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Abstract

Motivation: Next-generation sequencing (NGS) provides a great opportunity to investigate

genome-wide variation at nucleotide resolution. Due to the huge amount of data, NGS applications

require very fast and accurate alignment algorithms. Most existing algorithms for read mapping

basically adopt seed-and-extend strategy, which is sequential in nature and takes much longer

time on longer reads.

Results: We develop a divide-and-conquer algorithm, called Kart, which can process long reads as

fast as short reads by dividing a read into small fragments that can be aligned independently. Our

experiment result indicates that the average size of fragments requiring the more time-consuming

gapped alignment is around 20 bp regardless of the original read length. Furthermore, it can toler-

ate much higher error rates. The experiments show that Kart spends much less time on longer

reads than other aligners and still produce reliable alignments even when the error rate is as high

as 15%.

Availability and Implementation: Kart is available at https://github.com/hsinnan75/Kart/.

Contact: hsu@iis.sinica.edu.tw

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing (NGS) allows biologists to investigate

genome-wide variation at nucleotide resolution. It has contributed

to numerous ground-breaking discoveries and become a very popu-

lar technique for sequencing DNA and characterizing genetic varia-

tions in populations. Since new sequencing technologies can

produce reads on the order of million/billion base-pairs in a single

day, many NGS applications require very fast alignment algorithms.

The traditional sequence alignment approaches, like BLAST

(Altschul et al., 1990) or BLAT (Kent, 2002), are unable to deal

with the huge amount of short reads efficiently. Consequently, many

aligners for NGS short reads have been developed in recent years.

They can be classified into two categories according to their index-

ing methods: hash tables and suffix array/BWT. A hash table based

aligner uses all the subsequences of k-mers to obtain the occurrence

locations. In contrast, a suffix array/BWT based aligner finds the

maximal exact matches (MEM) between the read sequence and the

reference genome. Each category of read aligners has its own merits

and deficiencies. However, suffix array/BWT based aligners are

more popular due to the efficiency of memory consumption.

Aligners based on hash tables include CloudBurst (Schatz,

2009), Eland (proprietary), MAQ (Li et al., 2008a), RMAP (Smith

et al., 2008), SeqMap (Jiang and Wong, 2008), SHRiMP (Rumble

et al., 2009), ZOOM (Lin et al., 2008), BFAST (Homer et al.,

2009), NovoAlign (proprietary), SSAHA (Ning et al., 2001), and

SOAPv1 (Li et al., 2008b). Most hash table based aligners essen-

tially follow the same seed-and-extend strategy (Li and Homer,

2010). A representative algorithm of this strategy is BLAST.

BLAST keeps the occurrence locations of each k-mer of the data-

base sequences in a hash table and then uses the given query’s k-

mers to scan and find exact matches by looking up the hash table.

An exact match is used as a seed to extend the alignment using

Smith-Waterman algorithm between the query and the reference

sequence.
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Aligners based on suffix array or using Burrorws-Wheeler trans-

form (BWT) (Wheeler, 1994) include Bowtie (Langmead and

Salzberg, 2012; Langmead et al., 2009), BWA (Li and Durbin,

2009), BWA-SW (Li and Durbin, 2010), BWA-MEM (Heng Li),

SOAPv2 (Li et al., 2009), CUSHAW (Liu et al., 2012), Subread

(Liao et al., 2013), HISAT/HISAT2 (Kim et al., 2015), HPG-aligner

(Tarraga et al., 2014)and segemehl (Hoffmann et al., 2009). Most

aligners in this category rely on a suffix array to identify the maxi-

mal exact matches (called MEMs) and then build alignments based

on the exact matches, which is also similar to the seed-and-extend

methodology. One exception is the Subread aligner, which adopts a

seed-and-vote step to determine the mapped genomic location with

multiple seeds from a read sequence. The major advantage of using

suffix arrays is that repetitive subsequences need to be aligned only

once because they are collapsed onto a single path (Li and Homer,

2010).

Though current short read aligners provide solutions for map-

ping the massive amount of read sequences produced by NGS tech-

nologies, some are not fast enough and some are not accurate

enough. Moreover, the third generation sequencing technologies

raise further challenges for data analysis, namely, extremely long

read sequences and much higher error rate. For example, the PacBio

RS II system can generate reads in the length of 5500–8500 bp on

average, but the single-read accuracy is only about 87%. Most short

read aligners have difficulty in processing those read sequences.

