
Genome analysis

SeqArray—a storage-efficient high-performance

data format for WGS variant calls

Xiuwen Zheng1,*, Stephanie M. Gogarten1, Michael Lawrence2,

Adrienne Stilp1, Matthew P. Conomos1, Bruce S. Weir1, Cathy Laurie1

and David Levine1

1Department of Biostatistics, University of Washington, Seattle, WA, USA and 2Bioinformatics and Computational

Biology, Genentech, Inc, South San Francisco, CA, USA

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on September 29, 2016; revised on March 6, 2017; editorial decision on March 13, 2017; accepted on March 14, 2017

Abstract

Motivation: Whole-genome sequencing (WGS) data are being generated at an unprecedented rate.

Analysis of WGS data requires a flexible data format to store the different types of DNA variation.

Variant call format (VCF) is a general text-based format developed to store variant genotypes and

their annotations. However, VCF files are large and data retrieval is relatively slow. Here we introduce

a new WGS variant data format implemented in the R/Bioconductor package ‘SeqArray’ for storing

variant calls in an array-oriented manner which provides the same capabilities as VCF, but with mul-

tiple high compression options and data access using high-performance parallel computing.

Results: Benchmarks using 1000 Genomes Phase 3 data show file sizes are 14.0 Gb (VCF), 12.3 Gb

(BCF, binary VCF), 3.5 Gb (BGT) and 2.6 Gb (SeqArray) respectively. Reading genotypes in the

SeqArray package are two to three times faster compared with the htslib C library using BCF files.

For the allele frequency calculation, the implementation in the SeqArray package is over 5 times

faster than PLINK v1.9 with VCF and BCF files, and over 16 times faster than vcftools. When used in

conjunction with R/Bioconductor packages, the SeqArray package provides users a flexible,

feature-rich, high-performance programming environment for analysis of WGS variant data.

Availability and Implementation: http://www.bioconductor.org/packages/SeqArray

Contact: zhengx@u.washington.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As the cost of DNA sequencing rapidly decreases, whole-genome

sequencing (WGS) is generating data at an unprecedented rate

(Goodwin et al., 2016; Metzker, 2010). Scientists are being chal-

lenged to manage data sets that are terabyte-sized, contain diverse

types of data and complex data relationships. Data analyses of WGS

require a general file format for storing genetic variants including

single nucleotide variations (SNVs), insertions and deletions and

structural variants. The variant call format (VCF) is a generic and

flexible format for storing DNA polymorphisms developed for the

1000 Genomes Project (Danecek et al., 2011; 1000 Genomes

Project Consortium, 2010) that is the standard WGS format in use

today. VCF is a text format usually stored in compressed files that

supports rich annotations and relatively efficient data retrieval.

However, VCF files are large and the computational burden associ-

ated with large-scale data retrieval from text files can be significant

for a WGS study with thousands of samples. As the number of indi-

viduals sequenced increases from thousands to tens of thousands

and even more in studies like the Precision Medicine Initiative pro-

gram (Collins and Varmus, 2015), the need for an efficient and flex-

ible and high-performance environment to store and analyze WGS

variant data becomes essential.
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The binary variant call format (BCF) was developed as a comple-

mentary format to extract information from VCF files without having

to parse text (Danecek et al., 2011; Li, 2011). VCF and BCF files are

commonly accessed using either VCFtools (https://vcftools.github.io/

index.html) or BCFtools (https://samtools.github.io/bcftools).

VCFtools consists of a perl module with APIs for manipulating files

and a binary executable providing general analysis routines including

the calculations of allele frequency, linkage disequilibrium statistics

and fixation index population statistics. BCFtools is designed as a

faster replacement for most of the perl VCFtools commands.

