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Abstract

Motivation: Mass cytometry or CyTOF is an emerging technology for high-dimensional multipara-

meter single cell analysis that overcomes many limitations of fluorescence-based flow cytometry.

New methods for analyzing CyTOF data attempt to improve automation, scalability, performance

and interpretation of data generated in large studies. Assigning individual cells into discrete groups

of cell types (gating) involves time-consuming sequential manual steps, untenable for larger

studies.

Results: We introduce DeepCyTOF, a standardization approach for gating, based on deep learning

techniques. DeepCyTOF requires labeled cells from only a single sample. It is based on domain

adaptation principles and is a generalization of previous work that allows us to calibrate between a

target distribution and a source distribution in an unsupervised manner. We show that DeepCyTOF

is highly concordant (98%) with cell classification obtained by individual manual gating of each

sample when applied to a collection of 16 biological replicates of primary immune blood cells,

even when measured across several instruments. Further, DeepCyTOF achieves very high accur-

acy on the semi-automated gating challenge of the FlowCAP-I competition as well as two CyTOF

datasets generated from primary immune blood cells: (i) 14 subjects with a history of infection with

West Nile virus (WNV), (ii) 34 healthy subjects of different ages. We conclude that deep learning in

general, and DeepCyTOF specifically, offers a powerful computational approach for semi-

automated gating of CyTOF and flow cytometry data.

Availability and implementation: Our codes and data are publicly available at https://github.com/

KlugerLab/deepcytof.git.

Contact: yuval.kluger@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Flow cytometry (FCM) is routinely used in cellular and clinical im-

munology. Current fluorescence-based FCM experiments provide

up to 15 numeric parameters for each individual cell from blood

samples in a high-throughput fashion. Mass cytometry (CyTOF) is

an emergent technological development for high-dimensional

multiparameter single cell analysis. By using heavy metal ions as

labels and mass spectrometry as readout, many more markers (>40)

can be simultaneously measured. CyTOF provides unprecedented

multidimensional immune cell profiling and has recently been

applied to characterizing peripheral blood cells, Natural Killer cells

in viral infections, skin cells, cells in celiac disease, responding
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phenotypes in cancer and even holds the promise of examination of

solid tumors (Bendall et al., 2011; Horowitz et al., 2013; Strauss-

Albee et al., 2015; Yao et al., 2014; Han et al., 2013; Irish and

Doxie, 2014; Giesen et al., 2014; Angelo et al., 2014). Cellular char-

acterization by FCM and CyTOF will improve our understanding of

disease processes (Atkuri et al., 2015).

Gating (assigning individual cells into discrete groups of cell

types) is one of the important steps and a bottleneck of analyzing

FCM and CyTOF data. The time it takes to manually analyze a

cytometry experiment depends on the number of blood samples as

well as the number of markers (Verschoor et al., 2015). Specifically,

gating is performed by drawing polygons in the plane of every two

markers. This implies that the time required for gating is roughly

quadratic in the number of markers. In addition, the manual proced-

ure, combined with the increase in the number of markers, make

this process prone to human errors. Technical variation naturally

arises due to the variation between individual operators (Benoist

and Hacohen, 2011). The subjectivity of manual gating introduces

variability into the data and impacts reproducibility and compar-

ability of results, particularly in multi-center studies (Maecker et al.,

2012). Thus the slow processing time and the inherent subjectivity

of manual analysis should be considered as primary reasons for

using computational assistance methods.

Recently, deep learning methods have achieved outstanding per-

formance in various computational tasks, such as image analysis,

natural language processing, and pattern recognition (Deng and Yu,

2014). These approaches have also been shown to be effective for

extracting natural features from data in general settings (Bengio

et al., 2013; Schmidhuber, 2015). Moreover, recent efforts to use

deep learning approaches in genomics and biomedical applications

show their flexibility for handling complex problems (Cireşan et al.,

2013; Cruz-Roa et al., 2014; Denas and Taylor, 2013; Fakoor et al.,

2013; Leung et al., 2014). However, deep learning typically requires

very large numbers of training instances and thus its utility for many

genomic, proteomic and other biological applications is question-

able. While in most genomics applications, the number of instances

(e.g. number of gene expression arrays) is typically smaller than the

number of variables (e.g. genes), in each FCM and CyTOF run we

typically collect approximately 105 to 106 cells, so that the number

of instances (cells) is several orders of magnitude larger than the

number of variables (up to 50 markers). Therefore, developing deep

learning approaches to analyze cytometry data is very promising.

