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Abstract

Feeding behavior is the most fundamental behavior in C. elegans. Our previous results have dissected

the central integration circuit for the regulation of feeding, which integrates opposing sensory inputs
and regulates feeding behavior in a nonlinear manner. However, the peripheral integration that acts
downstream of the central integration circuit to modulate feeding remains largely unknown. Here, we
find that a Goi/o-coupled tyramine receptor, TYRA-2, is involved in peripheral feeding suppression.
TYRA-2 suppresses feeding behavior via the AIM interneurons, which receive tyramine/octopamine
signals from RIM/RIC neurons in the central integration circuit. Our results reveal previously
unidentified roles for the receptor TYRA-2 and the AIM interneurons in feeding regulation, providing a
further understanding of how biogenic amines tyramine and octopamine regulate feeding behavior.
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INTRODUCTION

Animals face complex variation in their living environ-
ments and must alter their behaviors in response to
internal and/or external environmental changes. The
neural circuits and signal transmission pathways
underlying these behavioral changes can be examined in
detail in the nematode C. elegans, since all neurons and
their entire connectivity patterns have been described
(White et al. 1986). C. elegans is equipped with multiple
sensory modalities that can detect various environ-
mental cues, including odors, tastes, osmolarity, tem-
perature, and mechanical touch. It can sense hundreds
of water-soluble and volatile molecules, which can
evoke distinct behaviors, such as attraction, avoidance,
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mating, or feeding (Bargmann 2006; Bergamasco and
Bazzicalupo 2006).

In C. elegans, the feeding state is dynamically regu-
lated by several environmental cues, including odors,
tastes, temperature, and nutrient states (Avery and
Horvitz 1990; Jones and Candido 1999; Li et al. 2012).
However, the neural integration processes underlying
the regulation of feeding are not well defined. Our
previous research has dissected a central “flip-flop”
circuit in feeding regulation (Li et al. 2012). In that
model, attractive odors sensed by the AWA neuron will
activate the serotonergic neuron NSM to release sero-
tonin, thereby ultimately increasing the feeding rate.
Meanwhile, bad tastes sensed by ASH will activate the
interneurons RIM and RIC, which release tyramine and/
or octopamine to suppress feeding. Specifically, the two
kinds of biogenic amines inhibit each other’s function:
serotonin inhibits the activation of RIM and RIC neurons
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via the MOD-1 receptor and tyramine/octopamine
inhibits NSM neurons via the SER-2 receptor. This cen-
tral cross-inhibition integration circuit ensures a non-
linear, bistable output.

Besides the central integration circuit, neural regu-
latory mechanisms at the peripheral sites remain largely
elusive. Here, by integrating calcium imaging, optoge-
netic interrogation, genetic manipulation, and behav-
ioral analysis, we present evidence that TYRA-2, a Gai/
o-coupled tyramine receptor, which acts as a signal
target at the peripheral site in the AIM interneurons,
receives signals from RIM/RIC neurons in the central
integration circuit to suppress feeding behavior. tyra-2
mutant worms show defects in the suppression of
feeding by 1-octanol, whereas overexpression of TYRA-2
under its own promoter or the zig-3 promoter, which is
specifically expressed in the AIM interneurons, can
rescue the feeding suppression defect. Furthermore,
calcium imaging data show that TYRA-2 functions in the
modulation of feeding by inhibiting the AIM interneu-
rons, and optogenetic silencing of AIM neurons mimics
that feeding suppression.

RESULTS

TYRA-2 is required for feeding suppression by
1-octanol

1-Octanol is a volatile molecule that is known as a
repellent to evoke avoidance behavior in C. elegans
(Bargmann et al. 1993; Chao et al. 2004). In our study,
we found that in addition to inducing avoidance
behavior, 1-octanol also inhibited feeding in a time- and
dose-dependent manner (Fig. 1A, B). 1-octanol at con-
centrations of 1% or higher significantly suppressed C.
elegans pharyngeal pumping, and that suppression was
sustained for more than 10 min, providing a suit-
able model for studying the neural circuits in feeding
suppression.

By employing 1-octanol in the feeding suppression
assay, we tried to identify the neurons and receptors
downstream of tyramine, which acts as a crucial trans-
mitter in the process of feeding suppression (Li et al
2012). There are four tyramine receptors in C. elegans,
including three G protein-coupled tyramine receptors,
TYRA-2, TYRA-3, SER-2, and a tyramine-gated chloride
channel LGC-55 (Rex et al. 2005; Rex and Komuniecki
2002; Ringstad et al. 2009). Our behavioral experiments
showed that feeding inhibition evoked by 1% 1-octanol
had a dramatic defect in the ser-2 mutant, which is
involved in central integration of feeding (Li et al. 2012).
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Another mutant, tyra-2, also showed a significant defect
compared with wild-type worms (Fig. 1C).