Other file formats have been developed to improve upon VCF

and BCF. For example, BGT and GQT were developed for fast

genotype queries (Layer et al., 2016; Li, 2016). In either VCF or

BCF, a single genotype requires at least a full byte of storage and

genotypic data are usually compressed by the zlib algorithm (http://

www.zlib.net). Li (2016) developed a new binary format, BGT, spe-

cific to genotypes, which represents diploid genotypes as a 2-bit inte-

ger matrix and utilizes the positional Burrows-Wheeler transform

(PBWT) to store bit matrices (Durbin, 2014). In general, PBWT has

a higher compression ratio and faster access capability than BCF.

However, BGT format only allows three different alleles at a site.

Complementary to the variant-centric indexing strategy imple-

mented in VCF, BCF and BGT, Layer et al. (2016) proposed a

sample-centric storage approach (GQT) for variant data by trans-

posing the genotypes originally stored in VCF files. GQT represents

sample genotypes as compressed bitmap indices and provides effi-

cient algorithms for genotype queries, allele counting and other cal-

culations. However, GQT query is inefficient when analyzing a

small genomic region and does not compress well compared with

other new formats (Li, 2016).

GenomicsDB is used by the Broad Institute (https://github.com/Intel-

HLS/GenomicsDB) for storing and processing variant data, and it is

built on top of the Intel TileDB system (http://istc-bigdata.org/tiledb/)

which is optimized for both dense and sparse multi-dimensional arrays

(Papadopoulos et al., 2016). However, none of these binary formats are

integrated with the R programming environment.

To provide an efficient alternative to VCF and BCF for WGS vari-

ant data, we developed a new data format and accompanying

Bioconductor package, ‘SeqArray’. Key features of the SeqArray pack-

age are efficient storage including multiple high compression options,

data retrieval by variant or sample subsets, support for parallel access

and computing, and Cþþ integration in the R programming environ-

ment. The SeqArray package provides R functions for efficient block-

wise computations, and enables scientists to develop custom R scripts

for exploratory data analysis. In addition, an R ecosystem built on

top of the SeqArray package is available in the Bioconductor reposi-

tory, including the SeqVarTools, SNPRelate and GENESIS packages

which provide a wide range of tools for WGS variant analysis.

2 Materials and methods

2.1 Implementation
The SeqArray file format is built on top of the Genomic Data Structure

(GDS) format (Zheng et al., 2012), a flexible and scalable data con-

tainer with a hierarchical structure that can store multiple array-

oriented data sets. GDS supports large-scale genomic datasets, espe-

cially those which are much larger than the available main memory, by

providing memory- and performance-efficient operations specifically

designed for integers of less than 8 bits, since a diploid genotype usually

occupies fewer bits than a byte. Data compression and decompression

are available with relatively efficient random access. GDS is imple-

mented using an optimized Cþþ library (CoreArray, http://corearray.

sourceforge.net) and a high-level R interface is provided by the

platform-independent R package gdsfmt (http://bioconductor.org/pack

ages/gdsfmt). Figure 1 shows the relationship between a SeqArray file

and the underlying infrastructure upon which it is built. All of the in-

formation represented in a VCF file can be captured by a SeqArray file.

At a minimum, the data fields required are sample and variant identi-

fiers, chromosome, position and reference and alternate alleles. The

SeqArray package is available at Bioconductor (Gentleman et al.,

2004; R Core Team, 2016) under the GNU General Public License v3:

http://www.bioconductor.org/packages/SeqArray.

The SeqArray file format stores genotypes in a 2-bit array with

ploidy, sample and variant dimensions. If two bits cannot represent

all alleles at a site, a 2-bit matrix is appended to store additional bits

according to the variant coordinate; hence any number of alleles can

be stored including a missing value. An index vector associated with

genotypes is used to indicate how many bits are used for each vari-

ant. An example of genotype decoding with graphical illustrations is

shown in Supplementary Figure S1.