Keeping in mind all these challenges, we developed an alignment

algorithm, called Kart, which uses both BWT array and hash table.

Kart adopts a divide-and-conquer strategy, which separates a read

into regions that are easy to align and regions that require gapped

alignment, and align each region independently to compose the final

alignment. In our experiments, the average size of fragments requir-

ing gapped alignment is around 20 regardless of the original read

length. The experiments on synthetic datasets show that Kart spends

much less time on longer reads (150–7000 bp) than most aligners

do, and still produces reliable alignments when the error rate is as

high as 15%. The experiments on real datasets further demonstrate

that Kart can handle reads with poor sequencing quality.

2 Materials and methods

2.1 Overview of our algorithms
Most suffix/BWT array based aligners, which follow the canonical

seed-and-extend methodology, initiate an alignment with an MEM

(seed) and extend the alignment with different dynamic program-

ming strategies. Therefore, the performance of an aligner is greatly

affected by the algorithms for seed exploration and the strategies for

handling inexact matches. These aligners are sequential in nature.

We adopted a divide-and-conquer strategy to reduce the time-

consuming gapped alignment step using dynamic programming,

which is suitable for mapping highly similar fragment sequences

(each read is essentially a copy of a specific genome fragment except

for a small percentage of sequencing errors).

2.2 Simple pairs and normal pairs
Since un-gapped (without indels) alignment is much faster than

gapped alignment, for each mapped candidate region in the refer-

ence genome, we separate the given read sequence and their candi-

date regions into two groups: simple region pairs (abbreviated as

simple pairs) and normal region pairs (normal pairs), where all sim-

ple pairs have perfect alignment (exact matches), and normal pairs

require un-gapped/gapped alignment. Once the simple and normal

pairs are identified, they can be processed and aligned independently

and the final mapping result for a candidate region is simply the con-

catenation of the alignment of each simple and normal pair.

Consider a read sequence R, the reference genome G, and the

BWT array constructed from G and its reverse sequence G’. For sim-

plicity and without losing generality, we assume G is the concatena-

tion of G and G’ in the remainder of the paper. Let R[i1] be the i1-th

nucleotide of R, and R[i1, i2] be the subsequence between R[i1] and

R[i2]. Similarly, let G[j1] be the j1-th nucleotide of G, and G[j1, j2]

be the subsequence between G[j1] and G[j2]. A locally maximal

exact matches (LMEMs) on a given BWT array of length l is defined

as a maximal exact match between R[i1, i2] (called the read block)

and G[j1, j2] (called the genome block), where i2 – i1¼ j2 - j1 ¼ l - 1

and is denoted by a 4-tuple (i1, i2, j1, j2). We use DPos¼ (j1- i1) to

represent the position difference between the read and genome

block.

2.3 Finding all LMEMs for the given read sequence
Since an LMEM represents an identical fragment pair between R

and G, it is considered as a simple pair in this study. Kart finds all

LMEMs via traversing a BWT array. An LMEM exploration starts

from R[i1] and stops at R[i2] if the exact match extension reaches a

mismatch at R[i2þ1]. In such cases, the next LMEM exploration

will skip R[i2þ1] and starts from R[i2þ2] because R[i2þ1] is very

likely a sequencing error or sequence variation. Kart only considers

an LMEM (i1, i2, j1, j2) as a qualified simple pair if its length is no

less than a predefined threshold k and its occurrence is less than 50.

The value k is typically between 10 and 16, and is determined

based on the size of the reference genome. Intuitively, a short

LMEM (<k bp) might contain erroneous bases and would less likely

include the true coordinate. A larger genome needs a larger k for a

compromise between specificity and sensitivity.

Figure 1 shows the algorithm of the LMEM exploration proce-

dure. The function BWT_search is a general BWT traversal method

which takes a read sequence as the input and returns desirable

LMEMs as well as their occurrences in the reference genome. If

there are no sequencing errors or variations, there should be only

one LMEM which covers the whole read sequence (i.e.

LMEM.len¼ jRj). However, in reality, sequencing errors and varia-

tions happen a lot and they break a read into several LMEMs with

variable lengths. Kart considers all qualified LMEMs as simple

pairs, and identify normal pairs according to the distribution of sim-

ple pairs to create one or more candidate alignments.

