using fixed sample size 2,000. All a are

set as 1%.

2.6 Real data application
ZFA is applied on real hypertensive disorder sequence data of the

Genetics Analysis Workshop 19 (GAW19). The data consist of 398

hypertensive patients and 1453 healthy controls; the exome sequence

of chromosome 3 is used. Variants with a missing value percentage

over 5%, MAF > 1%, and inconsistent genotyping format are

excluded (Laurie et al., 2010). After quality control, 41 788 rare vari-

ants remain. The full ZFA is applied on Chromosome 3 using an ini-

tial window size P ¼ 256. The chromosome is then divided into 163

non-overlapping regions, and the remaining 60 variants are grouped

as the last window. Zoomed regions with P-value < 0.001 are passed

to the Focusing step. A region is regarded as significant if its final

P-value is smaller than the Bonferroni corrected significance level of

6.1 � 10�5 (0.01/164). Initial window sizes P ¼ 128 and P ¼ 512 are

also applied, with the significance threshold adjusted accordingly

(Supplementary Material S3). Genes that are included or overlap with

the returned region are reported as susceptible.

3 Results

3.1 Simulation study
3.1.1 Performance of the zooming

The Zooming was evaluated under the three causal marker distribu-

tion scenarios, and all rare variant tests received considerable power

enhancement (Table 1). In Scenario I, eight causal variants with the

same effect direction cluster together. After Zooming, the power of

SKAT increased from 20.73 to 25.95%, and SKAT-O improved

from 22.15 to 68.18%. The power of burden test and W-test

increased from 10.34 and 11.23% to 76.11 and 71.32%, respect-

ively. In Scenario II, four causal variants with the same effect direc-

tion form two distinct clustering groups. Before optimizing the

testing region, SKAT and SKAT-O gave the highest power: 65.59

and 64.82%, compared with burden test’s 23.93% and W-test’s

28.41%. After applying the Zooming, SKAT power increased to

73.78%, SKAT-O to 87.32%; and the power of burden test and W-

test increased greatly to 87.89 and 85.51%, respectively. Both

Scenarios I and II favoured unidirectional burden tests, and tests

with burden property benefitted most from optimizing the testing re-

gion. Before Zooming, SKAT and SKAT-O had higher power; after

Zooming, the W-test and burden test outperformed the SKAT meth-

ods. Scenario III contains eight causal variants in different effect dir-

ections; it is more suitable for variance component tests. Before

optimization, SKAT and SKAT-O showed higher power of 49.51

and 44.57%, compared with burden’s 8.49% and W-test’s 10.63%.

After optimizing, SKAT’s power increased to 65.98%, SKAT-O to

74.47%; burden test power increased to 72.99% and W-test to

66.85%. The power of SKAT-related method increased around 1.5-

fold, and the power of burden-like methods increased 6-8-fold. For

the zoomed region size (Table 1), SKAT and SKAT-O usually re-

sulted in wider final optimized regions, while the burden test and

W-test gave narrower zoomed regions around the causal variants.

Type I error rates after Zooming were all controlled under 1%.

3.1.2 Performance of the fast-Zoom

The power of all rare variant methods also improved with fast-

Zoom, and the type I error rates were controlled (Supplementary

Material S2). Under Scenario I, for the burden test and W-test, fast-

Zoom improved their testing power from 10.34 to 68.62% and

from 11.23 to 63.68%, respectively. The burden test’s power was

�10% weaker than in the Zooming due to increased noise level

from the crude partitions. The regression-based SKAT methods are

more robust as they can discriminate noises within a reasonably

sized bin. Fast-Zoom also has a smaller number of multiple tests’

penalties. Therefore, the SKAT-method showed slightly higher

power and type I error rates in the fast-Zoom than in the Zooming.

3.1.3 Performance of zooming at different sample sizes

Before Zooming, as the sample size increased, the power of SKAT

and SKAT-O increased much quicker than the burden test and W-

test (Figs. 1 and 2). After Zooming, the power of SKAT-O, burden

test and W-test quickly reached 70–80% at 2000 subjects. The result

showed that all the methods’ power increased greatly with

Zooming, and tests with burden characteristics improved the most.

In whole genome data of insufficient sample size, Zooming could be

a useful method to enhance the testing power of a rare variant asso-

ciation study.

Table 1. Power and type I error rates of rare variant association

tests before and after Zooming

Scenarios of causal

variants distribution

Statistical

tests

Powerb

before

Zooming

Power

after

Zooming

Zoomed region

size Median

[Q1, Q3]

Scenario Ia SKAT 20.73% 25.95% 16 [8,64]

SKAT-O 22.15% 68.18% 8 [8,8]

Burden 10.34% 76.11% 8 [8,8]

W-test 11.23% 71.32% 8 [8,8]

Scenario II SKAT 65.59% 73.78% 16 [16,32]

SKAT-O 64.82% 87.32% 16 [16,16]

Burden 23.93% 87.89% 16 [4,16]

W-test 28.41% 85.51% 16 [16,16]

Scenario III SKAT 49.51% 65.98% 16 [8,32]

SKAT-O 44.57% 74.47% 8 [8,16]

Burden 8.49% 72.99% 4 [4,8]

W-test 10.63% 66.85% 8 [4,8]

Type I error rateb SKAT 0.56% 0.49% 128 [64,128]

SKAT-O 0.76% 0.54% 128 [16,128]

Burden 0.93% 0.47% 128 [16,128]

W-test 1.23% 0.42% 128 [32,128]

Note: Under three causal marker distribution scenarios, the statistical

power of all rare variant tests by applying Zooming showed a substantial en-

hancement. The type I error rates were controlled.
aScenario I: 8 unidirectional causal variants; Scenario II: two clusters of

four unidirectional causal variants; Scenario III: 8 bi-directional causal

variants.
ba¼ 1% for all methods.