Fig. 1. SeqArray framework and ecosystem. The SeqArray file format is built on top of the GDS format, a generic data container with hierarchical structure for

storing multiple array-oriented data sets. Access to GDS is either through an efficient Cþþ library or a high-level R interface. The SeqArray package creates GDS

files and offers functionality specific to WGS variant data. At a minimum a SeqArray file contains sample and variant identifiers, position, chromosome and refer-

ence and alternate alleles for each variant. The functionality of the SeqArray package is extended by other R/Bioconductor packages such as SeqVarTools,

SNPRelate and GENESIS that provide an ecosystem for WGS analyses on top of the SeqArray file format
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The annotations in a SeqArray file can be integers, floating point

numbers or characters. For a variant, variable-length vectors in an anno-

tation are padded with missing values, and all vectors are packed to-

gether in an array. If each variant has different length, an extra vector is

used to store the length information. Per-sample read depth (DP), allelic

depths, conditional genotype quality (GQ) and Phred-scaled genotype

likelihoods (PLs) are stored as integers according to the VCF

Specification (http://samtools.github.io/hts-specs/). Variable-length inte-

ger encoding is used to store these variables to reduce the file size, e.g. a

32-bit integer between�64 and 63 is saved in a byte instead of a double

word. The encoding details are shown in Supplementary Figure S2.

Currently, two primary lossless compression methods are avail-

able for the SeqArray file format: either the zlib or Lempel-Ziv

Markov chain (LZMA) algorithm. LZMA has a higher compression

ratio than zlib, although it takes more random-access memory and

time to compress. To enable efficient random access of compressed

data, a storage strategy using independently compressed data blocks

is employed with an indexing strategy (see Supplementary Fig. S3).

Independent data blocks allow for fast performance for data filter-

ing since not all data have to be decompressed.

2.2 Parallel computing
The SeqArray package utilizes the framework implemented in the R

package ‘parallel’ (Rossini et al., 2007; R Core Team, 2016) to sup-

port multiple forms of parallelism. First, the majority of WGS vari-

ant data consists of bi-allelic SNVs (1000 Genomes Project

Consortium, 2010), four of which can be encoded in a single byte

and operated on simultaneously. Second, multi-core parallelism on

symmetric multiprocessing (SMP) computer architectures is sup-

ported via POSIX forking on Unix-like systems. Third, job-level par-

allelism on loosely coupled compute clusters is supported via

communication over sockets or by the Message Passing Interface.

Most importantly, all of these forms of parallelism can be combined

together allowing high-speed access and operations on hundreds of

different parts of the genome simultaneously.

When multiple processes are writing data, the SeqArray package

stores the data in a separate local file for each process and merges

these files together when the processes finish. Since data are stored

in independent blocks, merging files is easily done by copying data

directly without having to uncompress and re-compress it.

Streaming SIMD Extensions 2 (SSE2) is a programming tech-

nique supported on Intel architectures to expedite calculations when

an algorithm can be expressed using vector operations. Each SSE2

register has 128 bits and can operate on 16 bytes or four 32-bit inte-

gers. In the situation that an allele is stored in a 32-bit integer for op-

erations, four alleles can be unpacked with SSE2 instructions

simultaneously from a 2-bit array. Bit unpacking can be further

accelerated if a byte is used for storing an allele and an SSE register

saves 16 alleles together. Other operations such as allele counting

can be accelerated with SSE2 instructions by scanning multiple

genotypes at the same time. Advanced Vector Extensions 2 (AVX2)

instructions extend SSE2 registers from 128 bits to 256 bits and are

available in newer Intel microprocessors. The SeqArray package

also provides an AVX2 implementation.

3 Performances

We used data from the 1000 Genomes Project Phase 3 (1000G) to

compare the SeqArray package with other popular file formats and

toolsets. The 1000G data consists of 2504 individuals and 81 271

745 autosomal variants distributed in 22 compressed VCF files.