Exogenous expression of TYRA-2 under its own
promoter could fully rescue its feeding suppression
defect (Fig. 1C). We observed that the tyra-Z2 mutant
worms showed a 1-octanol chemotaxis index similar to
that of wild-type worms (Fig. 1D), so the difference
might result from a cause other than altered 1-octanol
avoidance behavior. These data suggest that TYRA-2 is
required for the peripheral regulation of feeding
suppression.

TYRA-2 acts in the AIM interneurons to modulate
feeding suppression

In C. elegans, TYRA-2 is expressed exclusively in neu-
rons, including the sensory neurons ASH, ASE, ASG, and
ASI, the body and tail neurons AVM, ALM, PVM, and
PLM, and the AIM interneurons (Fig. 2) (Rex et al
2005). Considering the function of TYRA-2 in the
peripheral integration of feeding suppression, the AIM
interneurons become the most likely candidate.
Expression of TYRA-2 in AIMs by the zig-3 promoter,
which is reported to be specifically expressed in AIM
neurons (Altun-Gultekin et al. 2001; Aurelio et al. 2002),
was sufficient to rescue the feeding suppression defect
in tyra-2 mutant worms (Fig. 1C). These experiments
indicate that TYRA-2 acts in AIM neurons.

TYRA-2 activation results in the silencing of AIMs

TYRA-2 encodes a Ga;/o-coupled tyramine receptor with
high affinity with a Ky of 20 &+ 5 nmol/L (Rex et al
2005). To test the effect of TYRA-2 on AIM, we moni-
tored the calcium transients of AIM interneurons upon
tyramine stimulation by specifically expressing GCaMP3
in AIM. It turned out that apart from the dramatic
suppression of the feeding rate, tyramine also reduced
the calcium level in AIM neurons (Fig. 3A, C, D).
Whereas, tyra-2 mutation blocked the AIMs calcium
reduction in response to tyramine (Fig. 3B, C, D). These
results indicate that AIM neurons are silenced during
the tyramine-mediated feeding suppression via the
receptor TYRA-2.

Silencing of AIM interneurons induces feeding
suppression

If AIM interneurons indeed regulate feeding suppres-
sion as suggested by behavioral and calcium imaging
experiments, acute silencing of AIM should affect the
pumping rate. To test this, we took an optogenetic
approach by expressing the light-driven outward proton
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Fig. 1 TYRA-2 is required for feeding suppression by 1-octanol. A C. elegans pumping rate in response to various concentrations of
diluted 1-octanol. B 1-octanol at 1% inhibits C. elegans feeding in a time-dependent manner. C Feeding suppression induced by 1%
1-octanol shows a significant defect in ser-2 or tyra-2 mutants. Exogenous expression of TYRA-2 under its own promoter or specifically in
AIM interneurons could fully rescue its feeding suppression defect in the tyra-2 mutant. D tyra-2 mutant worms show a chemotaxis index
comparable to that of wild-type worms. *p < 0.05, **p < 0.01, ***p < 0.001. “N.S.” indicates no significant difference

pumps archaerhodopsins (Arch) (Chow et al 2012)
specifically in AIM interneurons using the zig-3 pro-
moter. Archaerhodopsins require the cofactor all-trans-
retinal (ATR) as their essential chromophore, which acts
to capture light (Chow et al. 2012). In this optogenetic
manipulation, worms cultured without all-trans-retinal
were used as controls. As predicted, we found that
compared with control worms, pumping behavior was
dramatically slowed by the optogenetic silencing of AIM
interneurons (Fig. 4). These data confirm that silencing
of AIM by TYRA-2 would mediate feeding suppression.

© The Author(s) 2018. This article is an open access publication

DISCUSSION

In our previous reports, we have identified tyramine as
an important transmitter for feeding suppression and
shown that SER-2, a tyramine receptor; is involved in
the central “flip-flop circuit’ (Li et al. 2012). Apart
from the central integration circuit, here, we identified
for the first time that TYRA-2 function cell autono-
mously in the AIM interneuron was involved in the
peripheral feeding regulation. Tyramine released from
RIM/RIC neurons would inhibit AIM by the

19 | February 2018 | Volume 4 | Issue 1



RESEARCH ARTICLE

]. Fu et al.

Fig. 2 The expression of TYRA-2 in AIMs. The plasmid tyra-
2p::RFP was constructed to identify the expression pattern of
TYRA-2. Pictures were captured by laser scanning confocal
microscopy. Animal was shown with anterior to the right.
Yellow arrows indicate AIMs

Gayjo-coupled receptor TYRA-2, resulting in feeding
suppression (Fig. 5).