Diagram 3. Causal variants distribution scenarios in simulation study
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3.1.4 Performance of fast-Zoom at different causal variants

proportions

Simulation datasets were generated to carry different causal variant

proportions. Without fast-Zoom, as the causal variant proportion

increased from 3.18 to 6.25%, the power of burden test increased

from 3.2 to 10.3%, and the power of SKAT increased from 8.6 to

20.7%. With fast-Zoom, the power of burden test increased from

23.9 to 68.6%; while the power of SKAT increased from 12.7 to

31.4%. Again, burden tests enjoyed more power enhancement by

fast-Zoom as the causal variant proportion increased.

3.1.5 Performance of Focusing

The effect of Focusing is shown by comparing the ROC curves of

the Zooming and ZFA in Figure 3. The figure showed that by apply-

ing the Zooming step alone, there was already considerable power,

and the Focusing step further boosted the overall performance. The

binary partition of Zooming resulted in discontinuous optimal re-

gions, and the true and false positive rates were returned as inter-

vals, thus the ROC curves showed forms of step function.

3.2 Computation time
On a laptop computer with 2.3 GHz CPU and 4GB memory, the

unit time elapsed for Zooming in a genetic region of 128 variants on

2000 subjects was 9.51 s by SKAT, 26.90 s by SKAT-O, 8.55 s by

burden test and 0.12 s by W-test (Table 2). Zooming with W-test

was tens of times faster than burden test and SKAT, and hundreds

of times faster than SKAT-O. In real data, ZFA with W-test took

<10 min to analyse the exome region of one chromosome contain-

ing 41 788 variants.

3.3 Real data application
ZFA was applied on chromosome 3 of the real whole exome

sequencing data of hypertensive disorder. ZFA with W-test identi-

fied one region of significant P-value (MSL2/PCCB, P-value ¼ 1.04 �
10�5). Another gene ITPR1 (P-value ¼ 6.36 � 10�3) was listed for

comparison (Table 3). Before testing region optimization, the gene

MSL2/PCCB contained 85 variants and the P-value was 0.279, which

meant that it would be undetectable by a gene-based method without

ZFA; after ZFA, the final testing region included 27 variants and was

statistically significant after multiple testing corrections. Different ini-

tial window sizes were applied and ZFA gave the same optimal regions

(Supplementary Material S3). This showed that the method was quite

robust. The gene MSL2/PCCB was previously reported to be associ-

ated with lipid and metabolic disorders (Dehghan et al., 2009; Willer

et al., 2013). The results showed that ZFA could enhance the effective

selection of rare variants with disease association on exome sequencing

data. The phenotypes were permuted 1000 times to evaluate false posi-

tives on real data, and the average false positive rate was below 1%,

which indicated that there was no inflation of spurious association.

4 Discussion

Rare variant association tests improve the testing power on exome

data by jointly considering the effect of many rare variants. The

grouping of variants is often based on prior biological knowledge or

a fixed genomic region. However, functional annotation of rare

variants is still evolving; there are multiple platforms to determine

the actual regions of genes, some with overlapping boundaries

(ENCODE Project Consortium, 2012; Kircher et al., 2014;

Maurano et al., 2012). There is also no consensus on whether the

promoters, untranslated regions or introns should be included in

gene-based tests (Auer and Lettre, 2015). For coding variants, it is

likely that only parts of them are functional and others represent

random genetic variation (Ionita-Laza et al., 2014a,b). The problem

is more serious with increasing sequencing depth—a gene easily

spans two to three thousand variants. The power of direct applica-

tion of aggregation tests could be affected by the large proportion of

noise; therefore, it is crucial to determine the region of testing as a

starting point.

The motivation of ZFA is to locate an optimal region with

maximum association information, and to exclude noise based on

information from the data. In fact, the Zooming step performs a

feature selection within a given genomic region; the features are
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variant-clusters of varying sizes. Based on the best partition, boun-

daries are further refined by adding or subtracting adjacent vari-

ants surrounding them. In this way, noise can be discarded and

statistical power can be improved. Simulation studies demon-

strated that the ZFA can boost the power of various rare variant

tests by several fold.

One challenge of the region optimization problem is how to

compare bins fairly from different partition orders. In ZFA, this is

solved by weighting each bin using the number of cuts nr in its parti-

tion order (Equation 1). The weight corrects for multiple tests aris-

ing from different partition levels, and projects the P-values onto the

same plane for comparison. A related but different problem is the

final P-value calculation in Equation (4), in which the P-value is ad-

justed by the total number of multiple tests occurring in the global

procedure. Note that this step does not change the optimal testing

region, which is already determined by optimizing Equation 1. Since

the total number of tests in ZFA is related to the initial window size

P, the correction implicitly considers the number of maximum parti-

tion order R, which is about log2(P), and the number of bins in each

partition order. However, multiple testing corrections using the

Bonferroni method are conservative, which result in the conservative

type I error rates of ZFA.

In real data analysis of one chromosome by ZFA, the gene

MSL2/PCCB was found to have significant P-value. The MSL2 is a

subunit of a protein complex that functions in chromatin modifica-

tion, and the protein encoded by PCCB is a subunit of the

propionyl-CoA carboxylase enzyme. Application of ZFA with rare

variant aggregation tests increased the chance of identifying dis-

ease susceptible loci. More experiments are needed to confirm the

discovered region’s underlying biological functions related to

disease.

To conclude, we propose a ZFA to locate the optimal testing re-

gion for rare variant association tests. The method is flexible—it can

be applied together with various existing rare variant tests and is

computationally efficient. The method is a practical and powerful

approach to elucidate the role of rare variants in complex disorders

for large genome studies.
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