Benchmarks were run on an Amazon Web Services instance

(c4.8xlarge � 36 cores, 60 Gb main memory, 2.9 GHz Intel Xeon

Haswell) with a 200 Gb solid-state disk drive. The software used

were zlib v1.2.8, liblzma v5.2.2, R v3.3.2, htslib v1.3.1, bcftools

v1.3.1, vcftools v0.1.15, bgt v1.0-r282, PLINK v1.9 (stable beta

3.44), gdsfmt v1.10.1 and SeqArray v1.14.1. All C/Cþþ codes were

compiled with GCC v4.8.3 with ‘-O2’ optimization. Since SSE2 in-

structions are well supported by current x86-64 processors while

AVX2 instructions are only available on new computers, we report

wall-clock times in an SSE2-enabled and AVX2-disabled situation.

Table 1 shows the time and file size to convert 22 autosomal com-

pressed VCF files to a single compressed output file in BCF, BGT and

SeqArray file formats. The R scripts used for testing are shown in

Supplementary Figure S4. The first row of the table shows the time to

merge the 22 compressed VCF files into a single compressed VCF file.

This provides a baseline for comparison since no actual format con-

version is conducted, only recompression. The VCF to VCF and VCF

to BCF conversion were both performed using the bcftools soft-

ware (https://samtools.github.io/bcftools). The encoded genotype sizes

of the VCF and BCF files are not shown since neither file format

stores genotypes and annotations separately. The information density

is 5.5 genotypes per bit for the SeqArray file with zlib compression,

8.0 for BGT and 14.1 for SeqArray/lzma, respectively. The SeqArray

Table 1. Format conversion and compression. Shown are the time (in hours) and file size (in gigabytes) to convert 22 autosomal com-

pressed genotype VCF files from the 1000 Genomes Project Phase 3 (2504 samples, 81M variants) to a single compressed output file

Software Output file format Compression algorithm Total file size Encoded genotype size Information densitya Time: 1 core 4 cores

bcftools VCF.gzb zlib 14.4 Gb — — 2.6 h 0.9 h

bcftools BCF zlib 12.3 Gb — — 4.5 h 3.3 h

BGT BGTc pbwt 3.5 Gb 3.0 Gb 8.02 2.4 h —

SeqArray SeqArray zlib 5.7 Gb 4.3 Gb 5.47 2.3 h 0.9 h

SeqArray SeqArray lzma 2.6 Gb 1.7 Gb 14.08 6.3 h 2.2 h

athe number of genotypes per encoded bit.
bmerging 22 VCF files into a single file with no format conversion.
cpbwt, positional Burrows-Wheeler transform; BGT, does not store the phasing states and annotations.

Table 2. Comparison of storage usage with genotypes, per-sample

read DP and PLs

File format Compression algorithm Total file size File size ratio

VCF.gz zlib 338.2 Gb 1.00

BCF zlib 309.1 Gb 0.91

SeqArray zlib 282.5 Gb 0.84

SeqArray lzma 227.6 Gb 0.67

Note: Shown is the total file size (in gigabytes) of 22 autosomes from the

1000 Genomes Project Phase 3 (2504 samples and 77M variants that have the

DP and PL annotations).
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files are smaller than the VCF and BCF files and the SeqArray file

with lzma compression is smaller than the BGT file. The conversion

times for the SeqArray package are similar to those for the implemem-

tation in bcftools and the BGT utilities, and they can be further

reduced when multiple cores are used. The formats VCF, BCF and

SeqArray zlib utilize the same compression algorithm to encode data,

and the smaller file size for SeqArray (5.7 versus 14.4 and 12.3 Gb)

may have an additional performance advantage over the others since

less data is written to the file system.

The comparison of storage usage with genotypes and per-sample

annotations from the 1000G is shown in Table 2. The annotations

are per-sample DP and PLs, and the R scripts for re-formatting VCF

files are shown in Supplementary Figure S10. The SeqArray format

with zlib compression reduces disk space 16% compared with the

VCF.gz files and further 33% using lzma compression.