Fig. 1. The algorithm to explore all LMEMs with length� k. BWT_search is the

function to search for the occurrences of the maximal exact match for R[start,

stop] on the given BWT array. It returns desirable LMEMs as well as their

occurrences on the reference genome
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2.4 Identifying simple pairs and normal pairs
Since the same read can be mapped to multiple genome regions if it

originates from a repetitive sequence, these simple pairs can also

spread all over the genome. A candidate alignment is defined as an

alignment between the read and a specific region on the reference

genome. To identify all candidate alignments for the read, we cluster

all adjacent simple pairs whose DPos differences are smaller than a

predefined threshold g (the default value is 5). Therefore, neighbor-

ing simple pairs whose DPos differences < g are clustered together to

form a candidate alignment. Note that two simple pairs in a candi-

date alignment could overlap due to tandem repeats, sequence varia-

tions or overlapping LMEMs (when doing 8-LMEMs, as explained

in Section 2.5). If two simple pairs overlap in a candidate alignment,

say, in the genome portion (the same goes for the read portion), we

chop off the overlapped portion in the genome and its corresponding

read portion from the shorter pair to ensure that all simple pairs are

non-overlapping. Figure 2 illustrates an example of two overlapped

simple pairs, in which simple pair A overlaps with simple pair B due

to sequence variation at that corresponding region. Kart removes

the overlap by shrinking the shorter simple pair, say A. In this way,

any two simple pairs in the same candidate alignment will not share

any nucleotide.

We then create normal pairs filling the gaps between adjacent

simple pairs to make a complete alignment as follows. Suppose two

neighboring simple pairs are (i2q-1, i2q, j2q-1, j2q) and (i2qþ1, i2qþ2,

j2qþ1, j2qþ2) respectively, and they must have i2qþ1� i2q>1 or

j2qþ1� j2q>1, Kart inserts a normal pair to fill the gaps between the

two regions. In such cases, a normal pair (ir, irþ1, jr, jrþ1) is inserted

where ir– i2q¼ i2qþ1 – irþ1¼1 if i2qþ1� i2q>1, otherwise let ir¼ irþ1

¼ -1 (i.e., a null base). Likewise, jr– j2q¼ j2qþ1 – jrþ1¼1 if

j2qþ1� j2q>1, otherwise let jr¼ jrþ1 ¼ -1. On the other hand, if the

first (or the last) simple region in a candidate alignment does not

cover the first (or the last) nucleotide of the read sequence, a normal

pair would also be created to fill the gap. Figure 3 gives an example

illustrating the concept of simple and normal pairs. In this example,

the read sequence contains three substitution errors as well as an

insertion error of size two. After the LMEM exploration, we can

identify four simple pairs (labelled A, B, C and D). However, these

four simple pairs do not cover the whole read sequence. Thus, we

check every adjacent simple pairs and generate the corresponding

normal pair according to the gaps in between: we generate the nor-

mal pair (11, 11, 321, 321) between simple pairs A and B; likewise,

we generate the normal pair (23, 24, -1, -1) between simple pairs B

and C, and the normal pair (49, 51, 357, 359) between simple pairs

C and D. Thus, all of these simple pairs and normal pairs together

form a complete alignment candidate.

2.5 Four types of normal pairs
Simple pairs are formed from LMEMs with perfect matches. They

partition the read sequence into interlaced simple and normal region

pairs, which can be independently aligned and the final alignment is

simply the concatenation of the alignment of each simple and nor-

mal pair. A closer look at the normal pairs indicates that a substan-

tial portion of normal pairs do not require gapped alignment either.

When both the read block and the genome block of a normal pair

are more than 30 bp long, we perform a second round of sequence

partition operation to further divide it and reduce the portion that

needs gapped alignment. This time, we look for LMEMs of

size�8 bp within such normal pair. Since the size of such normal

pair is much smaller than the whole genome, 8-mer index (from a

hash table constructed on the fly) is used to identify matched 8-mer

seeds between the read block and the genome block. These seeds

were extended to LMEMs, referred to as 8-LMEMs. These 8-

LMEMs could further separate a longer normal pair into shorter

ones.