AIM interneurons are reported to mediate swim ini-
tiation by serotonin signaling (Vidal-Gadea et al. 2011)
and mate-searching behavior of males by PDF-1 neu-
ropeptide signaling (Barrios et al. 2012). In contrast,
little is known about their functions in feeding regula-
tion. Here, we identified that AIM interneurons were
inhibited by the crucial feeding modulator tyramine,
and that resulted in feeding suppression. The tyramin-
ergic neurons RIM/RIC share no direct synaptic con-
nections with AIM neurons. But given the fact that these
neurons localized very close to each other, it is possible
that the signal transmission may be mediated by
extrasynaptic tyramine receptors on AIM neurons. AIM
interneurons are equipped with two kinds of classical
neurotransmitters, glutamate and serotonin, as well as
several neuropeptides (Li and Kim 2008; Serrano-Saiz
et al. 2013; Sze et al. 2000). Among them, serotonin is
known as a crucial neuromodulator that facilitates
feeding (Avery and Horvitz 1990; Sze et al. 2000). The
inhibition of AIM may block the serotonin release and
result in slower feeding behavior.

In C. elegans, tyramine is the precursor of octopamine
(Alkema et al. 2005). Tyramine is formed by the
decarboxylation of tyrosine, dependent on a tyrosine
decarboxylase gene, tdc-1. Meanwhile, octopamine is
formed by the hydroxylation of tyramine, which
depends on a tyramine [-hydroxylase gene, tbh-1
(Alkema et al. 2005). It has been reported that tyramine
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and octopamine may function independently in the
modulation of egg laying, as well as reversal behavior
and head oscillation suppression in response to anterior
touch (Alkema et al 2005). However, they seem to
inhibit pumping in the same way (Greer et al. 2008; Li
et al. 2012). In fact, in addition to its high affinity to
tyramine, TYRA-2 also has a relatively high affinity to
octopamine (Rex et al. 2005). Thus, the TYRA-2-induced
AIM inhibition may be caused by tyramine and/or
octopamine from RIM/RIC neurons.

tyra-2 encodes a Goi/o protein-coupled tyramine
receptor (Rex et al. 2005). In C. elegans, Gai/o subunits
communicate signals from a series of hormones and
neurotransmitters, including serotonin (Mendel et al.
1995; Segalat et al. 1995), acetylcholine (Bany et al
2003), dopamine (Sawin et al. 2000), and FRMFamides
(Nelson et al. 1998; Rogers et al. 2001). goa-1 encodes
the only clear member of the mammalian Gai/o class of
Go subunits, and it is involved in many types of behavior
regulations, including locomotion, egg laying, and male
mating (Mendel et al. 1995; Segalat et al. 1995). More-
over, octopamine has been reported to inhibit pumping
through the GOA-1 pathway (Keane and Avery 2003).
While, how Gai/o subunits participate in regulating
feeding is not clearly defined. Here, we found that the
Goi/o-coupled tyramine receptor TYRA-2 was involved
in peripheral feeding modulation.

Tyramine and octopamine are important amines not
only in C. elegans but also in insects, rats, and human
beings, and they are involved in neural circuits, meta-
bolism, and also diseases such as cancer and Parkin-
son’s diseases (Chen and Wilkinson 2012; Li et al. 2012;
Rumore et al. 2010; Xu et al 2013). However, the
functions of these amines in neural circuits remain
inconclusive, even simply in C. elegans. Here, we found
that these amines may suppress feeding via TYRA-2
receptor in AIM interneurons in the peripheral feeding
suppression. Our findings provide a novel insight into
feeding regulation in C. elegans and into the function
process of tyramine and octopamine in neuron circuits.

MATERIALS AND METHODS
General methods and strains

C. elegans were cultured on nematode growth medium
(NGM) plates with E. coli OP50 in standard procedures
(Brenner 1974), and the following strains were used in
this study: N2, TM1846: tyra-2(tm1846), VC125: tyra-
3(0k325), OH313: ser-2(pk1357), TM2913: Igc-
55(tm2913), TXL210: tyra-2(tm1846); txuEx210[tyra-
2p::tyra-2::GFP, lin-44p::GFP], TXL211: tyra-2(tm1846);