Table 3 measures the time to retrieve and decompress the geno-

type data and calculate the allele frequencies. The C and R scripts

used for benchmarking are shown in Supplementary Figures S5 and

S6. The SeqArray package and BGT are both more efficient than the

htslib library and SeqArray is more efficient than BGT. In the tests of

VCF and BCF files, we estimate the decompression speed via a C im-

plementation with the htslib library (https://github.com/samtools/

htslib). Parsing the VCF text file is almost 12-fold slower than extract-

ing genotypes from the BCF file for 1000G data, when the htslib im-

plementation is used. The SeqArray package utilizes the zlib

algorithm to encode and decode compressed data as well as VCF and

BCF, and the 3-fold speed improvement relative to BCF could be ex-

plained by the decrease in file size. BGT decodes up to 455 million

genotypes per second for 1000G data which is consistent with the

speed reported in Li (2016), while the SeqArray package is 1.4–1.7

times faster than BGT. When multiple cores were used, the running

time of the SeqArray package decreases almost linearly with the num-

ber of cores. In addition, calculating allele frequencies with the

SeqArray package is more than 16 times faster than VCFtools using

VCF and BCF files. The VCF/BCF implementation in PLINK v1.9

(Chang et al., 2015) is significantly faster than VCFtools, but the cal-

culation is still slower than the SeqArray package. Parallel access to

VCF, BCF and BGT files is not currently provided in their utilities, so

their multi-core running times are not shown here.

The performance of the SeqArray package using SSE2 and

AVX2 instructions is shown in Supplementary Table S1. We meas-

ured the elapsed time for genotype decompression using the same R

code (Supplementary Fig. S5b), but different compiler settings. The

compression libraries zlib and lzma return a 2-bit array, and we

manually optimize the performance of bit unpacking from this 2-bit

array to a 8-bit or 32-bit integer array. The SSE2 instructions are al-

most twice as fast as the implementation without SSE2, and AVX2

shows a slight improvement compared with SSE2.

To evaluate random access performance we randomly selected

250 regions of one million base pairs each for 20 randomly selected

populations and exported the genotypes to a VCF file. We used the

SeqArray package, bcftools and the BGT utilities for these

queries. As shown in Supplementary Table S2, the SeqArray package

with zlib compression performs similarly to BGT, and both are faster

than bcftools. The SeqArray package using lzma compression is

slower for random indexing compared with SeqArray/zlib. Note

that random access performance depends on the internal size of the

independently compressed data blocks. The running time could be

reduced if a smaller block size is used, but it would also decrease the

compression ratio. The default block size in the SeqArray file format

is tuned for gigabyte-scale data sets. The random-access results sug-

gest the SeqArray package performs at least as well as other tools

when real-time response to complex genotype queries is needed.

4 R integration

The R/Bioconductor package SeqArray provides functions for effi-

cient file manipulation and parallel execution. Importantly, the

SeqArray package has been extended by other R packages for WGS

variant data analyses and integrates smoothly with core

Bioconductor data structures. Below we give several examples, and

a full tutorial is available in the package vignette ‘R Integration’.

4.1 SeqArray features
4.1.1 Key R functions

Genotype data and annotations are stored in an array-oriented man-

ner, providing efficient data access using the R programming language.

Table 3. Genotype decompression and allele frequency calculation using the 1000 Genomes data (in minutes)

Software Input file format Compression algorithm Decompression ratea Time: 1 core 4 cores 8 cores 16 cores

Genotype decompression

htslib VCF.gz zlib 18.6 182.0 m

htslib BCF zlib 213.5 15.87 m

BGT BGT pbwt 455.3 7.45 m

SeqArray SeqArray zlib 759.7 4.46 m 1.16 m 0.59 m 0.30 m

SeqArray SeqArray lzma 629.1 5.39 m 1.42 m 0.73 m 0.37 m

Allele frequency calculation

vcftools VCF.gz zlib — 446.1 m

vcftools BCF zlib — 125.3 m

PLINK v1.9 VCF.gz zlib — 61.9 m

PLINK v1.9 BCF zlib — 37.7 m

SeqArray SeqArray zlib — 6.65 m 2.45 m 1.02 m 0.66 m

SeqArray SeqArray lzma — 7.56 m 2.79 m 1.15 m 0.75 m

amillion genotypes per second on one core.