When processing PacBio reads, if a normal pair (without 8-

LMEMs) at the end of a read has length more than 5000, then its

corresponding read block is simply clipped from further considera-

tion, and we only perform a local alignment for that read to avoid

making an alignment in a poor quality region. When processing

Illumina reads, we found that if the read block and genome block of

a normal pair have equal size, then it is very likely the normal pair

only contains substitution errors and the un-gapped alignment gives

rise to the best alignment for such pair; however, if a normal pair

contains indel errors, the un-gapped alignment will result in low

sequence identity. So, by checking the percentage of mismatches

with a linear scan, we can determine whether a normal pair requires

gapped alignment or not. Moreover, Illumina reads could contain

adaptor sequences or become chimera with a tiny probability. We

check the sequence identity of the normal block at both ends of a

read and remove the one whose sequence identity is<50%. In such

cases, Kart clips the corresponding read block and report a local

alignment instead. Summarizing the above discussion, we divided

the normal pairs into the following four types:

1. A normal pair is a NP-clip if (1) it is at the ends of a PacBio read

and its length is more than 5000 or (2) it is at the ends of an

Illumina read and its sequence identity is<50%.

2. A normal pair is a NP-gap free if its read block and genome

block have equal size, and its number of mismatches in a linear

scan is less than 20% of the block size.

3. A normal pair is a NP-indel if one of the fragment (either its

read block or genome block) is an empty string and the other

contains at least one nucleotide.

4. The remaining normal pairs are referred to as NP-NWs, which

require Needleman-Wunsch algorithm for gapped alignment.

Disregarding those NP-clips, one can see from Table 3 that those

NP-NWs requiring gapped alignment were sufficiently separated so

Fig. 2. Simple pair A overlaps with simple pair B. Kart removes the overlap by

shrinking the size of the smaller simple pair

Fig. 3. Simple pairs and normal pairs. A read sequence can be decomposed

into different parts according to the alignment with the genome sequence.

A simple pair represents a pair of identical sequence fragments; a normal

pair represents a pair of sequence fragments which contains some sequence

variations in the alignment
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that their average lengths are around 20 for different datasets, which

can be processed much faster than the original read.

2.6 Paired-end reads mapping
Paired-end reads are two reads that are physically associated

within a certain distance from each other. They can help reduce

mapping ambiguity and increase mapping reliability. Kart sup-

ports paired-end reads mapping as follows. To align paired-end

reads, Kart finds the candidate alignments for each read sepa-

rately and then compare the two groups of mapping results to see

if there is a pair of alignments one from each group that satisfies

the paired-end distance constraints. If there is no such pair, it

implies that the paired-end reads contain more sequencing errors

such that at least one of them is not mapped properly. In such

cases, Kart will initiate a rescue procedure trying to find a proper

pair of alignments based on the candidate alignments of the

opposite read. The implementation of the rescue procedure is

described in detail below.

Suppose G1 and G2 are the two groups of candidate alignments

corresponding to paired-end reads R1 and R2. Let G1¼ {m1, m2, . . .,

mp} and G2¼ {n1, n2, . . ., nq} where m1, m2, . . ., and mp represent

candidate alignments of R1; n1, n2, . . . and nq represent candidate

alignments of R2. For each alignment m in G1 with the coordinate c,

Kart tries to map R2 onto the downstream region of c according to

the mapping procedure described above, but the LMEM length

threshold is set to 10 to increase the sensitivity of the mapping. In

doing so, Kart is able to compromise the noises of R2 and identify

the best alignment n’ in the downstream region of R1’s alignment.

Kart repeats the same procedure using each alignment n in G2 to

find the best alignment m’ for R1 in the upstream region of n. At this

moment, both the pair of mi and n’ and m’ and nj meet the paired-

end constraint, and we select the pair with the highest sequence

identity of the alignments.

2.7 Mapping quality score
MAQ (Li et al., 2008a,b) introduced the idea of mapping quality to

estimate the reliability of a read alignment. It can be converted into

the probability of a query sequence being aligned incorrectly. The

mapping quality is estimated based on the optimal and sub-optimal

alignments. We adopted a scoring scheme to estimate the mapping

quality.

The mapping quality score MAPQ is estimated with the for-

mula: MAPQ ¼ 30� ½1� ðS1 � S2Þ =S1� � logðS1Þ, where S1 is the

optimal alignment score and S2 is the sub-optimal alignment score.