Importantly, in FCM and CyTOF experiments, variation in both

biological and technical sources can make automatic gating chal-

lenging. Instrument calibration causes variation across samples,

such a situation is often referred to ‘batch effect’. In order to avoid

gating each dataset separately (which therefore requires labeled sam-

ples from each dataset), a domain adaptation procedure is used.

Domain Adaptation is a set of techniques that allow the use of a

learning scheme (or model) trained on data from a source domain

with a given distribution, which can then be applied to a target do-

main with a related but not equivalent distribution. The objective of

domain adaptation is to minimize the generalization error of in-

stances from the target domain (Daumé, 2009; Daume and Marcu,

2006).

We present DeepCyTOF, an integrated deep learning domain

adaptation framework, which employs one manually gated reference

sample and utilizes it for automated gating of the remaining samples

in a study. We first include two preprocessing options to use a

denoising autoencoder (DAE) to handle missing data and use mul-

tiple distribution-matching residual networks (MMD-ResNets)

(Shaham et al., 2016) to calibrate an arbitrary number of source

samples to a fixed reference sample, and then perform a domain

adaptation procedure for automatic gating.

We demonstrate the efficacy of DeepCyTOF in supplanting man-

ual gating by first applying it to three CyTOF datasets consisting of

56, 136 and 16 PBMC samples respectively, and then comparing the

concordance of the resultant cell classifications with those obtained

by manual gating. Additionally, we benchmark DeepCyTOF’s pre-

processing options for batch calibration using a collection of 16 bio-

logical replicates measured in duplicates on eight CyTOF

instruments. Finally, we compare DeepCyTOF to the other compet-

ing supervised approaches benchmarked on each dataset of the forth

challenge of the FlowCAP-I competition (Aghaeepour et al., 2013).

2 Materials and methods

DeepCyTOF integrates between three different tasks needed to

achieve automated gating of cells in multiple target samples (the

usage of the terms ‘source’ and ‘target’ in this manuscript is opposite

than in (Shaham et al., 2016), in order to be consistent with the do-

main adaptation terminology) based on manual gating of a single

reference source sample. The tasks include sample denoising, cali-

bration between target samples and a single reference source sample

and finally cell classification. We implement each of these tasks

using the following three neural nets: (i) a denoising autoencoder

(DAE) for handling missing data; (ii) an MMD-ResNet for calibrat-

ing between the target samples and a reference source sample; (iii) a

depth-4 feed-forward neural net for classifying/gating cell types

trained on a reference source sample. DeepCyTOF has options to

run with or without denoising, and with or without calibration.

2.1 Removing zeros using denoising autoencoder
All samples in our Mass Cytometry dataset contain large propor-

tions of zero values across different markers. This usually does not

reflect biological phenomenon, but rather, occurs due to instabilities

of the CyTOF instrument. To tackle this, we include an option in

DeepCyTOF to remove the zeros by training a denoising autoen-

coder (DAE) (Vincent et al., 2010) on the cells with no or very few

zero values. A DAE is a neural net that is trained to reconstruct a

clean input from its corrupted version. Unlike (Vincent et al., 2010),

who use Gaussian noise to corrupt the inputs, we use dropout noise,

i.e., we randomly zero out subset of the entries of each cell, to simu-

late the machine instabilities. We train a DAE for each batch, by

combining all samples from that batch, selecting the cells with no

zeros and using them as training set. For each DAE, we set the drop-

out probability to be the proportion of zeros in the measurement of

the corresponding batch. Once a DAE is trained, we pass all samples

from its batch through it to denoise the data.

2.2 MMD-ResNet
To account for machine based technical bias and variability, we in-

clude a preprocessing option in DeepCyTOF to calibrate each batch

to a reference using the MMD-ResNet approach. MMD-ResNet

(Shaham et al., 2016) is a deep learning approach to learn a map

that calibrates the distribution of a source sample to match that of a

target sample. It is based on a residual net (ResNet) architecture (He

et al., 2016a, 2016b) and has Maximum Mean discrepancy (MMD)

(Borgwardt et al., 2006; Gretton et al., 2012) as the loss function.