Table 4. Key R functions in the SeqArray package

Function Description

seqVCF2GDS Reformat a VCF file

seqSetFilter Define a subset of samples or variants

seqGetData Get data with a defined filter

seqApply Apply a user-defined function over array margins

seqParallel Apply a function in parallel
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Table 4 lists five key functions provided in the SeqArray package and

many data analyses can be done using just these functions.

seqVCF2GDS() converts VCF files to the SeqArray file format.

Multiple cores in an SMP architecture within one or more compute

nodes in a compute cluster can be used simultaneously to reformat

the data. seqVCF2GDS() utilizes R’s connection interface to read

VCF files incrementally. This allows importing uncompressed VCF

data without the need to first save the entire file such as from an http/

ftp URL or the standard output of a command-line tool. The LZMA

compression algorithm is the default option in seqVCF2GDS().

seqSetFilter() and seqGetData() can be used together to

retrieve data for a selected set of samples from a defined genomic re-

gion. GRanges and GRangesList objects defined in the

Bioconductor core packages are supported via seqSetFilter()

(Gentleman et al., 2004; Lawrence et al., 2013).

seqApply() applies a user-defined function to the array mar-

gins of genotypes and annotations. The function that is applied can

be defined in R as is typical, or via C/Cþþ code using the Rcpp

package (Eddelbuettel et al., 2011). seqParallel() utilizes the

facilities in the packages parallel and BiocParallel (Gentleman et al.,

2004; Rossini et al., 2007; R Core Team, 2016) to perform calcula-

tions on a SeqArray file in parallel.

4.1.2 Calculating allele frequencies

We illustrate the function seqApply() by implementing an ex-

ample to calculate the frequency of the reference allele across all

chromosomes. An optimized version of this calculation is natively

provided in the SeqArray package function seqAlleleFreq().

# open a SeqArray file

file <- seqOpen(seqExampleFileName(“KG_Phase1”))

# user-defined allele frequency function

CalcFreq <- function(x) mean(x¼¼0, na.rm ¼ TRUE)

# apply the function to a genotype margin

seqApply(file, “genotype”, as.is¼“double”,
margin¼“by.variant”, FUN ¼ CalcFreq)

Here, file is a SeqArray file, ‘genotype’ is the variable in the

SeqArray file to act on, as.is indicates the result type, margin

specifies that the user function should be applied to each variant. The

variable x in the user-defined function is an allele-by-sample integer

matrix at a single variant site and 0 denotes the reference allele.

The preceding code can be optimized by writing the allele fre-

quency calculation function in Cþþ. The Rcpp package simplifies in-

tegration of compiled Cþþ code with R and allows Cþþ functions

to be dynamically defined inline and the Cþþ function name passed

to seqApply(), as shown in Supplementary Figure S7. Using Cþþ
is several times faster than the R implementation in this situation.

The calculations can be run in parallel. Below, the parameter

parallel specifies the use of four cores. The genotypes of a

SeqArray file are automatically split into non-overlapping parts ac-

cording to different variants or samples, and the results from client

processes collected internally.

seqApply(file, “genotype”, as.is¼“double”,
margin¼“by.variant”, FUN ¼ CalcFreq, parallel¼ 4)

4.1.3 Principal component analysis implementation

Principal component analysis (PCA) is a common tool used in ex-

ploratory data analysis for high-dimensional data. PCA often

involves the calculation of covariance matrix, and the following R

code implements the calculation proposed in Patterson et al. (2006).