MAPQ is limited to be between 0 and 60. If there are multiple align-

ments with the optimal score (i.e., repeats), MAPQ is 0 and Kart

reports the first best alignment.

2.8 Summary of our algorithms
Given a read sequence R, Kart identifies all LMEMs with variable

lengths along the read sequence by the BWT search against the refer-

ence sequences. Each LMEM is turned into a simple pair or more if

it appears multiple times in the reference. Adjacent simple pairs are

then clustered according to their DPos. After removing overlaps

between adjacent simple pairs, Kart fills in the gaps between simple

pairs with normal pairs to make each cluster a complete candidate

alignment. When both the read block and the genome block of a

normal pair are more than 30 bp long, we perform a second round

of sequence partitioning to further divide it and reduce the portion

that needs gapped alignment. The final read alignment is the concat-

enation of simple/normal pairs in the same candidate alignment.

Finally, Kart reports the alignment with the highest alignment score

or paired alignments for paired-end reads.

3 Results

3.1 Implementation and experiment design
Kart was developed under Linux 64-bit environment and imple-

mented with standard C/Cþþ. It supports multi-thread to take

advantage of multi-core computers. Kart reads a BWT-based index-

ing file and a read library (single-end or paired-end reads) in

FASTA/FASTQ format as input and it reports read alignments in the

SAM (Sequence Alignment/Map) format (Li et al., 2009). For the

sake of user-friendliness, we have minimized parameter settings and

make Kart work on all kinds of read libraries.

It is difficult to estimate the correctness of read alignments

using real datasets since the actual chromosomal coordinate of

each read sequence is unknown. Therefore, we simulated read

libraries to estimate the performance of read aligners. Here, we

simulated read libraries of the human genome (Hg19) using the

wgsim program (https://github.com/lh3/wgsim) to produce the

synthetic datasets. All the Illumina-like simulated read libraries

were generated with default setting of the wgsim. It altered the

genome sequences with 0.1% of mutation rate (15% of which are

INDELs and 85% are SNPs) to simulate polymorphisms. In turn,

wgsim generated synthetic reads with 2% of substitution sequenc-

ing errors.

We also simulated PacBio-like reads using the wgsim program

with 13% of mutation rate (all INDEL polymorphisms) and an

additional 2% of substitution sequencing errors for Hg19. It can be

expected that reads from new sequencing technologies are getting

longer (Li and Durbin, 2010). For example, the latest Illumina

MiSeq System can generate reads of 300 bp long. Therefore, in this

study, we simulated ten million pair-end reads of 100 bp, 150 bp

and 300 bp long for Illumina-like data and one million single-end

reads of 7000 bp long for PacBio-like data. For the convenience of

describing these synthetic libraries, Hg19_L150_E02 represents the

Illumina-like library with 150 bp read length and 2% of error rate of

Hg19. Hg19_L7000_E15 represents the PacBio-like library with

7000 bp read length and 15% of error rate (13% of indels and 2%

of substitutions). To assess the performance on real data, we ran-

domly downloaded four datasets from NCBI SRA, Illumina and

PacBio web sites, which are SRR622458, SRR826460, SRR826471

and M130929 (http://datasets.pacb.com/2014/Human54x/fasta.

html). The first three datasets were produced by Illumina

sequencers, and the last one was by PacBio sequencer. All the data-

sets were from human genome samples.

We used precision, recall (also referred to as accuracy in this

study) and running time to estimate the performance of read align-

ments on simulated data. A read is considered a true positive (TP) if

its mapping coordinate is within a distance of 30 bp to the original

coordinate. Given a library with N reads and n out of N are mapped

with at least one alignment, the precision and recall are defined as

the following percentages:

precision ¼ # of TPs=n � 100%;

recall ¼ # of TPs=N � 100%:

Therefore, if every input read is mapped, precision is equal to recall.

To avoid estimation bias due to multiple hits (i.e., ambiguous map-

ping), we only evaluated the first alignment for each read. For real

data, we measure the sensitivity (also referred to as mapping rate)
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and runtime, where sensitivity is the percentage of reads with at least

one alignment relative to all input reads, namely,

sensitivity ¼ n=N � 100%:

Since the actual coordinates of real data are unknown, we evaluate

the mapping quality by calculating the number of identical base

pairs in an alignment. The reason is that the best alignment will

likely have the maximal number of identical base pairs.