ResNet is a highly successful deep networks architecture, which is

based on the ability to learn functions which are close to the iden-

tity. MMD is a measure for a distance between distributions, which

had been shown to be suitable for training of neural nets-based
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generative models (Dziugaite et al., 2015; Li et al., 2015). If F is a

reproducing kernel Hilbert space with a (universal) kernel function

k �; �ð Þ, the (squared) MMD between distributions p, q over a space

X is defined as

MMD2 F ; p; qð Þ ¼ Ex;x0�pk x; x0ð Þ � 2Ex�p;y �qk x; yð Þ

þEy;y0�qk y; y0ð Þ;

where x and x0 are independent, and so are y and y0.

For calibration purposes, we want to find a map that brings the

distribution of the source sample close to that of the target sample;

we further assume that this map should be close to the identity. In a

previous work (Shaham et al., 2016), we have shown that MMD-

ResNets are successful in learning such maps, and used them for

calibration of CyTOF data and single cell RNA sequencing data. We

refer the reader to (Shaham et al., 2016) for a more comprehensive

description of MMD-ResNets.

In this manuscript, we follow the approach of (Shaham et al.,

2016) and use ResNets consisting of three blocks, which are trained

to minimizing the loss

L wð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMD2 ~f Xð Þ;Y

� �r

such that

MMD2 ~f Xð Þ;Y
� �

¼ 1

n2

X
xi ;xj2X

k ~f xið Þ; ~f xj

� �� �

� 2

nm

X
xi2X;yj2Y

k ~f xið Þ; yj

� �
þ 1

m2

X
yi ;yj2Y

k yi; yj

� �

where ~f is the map computed by the network, w are the network

parameters, and X ¼ fx1; . . . ; xng;Y ¼ fy1; . . . ; ymg are two finite

samples from the source and target distributions, respectively. An

example of a MMD-ResNet is shown in Figure 1.

2.3 Cell classifier
To choose which sample will be used as reference source sample, for

each sample i we first compute the d�d covariance matrix Ri,

where d is the number of markers (dimensionality) of these samples.

For every two samples i, j we then compute the Frobenius norm of

the difference between their covariance matrices jjRi � RjjjF, and we

select the sample with the smallest average distance to all other sam-

ples to be the reference sample. Once the reference sample is chosen,

we use manual gating to label its cells; the gating is used as ground

truth labels to train the classifier. This is the only label information

DeepCyTOF requires, regardless of the total number of samples we

want to gate.

To classify cell types, we trained depth-4 feed-forward neural

nets, each consisting of three softplus hidden layers and a softmax

output layer. Further technical details regarding the architecture and

training are given in Section 3.6. An example of such classifier is

shown in Figure 2.

3 Results

In this section, we present results from three experiments: (i) cell

classification of five FCM datasets from the FlowCAP-I competition

by applying DeepCyTOF without denoising (DAE) and without cali-

bration (MMD-ResNets), as they are not needed as explained

above, (ii) cell classification of two CyTOF datasets by applying

DeepCyTOF with the denoising option (DAE), but without calibra-

tion (MMD-ResNets) of the target samples, (iii) cell classification of

a multi-center CyTOF dataset by applying DeepCyTOF with the

denoising option (DAE), and with calibration (MMD-ResNets) of

the target samples to the source sample.

3.1 Datasets
3.1.1 FlowCAP-I datasets

We employ five collections of FCM datasets from FlowCAP-I

(Aghaeepour et al., 2013): (i) Diffuse large B-cell lymphoma

(DLBCL), (ii) Symptomatic West Nile virus (WNV), (iii) Normal

donors (ND), (iv) Hematopoietic stem cell transplant (HSCT) and

(v) Graft-versus-host disease (GvHD). With the results from manual

gates produced by expert analysis, the goal of FlowCAP-I challenges

is to compare the results of assigning cell events to discrete cell

populations using automated gates. In particular, we consider

‘Challenge 4: supervised approaches trained using human-provided

gates’. We use the manual gating provided from FlowCAP-I to

evaluate the neural nets predictions.

3.1.2 Mass cytometry datasets

We analyze two collections of CyTOF datasets measured on one in-

strument in the Montgomery Lab. The datasets consist of primary

immune cells from blood of (i) N¼14 subjects (8 asymptomatic and

6 severe) with a history of infection with West Nile virus (WNV),

Fig. 1. MMD-ResNet with three blocks Fig. 2. A neural net for classifying cell types
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and (ii) N¼34 healthy subjects of different ages (20 young and 14

old). Each blood sample is labeled with d¼42 antibody markers

(Strauss-Albee et al., 2015), 12 of which are used in our analysis as

they are the relevant markers for the task of classification described

below: HLA-DR, CD4, CD8, CD3-UCH1, CD16, CD33, CD19,

CD14, CD56, DNA1, DNA2, Cisplatin. Each sample is subjected to

four CyTOF experiments including a baseline state and three differ-

ent stimuli (PMA/ionomycin, tumor cell line K562, and infection

with WNV). The goal is to classify each cell to one of six cell type

categories: (i) B cell, (ii) CD4þT cell, (iii) CD8þT cell, (iv)

Monocytes, (v) Natural killer (NK) cells and (vi) unlabeled. There

are 56 and 136 samples in the first two datasets, and we manually

gate each single cell to evaluate the neural nets predictions.