The user-defined function computes the covariance matrix for each

variant and adds up to a total matrix s. The operator ‘%o%’ cal-

culates the outer product of normalized genotypes, and the argu-

ment ‘.progress’ enables the display of progress information

during the calculation.

# covariance variable with an initial value

s <- 0

seqApply(file, “$dosage”, function(x) {

p <- 0.5 * mean(x, na.rm ¼ TRUE) # allele freq

g <- (x - 2*p)/sqrt(p*(1-p)) # normalization

g[is.na(g)] <- 0 # missing values

s <<- s þ (g %o% g) # update the cov matrix s

# in the parent envir.

},margin¼“by.variant”,.progress ¼ TRUE)

# scaled by the number of samples over the trace

s <- s * (nrow(s)/sum(diag(s)))

# eigen-decomposition

eig <- eigen(s)

The algorithmic efficiency of the preceding R code can be signifi-

cantly improved by blocking the computations. seqBlockApply()

applies the user-defined function on a data block instead of a single

variant, and the corresponding implementation is shown in

Supplementary Figure S8.

seqParallel() utilizes the facilities offered by the R parallel or

BiocParallel package to perform calculations within a cluster or SMP

environment, and the genotypes are automatically split into non-

overlapping parts. The R parallel implementation is shown in

Supplementary Figure S9, and a C-optimized and memory-efficient

function is also available in the SNPRelate package (see Section 4.4).

4.2 Integration with bioconductor data structures
The example below uses Bioconductor core packages to perform

common queries and retrieve data from a SeqArray file. The

GRanges and GRangesList classes in the GenomicRanges pack-

age manipulate genomic range data and can be used in the function

seqSetFilter() to define a data subset. For example, the anno-

tation information of each exon, the coding range and transcript ID

are stored in the TxDb.Hsapiens.UCSC.hg19.knownGene ob-

ject for the UCSC known gene annotations defined for hg19. The

code fragment below loads this object and uses the

GenomicFeatures package function exonsBy() to return a

GRangesList object for all known exons within each gene.

seqSetFilter() takes this object as an argument and only ex-

ports to a VCF file exonic variants.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

# get the exons grouped by gene

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

txs <- exonsBy(txdb, “gene”)

seqSetFilter(file, txs)

seqGDS2VCF(file, “exons.vcf.gz”)

The SeqArray package can also export data with selected vari-

ants and samples as a VCF object for use with the

VariantAnnotation package (Obenchain et al., 2014).
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4.3 Integration with SeqVarTools
The SeqVarTools package (http://www.bioconductor.org/packages/

SeqVarTools) extends the SeqArray package by providing methods

for many tasks common to quality control and analysis of WGS vari-

ant data. Methods include: transition/transversion ratio, heterozygos-

ity and homozygosity rates, singleton counts, Hardy-Weinberg

equilibrium, Mendelian error checking, and linear and logistic regres-

sion. In the example below SeqVarTools defines a new class

(SeqVarData) to link the information present in a SeqArray file with

additional sample annotation and runs a regression analysis on a sub-

set of the samples. KG_P1_SampData is an AnnotatedDataFrame

with columns sample.id, sex, age, and phenotype, where the identi-

fiers in sample.id match those in the SeqArray file.

library(SeqVarTools)

# link sample data to SeqArray file

data(KG_P1_SampData)

seqData <- SeqVarData(file, KG_P1_SampData)

# select female samples

female <- sampleData(seqData)$sex ¼¼ “female”

seqSetFilter(seqData, sample.sel ¼ female)

# run linear regression

res <- regression(seqData, outcome¼“phenotype”,
covar¼“age”)

4.4 Integration with SNPRelate
The SNPRelate package (http://www.bioconductor.org/packages/

SNPRelate) provides parallel implementations of relatedness and

PCA to detect and estimate population structure and cryptic related-

ness. SNPRelate was originally designed for analysis of bi-allelic

SNPs in GWAS studies where the implementation was optimized

with SIMD instructions and multithreading (Zheng et al., 2012). In

order to analyze SNVs from sequence data, SNPRelate has been

rewritten to take the dosages of the reference alleles as an input

genotype matrix from SeqArray files. Therefore, no format conver-

sion is required for WGS analyses.