All reads in the test data were processed on a Linux 64-bit sys-

tem with 4 Intel Xeon E7- 4830 2.13 GHz CPUs and 2TB physical

memory. We compared Kart with several existing read aligners:

BWA-MEM, Bowtie2, Cushaw3, HISAT2, HPG-aligner, Subread,

LAST (Frith et al., 2010), Minimap (Li, 2016)and BLASR (Chaisson

and Tesler, 2012) (the last three are for PacBio data only). The other

aligners which were not considered in this study are those which do

not support multi-threading or do not accept the format of test data

(such as Gassst, Ssaha2 and NovoAlign), plus those which could not

be run properly in our system or took much more time to process

the test data (such as GEM, hobbes and razers3).

The selected aligners represent state-of-the-art NGS short read

mappers and are widely used in NGS data analysis. We tried to use

the default parameter settings to test each aligner unless the perform-

ance was not satisfactory. We also forced each aligner to only report

the best alignment or a random best if there were multiple hits by set-

ting the parameters. All aligners were run with 16 threads to speed up

the alignment procedure. The arguments as well as version number of

each aligner are summarized in the Supplementary Material.

3.2 Evaluation on Illumina-like simulated datasets
Table 1 shows the evaluation result for the selected aligners on the

Illumina-like libraries of Hg19. From Table 1, we can see that most

selected aligners produced comparable alignments on read libraries

with different read lengths, where their precisions and recalls ranged

from 97 to 99%. In fact, most of the incorrect alignments were due

to the ambiguity of repetitive regions. In most cases, the alignment

accuracies were improved when the read length became longer. For

example, the alignment accuracies of Kart on Hg19_L100_E02,

Hg19_L150_E02 and Hg19_L300_E02 were 97.8%, 98.5% and

99.1%, respectively; and those of BWA-MEM were 98.6%, 98.9%

and 99.2%, respectively. Bowtie and HISAT2 were less sensitive

when aligning longer reads. In particular, HISAT2’s recall on

Hg19_L300_E02 was 53.6%.

In terms of runtime, it can be seen that Kart was the fastest

aligner among all considered algorithms. In this analysis, the run-

time of Kart on the three simulated datasets was 53, 66 and

113 seconds, respectively. Thus, our divide-and-conquer strategy

provides a much faster solution for NGS read mapping, especially

for longer reads.

3.3 Evaluation on PacBio-like simulated datasets
Table 1 also shows the evaluation result on one million PacBio-like

reads. Because PacBio-like reads contain much more insertion/dele-

tion errors, a read is considered to be correctly aligned if the map-

ping coordinate is within a distance of 100 bp to the original

coordinate. In this evaluation only Kart, BWA-MEM, LAST,

Mimimap and BLASR were compared because the others were not

designed for aligning long reads in PacBio data. In Table 1, Kart,

BWA-MEM, LAST and BLASR yielded similar recall on the PacBio

simulated data. It shows that these aligners were capable of dealing

with very long reads with high error rate. However, Kart was much

faster: the runtime of Kart was 733 seconds, and that of BWA-

MEM, LAST and BLASR was 4614, 78 432 and 9185, respectively.

Though Minimap took the least amount of time (288 seconds), its

mapping accuracy was only 83.4%. It is noteworthy that Minimap

is not a regular read aligner since it does not generate alignments. It

can only identify long approximate matches quickly. Therefore, we

did not evaluate Minimap on real PacBio dataset.

3. 4 Evaluation on real datasets
In additional to synthetic datasets, we also downloaded four real

datasets of whole human genome from NCBI SRA, Illumina and

PacBio web sites, which are

1. SRR622458 (40 million 101 bp paired-end Illumina reads).

2. SRR826460 (40 million150 bp paired-end Illumina reads).

3. SRR826471 (34 million 250 bp paired-end Illumina reads).

4. M130929 (1.2 million 7118 bp single-end PacBio reads).

Table 2 summarizes the evaluation result on these datasets. In this

evaluation, we use the sensitivity and the average number of identi-

cal bases to estimate the quality of alignments. It can be seen that

Kart spent the least amount of time on mapping the reads in these

real datasets. Kart was several times faster than alternative aligners.