We analyze an additional third collection of 16 CyTOF samples,

which are all drawn from a single subject. These samples are measured

in two different times and instruments as a part of a multi-center study

(Nassar et al., 2015). The first eight samples are collected at the same

time, and the last eight samples are collected two months apart from

the first eight. Additionally, each consecutive two samples are measured

by the same instrument. Each of the 16 samples contains 26 markers,

out of which eight correspond to the following protein markers: CCR6,

CD20, CD45, CD14, CD16, CD8, CD3, CD4; we perform our classifi-

cation experiments on this 8-dimensional data as these eight markers

are the relevant ones for the task of classification: classify each cell to

one of five cell type categories: (i) B cell, (ii) CD4þT cell, (iii) CD8þT

cell, (iv) Monocytes and (v) unlabeled. We manually gate each single

cell to evaluate the neural nets predictions.

3.1.3 Pre-processing

For FlowCAP-I datasets, we apply a logarithmic transform, fol-

lowed by rescaling, as described in the Supplementary Material.

For Mass Cytometry datasets, we first manually filter all samples

to remove debris and dead cells. In addition, different samples are

measured at different times; fine changes in the state of the CyTOF in-

strument between these runs introduce additional variability into the

measurements (batch effects). The specific nature of these changes is

neither known nor modeled. To tackle this problem and apply a gating

procedure, we follow most practitioners in the field, and calibrate the

samples by applying an experimental-based normalization procedure

(our results in Section 3.5 show that this normalization procedure does

not always eliminate the batch effects between different instruments,

and further calibration is needed). This procedure involves mixing

samples with polystyrene beads embedded with metal lanthanides, fol-

lowed by an algorithm which enables correction of both short-term

and long-term signal fluctuations (Finck et al., 2013). Once the data is

normalized, we apply a logarithmic transform and rescaling.

3.2 Evaluation
To compare DeepCyTOF approach to algorithms from the forth chal-

lenge of the FlowCAP-I competition, 25% of the cells of each subject

from the FCM datasets in FlowCAP-I are labeled by manual gating and

used to train a cell type classifier based on the procedure of Section 2.3,

which is then used to predict the labels of the remaining 75% cells.

Here the DAE option is disabled because there are no missing values

and the MMD-ResNet option is also disabled because the training and

test sets are from the same run and thus do not require calibration.

To perform semi-automated gating of all samples of each of the

first two CyTOF datasets based on the procedure of Section 2, we

select a single baseline reference sample as in Section 3.1.2. We

manually gate this sample, and use it to train a classifier for predict-

ing the cell type class of each cell. The other baseline samples and

additional samples that undergo three different stimuli (PMA/iono-

mycin, tumor cell line K562 and infection with WNV) are left for

testing. Batch effects in these two datasets were not substantial

allowing classification of cells into major cell populations without

employing a calibration step as in Section 2.2 prior for to the cell

classification of the test samples.

To perform semi-automated gating of the samples in the third

multi-center CyTOF dataset, we follow the procedure of Section 2,

i.e. we choose a single reference sample, train a collection of MMD-

ResNets to calibrate all the remaining samples to it, train a cell type

classifier on manually gated data of the reference sample, and use it

to classify the cells of the calibrated samples. We compare the classi-

fication performance between two options of running DeepCyTOF.

One option is with calibration of the target samples by MMD-

ResNets and the other option is without calibration.

We use the F-measure statistic (the harmonic mean of precision

and recall) for the evaluation of our methods as described in

(Aghaeepour et al., 2013). The F-measure for multiple classes is

defined as the weighted average of F-measures for each cell type, i.e.:

F ¼
X

i

ci

N
Fi

where ci is the number of cells with type i, N is the total number of

cells, Fi is the F-measure for the ith cell type versus all other types

(including unknown types):

Fi ¼
precision� recall

precisionþ recall
:

An F-measure of 1.0 indicates perfect agreement with the labels ob-

tained by manual gating. For any given vector of F-measure values

on a given dataset, we create several vectors of F-measure values (by

sampling with replacement), compute the mean F-measure and 95%

bootstrap percentile confidence interval for the mean.