PCA is implemented in the SNPRelate function snpgdsPCA()

using both exact and randomized algorithms (Galinsky et al., 2016;

Patterson et al., 2006). The randomized matrix algorithm is de-

signed to reduce the running time for a large number of study indi-

viduals (i.e. >10 000 samples). Relatedness analyses include

PLINK’s method of moment, KING kinship methods, GCTA genetic

relationship matrix and individual-perspective beta estimator

(Manichaikul et al., 2010; Purcell et al., 2007; Weir and Zheng,

2015; Yang et al., 2011; Zheng and Weir, 2016). These algorithms

are all computationally efficient and optimized with SIMD instruc-

tions. In addition, the calculations of fixation index (Fst), a widely

used statistic measuring the genetic difference between populations,

is available in SNPRelate using either all variants or sliding windows

(Weir and Cockerham, 1984; Weir and Hill, 2002; Weir et al.,

2005).

4.5 Integration with GENESIS
The GENESIS package offers methodology for estimating and ac-

counting for population and pedigree structure in genetic analyses.

It provides functions to perform the PC-AiR and PC-Relate methods

(Conomos et al., 2015, 2016). PC-AiR performs PCA on genome-

wide genotypes taking into account known or cryptic relatedness in

the study samples. PC-Relate uses ancestry representative principal

components to estimate measures of recent genetic relatedness.

GENESIS also includes support for SeqArray files in mixed model

association testing and aggregate burden and SKAT tests of rare

variants.

5 Discussion

In this article, we have presented a new file format, SeqArray, and

associated toolset to provide an efficient alternative to VCF and

BCF files for storing WGS variant data. The SeqArray file format is

built on top of the GDS format which can store multiple array-

oriented data sets in a hierarchical structure. It stores genotypes in

two bits and supports multiple lossless compression options.

Benchmarks show file sizes �5� smaller than VCF and BCF and

35% smaller than the most storage efficient alternative (BGT). The

SeqArray package uses an optimized Cþþ library and supports par-

allel access by both multi-core SMP computers and loosely coupled

compute clusters. In our testing simple operations such as fetching

genotypes were two to three times faster compared with the htslib li-

brary with BCF files. For the allele frequency calculation, the

SeqArray implementation is over 5 times faster than PLINK v1.9

with VCF and BCF files, and over 16 times faster than vcftools. The

SeqArray package is available on the Bioconductor website and en-

ables analysts to develop custom R scripts for exploratory data ana-

lysis. Wide functionality for WGS analysis is provided by the

SeqVarTools, SNPRelate and GENESIS packages which extend the

functionality of SeqArray.

Other file formats have been developed to improve upon VCF

and BCF. BGT and GQT were developed for fast genotype queries

(Layer et al., 2016; Li, 2016). GenomicsDB is used by the Broad

Institute for storing and processing sequence data, and it is built on

top of the TileDB system. However, none of these are integrated

with the R programming environment. The HDF5 format (https://

www.hdfgroup.org/HDF5) provides similar utilities to the GDS for-

mat upon which the SeqArray format is built.

The computational efficiency of file formats rely on both the de-

sign and implementation. When compared with the implementations

of other formats, the gdsfmt and SeqArray packages have been

highly optimized and offer performance-efficient operations specific-

ally designed for integers of less than 8 bits typically found in gen-

omic data.

The SeqArray package provides R functions for convenient

block-wise computations and enables users to easily extend the func-

tionality with R codes or C/Cþþ codes integrated with the Rcpp

package. The Bioconductor integration enables scientists to reuse

the functionality of exploratory data analysis and statistical model-

ing in existing R packages. It also encourages new developers to

write custom R packages to extend analyses of sequencing data.
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