Kart also produced the largest number of identical base pairs on

most of the datasets (sensitivity� average identical bases).Take

SRR622458 for example. Kart produced alignments with 98.6% of

sensitivity and 99 of identical bases on average. BWA-MEM,

Bowtie2 and Cushaw3 produced comparable alignments with Kart,

but they spent more time on the alignments. Note that HPG-aligner

failed to finish all reads in SRR622458 due to unknown reasons.

Some aligners left more reads unmapped. HISAT2 only produced

86.0%, 91.9% and 43.9% of sensitivity on the three Illumina

datasets.

Table 1. Illumina and PacBio-like simulated data. Ten million

paired-end reads of 100 bp, 150 bp and 300 bp and one million sin-

gle-end reads of 7000 bp were simulated from human genome

(Hg19) with wgsim simulator

Synthetic datasets Aligner Precision Recall Runtime

Hg19_L100_E02 Kart 97.8 97.8 53

Bowtie2 96.3 95.8 149

BWA-MEM 98.6 98.6 403

Cushaw3 98.2 98.2 1412

HPG-Aligner 97.7 97.5 146

HISAT2 95.3 92.7 78

Subread 98.5 93.4 353

Hg19_L150_E02 Kart 98.4 98.4 66

Bowtie2 96.2 96.2 266

BWA-MEM 98.9 98.9 581

Cushaw3 98.6 98.6 1278

HPG-Aligner 98.5 98.5 315

HISAT2 92.3 89.4 91

Subread 98.0 96.9 474

Hg19_L300_E02 Kart 99.0 99.0 113

Bowtie2 96.1 96.1 718

BWA-MEM 99.2 99.2 1096

Cushaw3 99.1 99.1 3085

HPG-Aligner 99.1 99.1 317

HISAT2 70.5 54.6 155

Subread 98.8 98.8 774

Hg19_L7000_E15 Kart 99.6 99.6 733

BWA-MEM 99.8 99.8 4614

LAST 99.9 99.4 78432

Minimap 83.4 83.4 288

BLASR 99.8 99.8 9185

Kart 2285

Deleted Text: ,
Deleted Text: ,
Deleted Text: I
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,


For the experiment result on the PacBio dataset M130929, Kart

and BLASR produced comparable alignments on the 1.2 million

PacBio reads. However, BLASR spent more time than Kart. BWA-

MEM ran faster than BLASR, but its sensitivity and average number

of identical pairs are not as good as those on Illumina datasets.

LAST’s speed ranked last, but it produced comparable alignments

with Kart and BLASR.

We further compared memory usage of each selected aligner.

Though some aligners allow users to set the maximum memory

usage for read mapping, we did not set any limit and let the aligner

take as much memory as it needs to speed up the mapping process.

In Table 2, we found that each aligner consumed similar amount of

memory on different datasets. BWA-MEM, Bowtie2, Cushaw3 and

HISAT2 required less memory (<10 GB). Kart and Subread

required 12 GB and 18 GB, respectively, and HPG-aligner and

BLASR required around 30 GB.

3.5 Efficiency of Kart’s divide-and-conquer strategy
The performance analysis on simulated datasets shows that Kart is

an efficient algorithm for NGS read mapping. We adopt a divide-

and-conquer strategy to separate a read sequence into simple pairs

and normal pairs, and align each pair independently. A simple pair

has a perfect match, but a normal pair requires more time to find its

best alignment. Hence, if the fraction of the normal pairs is smaller,

and the fragment sizes are shorter, the read can be mapped faster.

To demonstrate the efficiency of Kart’s divide-and-conquer strat-

egy with different read lengths, we analyzed the average sizes of sim-

ple and normal pairs on the four real datasets. Table 3 shows the

average sizes of all fragment pairs after two rounds of sequence par-

tition, namely, LMEM-seed, 8-LMEM-seed, NP-gap free, NP-indels

and NP-NW. Note that, fragment pairs in the first four groups do

not require gapped alignment, only those in the last group do. Take

SRR622458 as an example, the average size of LMEM-seed is

73 bp, and 96.5% nucleotides belong to this group. When applying

the normal pair partitioning with 8-mers, we could identity 8-

LMEM-seeds with 11.4 bp on average. The most time consuming

fragment pairs, the NP-NWs, are 17.5 bp on average, and only

1.9% nucleotides fall into this group. SRR826460 shows similar

result with SRR622458, though SRR826471 has much higher ratio

in the group of NP-NW, which suggests that Illumina yields higher

error rates on 250 bp long reads. For the real PacBio dataset, it is

observed that the average size of LMEM-seed is 21.3 bp, and only

13.7% of nucleotides fall into this group; however, the second

round of seeding could identify 8-LMEM-seeds with 12.4 bp on

average and 39.7% of nucleotides go to this group; It is noteworthy

that the most time consuming group, the NP-NW, only needs to per-

form DP on 21.3 bp long fragment pairs on average, with 44.3% of

all nucleotides.