3.3 Evaluation of classification performance from

FlowCAP-I
Table 1 presents the performance of DeepCyTOF when applied to

the five datasets from the forth challenge of FlowCAP-I competition.

The performance is compared to the respective winner of each of the

five collections in this competition. As can be seen, our predictions

are better than the competition winner in four out of the five collec-

tions and similar on the HSCT collection.

3.4 Application of DeepCyTOF to CyTOF datasets in the

absence of strong batch effects
In this experiment, for each of the two different collections (which

contain 14 and 34 baseline samples, respectively), we chose a

Table 1. Summary of results for the FlowCAP-I cell identification

challenge

Dataset DeepCyTOF Competition’s winner

GvHD 0.986 (0.979, 0.991) 0.92 (0.88, 0.95)

DLBCL 0.985 (0.976, 0.993) 0.95 (0.93, 0.97)

HSCT 0.991 (0.988, 0.993) 0.98 (0.96, 0.99)

WNV 0.999 (0.998, 0.999) 0.96 (0.94, 0.97)

ND 0.988 (0.987, 0.989) 0.94 (0.92, 0.95)

Note: The numbers in parentheses represent 95% confidence intervals for

the F-measure. We use DeepCyTOF without denoising (DAE) and without

calibration (MMD-ResNets).
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reference sample, used it to train DeepCyTOF using the options

that omits the calibration step, which was then used to predict the cell

types in all the other samples in that collection (55 samples from the

Asymptomatic versus Severe WNV dataset and 135 samples from the

Old versus Young dataset), without any calibration.

Supplementary Figure S1 shows an example of embedding of

labeled cells in a three dimensional space, obtained from the top hid-

den layer of a neural net cell type classifier, as the ones used for this

experiment. As can be seen, most of the labeled cells concentrate in

separated clusters representing specific cell types. Table 2 summarizes

the results, and provides a comparison to a shallow, linear classifier

(softmax). Table 2 illustrates some interesting points: first, nearly

perfect performance on the test data is achieved, despite the fact

that it was only given labels from the reference sample. Second,

DeepCyTOF performs significantly better than softmax regression,

which may be a result of the depth and the non-linearity of the net-

work. Third, whether or not the data is normalized does not affect the

performance of DeepCyTOF. Fourth, we also applied DeepCyTOF

choosing the option that includes a preprocessing calibration step in

which MMD-ResNets are used to calibrate the source samples to the

reference sample. However, this only yielded a modest improvement

in the results. This may be due to the fact that the datasets did not sig-

nificantly differ in distribution. A different scenario, where significant

differences exist in the data, is considered in Section 3.5.

3.5 Overcoming strong batch effects using DeepCyTOF
The multi-center dataset consists of samples of the same subject,

which were measured on different CyTOF machines in different lo-

cations. It is therefore reasonable that the different instrument

conditions will result in calibration differences, which need to be ac-

counted for. A domain adaptation framework like DeepCyTOF

might be valuable in such scenario.

As in Section 2, we first chose a reference subject (sample 2) as the

source. For each target sample, we then trained a MMD-ResNet to cali-

brate it to the reference sample. Subsequently, we trained a cell classifier

using labeled data from the reference sample, and used it to classify cells

from all the remaining calibrated 15 samples. We compared the per-

formance of DeepCyTOF to a similar procedure where we skip the cali-

bration step so that the input to the cell classifier is the data from the

un-calibrated target samples. Figure 3 shows the F-measure scores for

each sample before and after calibration. As can be seen, the F-measure

scores of samples 9–16 are significantly higher when a calibration step

is included in the gating process. For samples 1–8, we observed that the

scores are very high even without a calibration step. Overall, applying

DeepCyTOF with a calibration step results in an weighted average

F-measure of 0.985 with 95% confidence interval (0.979, 0.990),

which is significantly higher compared to the weighted average F-meas-

ure obtained by applying DeepCyTOF without calibration, which was

0.925 with 95% confidence interval (0.890, 0.956).