© The Author(s) 2018. This article is an open access publication
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Fig. 3 Tyramine inhibits AIM interneurons via TYRA-2 receptor. A, B Stimulation with 10 mmol/L tyramine inhibits AIM interneurons in
wild-type worms but not in tyra-2 mutants. The calcium indicator GCaMP3 was used to monitor the calcium transient in AIM neurons.
Dashed lines indicate the time of tyramine application. C, D The average lines (C) and peak amplitudes (D) of AIM calcium transients in
response to tyramine stimulation in wild-type and tyra-2 mutant worms. The shades around the average traces indicate error bars (SEM).
*p < 0.01

txuEx211[zig-3p::tyra-2::GFP, lin-44p::GFP], TXL212:  Molecular biology

txuEx212[tyra-2p::RFP, lin-44p::GFP], TXL213: lite-

1(ce314); txuEx213|zig-3p::GCaMP3, zig-3p::mKate2, lin-  For tyra-2 rescue experiments, the full-length tyra-2 gene
44p::GFP],  TXL214: lite-1(ce314);tyra-2(tm1846);  was amplified from the N2 genome. The tyra-2 promoter
txuEx213|zig-3p::GCaMP3, zig-3p::mKate2, lin- used in this study was amplified approximately 3 kb
44p::GFP], TXL215: lite-1(ce314); txuEx215[zig-  upstream from the start codon. For AIM-specific expres-
3p::Arch::GFP, lin-44p::GFP]. sion, a 4.45 kb promoter of zig-3 was used.
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Fig. 4 Optogenetic silencing of AIM interneurons mimics the feeding suppression. A Optogenetic silencing of AIM interneurons by green
light (550 nm, 1.77 mW/mm?) suppresses C. elegans pharyngeal pumping in a time-dependent manner. B The pumping rates before and
after optogenetic stimulation. Worms expressing Arch in AIMs were tested and the transgenic animals cultured on ATR-free plates were
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Repellents Attractants
5-HT
RIM/ NSM Central
RIC integration
TA/OA
J_TA/ OA
W TYRA-2
5-HT : Peripheral
AIM integration
Suppress feeding Facilitate feeding

Fig. 5 A schematic model of the feeding regulation circuit.
Serotonin and tyramine/octopamine function as crucial neural
transmitters in the central integration circuit of the feeding
regulation, while the receptor TYRA-2 and the interneuron AIM
function in the peripheral integration circuit downstream of
tyramine/octopamine. 5-HT: serotonin, TA: tyramine, OA:
octopamine
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Behavioral assays

Feeding behavior was assayed as previously described
(Li et al. 2012). In brief, the pumping rate was calcu-
lated by measuring the time required to complete
20 pumps. To test the effect of the volatile chemical
1-octanol, well-fed worms were transferred to new
3-cm NGM plates seeded with OP50. After 10 min, 2 pl
various concentrations of 1-octanol (dissolved in 100%
ethanol, vol/vol) were added to the lids before the plates
were sealed. The pumping rates were recorded 5 min
later, except for the time-dependence curve (Fig. 1B).
Three measurements were recorded for each worm, and
more than ten worms were tested per experiment.
Chemotaxis assays were performed using the stan-
dard protocol as described previously (Yoshida et al
2012). In general, 1 pl of 1 mol/L sodium azide was
spotted onto two points at opposite sides of a 10-cm
unseeded NGM plate, with 2 pl volatile chemical
1-octanol near the alternative one. Between 100 and
200 well-fed worms were placed near the center of the
plate. After 1h, the numbers of animals near and
opposite the 1-octanol, termed N* and N, respectively,
were counted. Chemotaxis index = [[NT) — (N7)]/

[(N) + (N

© The Author(s) 2018. This article is an open access publication
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All behavioral assays used young adult worms that
were cultured and tested at 20 °C. All experiments were
repeated at least three independent times.

Calcium imaging and optogenetics

Calcium imaging was performed on free-moving worms
by the imaging system as previously described (Li et al.
2012). We measured the calcium activity by neuron-
specific expression of the green fluorescent calcium
indicator GCaMP3, with the red fluorescent protein
mKate2 used as a reference. For optogenetic interroga-
tion, the light-driven outward proton pumps archaer-
hodopsins were specifically expressed in AIM neurons.
Green light (550 nm, 1.77 mW/mm?) was presented for
2 min. Worms cultured without all-trans-retinal (ATR)
were used as controls. To eliminate the intrinsic pho-
tophobic response, all calcium imaging and optogenetic
experiments were performed on a lite-1(ce314) genetic
background. At least nine worms were tested for each
experiment.

Statistical analysis

Data analysis is conducted using Origin Pro_9.0.0.
Results are presented as the mean + SEM, and the
statistical significance of differences is assessed using
the two-tailed ¢t test. *p < 0.05. *p < 0.01
***p < 0.001. N.S. indicates no significant difference.
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