4 Conclusions

In this article, we present Kart, a new sequence aligner for sensitive,

rapid and accurate mapping from NGS reads to a reference genome.

We use a BWT array to produce an alignment consisting of simple

pairs and normal pairs. Each simple pair represents an identical frag-

ment pairs between the query sequence and the reference genome,

and each normal pair represents a highly similar fragment pairs. We

show that Kart’s divide-and-conquer strategy can reduce the

required dynamic programming process and save considerable

amount of time, especially for mapping long read sequences. In our

evaluation analysis on simulated reads and real data, Kart yields the

best or comparable alignments and spends the least amount of time.

PacBio reads are usually difficult to map efficiently because of

their extremely long sequences and high sequencing error rate. From

the analysis results on simulated and real PacBio datasets, Kart not

only can generate accurate alignments, but also spends much less

time than others. With the improved sequencing technology, new

high-throughput sequencers are likely to generate much longer reads

with varied quality. Experiment results show that Kart is an appro-

priate aligner that can produce efficient and accurate alignments for

reads with various lengths and quality.

In this study, we only considered sequencing errors, SNPs and

small indels in short read sequences. Studies have shown that struc-

tural variations (such as inversions and translocations) are more dif-

ficult to detect than the above variations, and it is estimated that

13% of the human genome are defined as structural variants in the

normal population (Sudmant et al., 2015). We believe the divide-

Table 3. The average sizes of simple and normal pairs after two

rounds of sequence partition on Illumina datasets (those NP-clips

were not included in the percentage calculation)

Dataset LMEM-

seed

8-LMEM-

seed

NP-gap

free

NP-

indels

NP-NW

SRR622458 73.0 11.4 3.9 1.8 17.5

(96.5%) (0.9%) (0.7%) (0%) (1.9%)

SRR826460 112.7 13.7 4.5 1.9 19.5

(97.9%) (0.5%) (0.7%) (0%) (0.9%)

SRR826471 104.2 12.4 7.5 1.9 22.8

(84.9%) (3.8%) (2.5%) (0%) (8.8%)

M130929 21.3 12.4 10.8 1.4 21.3

(13.7%) (39.7%) (0.1%) (2.6%) (44%)

Table 2. Experiment result on the four real datasets with different

read lengths

Real datasets Aligner Sensitivity Identical

base pairs

MEM

(Gb)

Runtime

SRR622458

Illumina-101 bp

Kart 98.6 99 12 158

Bowtie2 97.4 99 4.5 458

BWA-MEM 98.8 97 8.5 1157

Cushaw3 99.1 98 4.8 9063

HPG-Aligner NA NA 31.2 NA

HISAT2 86.0 99 5.5 298

Subread 91.2 97 18.4 1362

SRR826460

Illumina-150 bp

Kart 99.3 149 12 186

Bowtie2 98.4 149 4.5 769

BWA-MEM 99.3 147 8.5 1374

Cushaw3 99.3 148 4.8 10736

HPG-Aligner 98.3 147 31.2 1204

HISAT2 91.9 149 5.5 371

Subread 97.5 147 18.4 2694

SRR826471

Illumina-250 bp

Kart 98.6 237 12 395

Bowtie2 94.7 237 4.5 1729

BWA-MEM 98.6 220 8.5 3027

Cushaw3 98.4 232 4.6 37689

HPG-Aligner NA NA 27.9 NA

HISAT2 43.9 247 5.5 461

Subread NA NA 18.4 NA

M130929

PacBio-7118 bp

Kart 100.0 5152 13 1811

BWA-MEM 90.7 2953 9 7338

LAST 97.2 5022 15 31295

BLASR 97.8 5389 28.9 18682
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and-conquer strategy of Kart could be used to develop a more

advanced aligner for handling structural variations.
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