Figure 4 shows t-SNE embedding (Maaten and Hinton, 2008) of

the cells of a representative sample selected from samples 1–8 (sam-

ple 7) and a representative sample from the other eight samples

(sample 15) versus the cells of the reference sample, before and after

calibration. On both samples the MMD-ResNet calibration seem to

correct the batch effect appropriately, as after the calibration same

cell types are embedded in the same clusters. To understand why

the calibration almost did not change the accuracy on the last

eight samples (while improving it dramatically on the last eight),

Supplementary Figure S2 shows the MMD between the source sam-

ple and each of the target samples (the MMD values were computed

using random batches of size 1000 from each of the distributions).

As we can see, in all samples (with the exception of sample 2, which

is the source sample, and sample 1 which was measured on the same

instrument as sample 2), the MMD-ResNet calibration reduces the

MMD between the distributions. However, before calibration the

MMD between each the first eight target samples and the reference

sample is relatively small, possibly making the classifier generalize

well to these distributions even without calibration.

In the Supplementary Material, we also provide additional results

from this experiment. A more detailed perspective on the effect of the

calibration on the classification accuracy for the samples 9–16 is given

in Figure 3, which shows the confusion matrix of a representative

sample (sample 15), obtained before and after the calibration. For this

sample, the F-measure obtained by applying DeepCyTOF with and

without a calibration step are 0.9614 and 0.6603, respectively. In

order to demonstrate the quality of calibration not only in a macro-

scopic level, but also when restricting the attention to a specific cell

population, Supplementary Figure S4 shows the t-SNE plot of

CD8þT cells from sample 15 before and after calibration. The results

are consistent with the ones given above. Finally, to demonstrate the

effect of denoising on the quality of calibration, Supplementary Figure

S5 shows the MMD between the reference sample and each of the

other samples with and without denoising. We see that with denoising

the MMD is smaller than without denoising.

3.6 Technical details
All cell type classifiers used in this work, were depth 4 feed-forward

nets, with softplus hidden units and a softmax output layer, where

the hidden layer sizes have been set to 12, 6 and 3. All MMD-

ResNets were identical and consisted of three blocks, as can be seen

Table 2. Summary of results for the two CyTOF collections

F ¼ precision�recall
precisionþrecall DeepCyTOF Softmax regression

AnS-UN 0.990 (0.987, 0.993) 0.966 (0.955, 0.975)

AnS-N 0.991 (0.987, 0.994) 0.967 (0.957, 0.976)

OnY-UN 0.993 (0.990, 0.997) 0.963 (0.946, 0.977)

OnY-N 0.993 (0.989, 0.996) 0.963 (0.946, 0.977)

Note: The numbers in parentheses represent 95% confidence intervals. We

use DeepCyTOF without usingMMD ResNets for calibration of the target

samples. Datasets: unnormalized Asymptomatic&Severe (AnS-UN); normal-

ized Asymptomatic&Severe (AnS-N); normalized 60 Old&Young (OnY N);

unnormalized Old&Young (OnY-UN).

Fig. 3. Performance for the multi-center dataset before (white) and after

(black) calibration
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in Figure 1. The first weight matrix was of size 25�8, and the se-

cond weight matrix was of size 8�25. The DAEs had two hidden

layers, each of 25 ReLU units. All networks were trained using

RMSprop (Tieleman and Hinton, 2012). We use the default learning

rate (10�2Þ to train the DAE. The learning rate schedule for training

the classifiers and MMD-ResNets was defined as follows:

l tð Þ ¼ l 0ð Þ � db1þt
T c

where l tð Þ was the learning rate at epoch t, l 0ð Þ was the initial

learning rate, d was a constant, and T was the schedule. For training

the classifiers, we have l 0ð Þ ¼ 10�3; d ¼ :5 and T¼50. For training

the MMD-ResNets, we have l 0ð Þ ¼ 10�3; d ¼ :1 and T¼15.

We used mini-batches of size 128 for the cell type classifiers and the

DAE, and 1000 for the MMD-ResNets. For each net, a subset 10% of

the training data is held out for validation, to determine when to stop

the training. In the DAE and cell type classifiers, a penalty of 10�4 on

the l2 norm of the network weights is added to the loss for regulariza-

tion. In the MMD-ResNets we used for this purpose a penalty of 10�2.

The kernel used for MMD-ResNets is a sum of three Gaussian

kernels

k x; yð Þ ¼
X3

i¼1

exp � jjx� yjj2

ri

 !
;

we set the the ris to be m
2 ;m; 2m, where m is the median of the average

distance between a point in the target sample to its 25 nearest neighbors.

4 Theoretical justification for the calibration step
of DeepCyTOF

In the classical domain adaptation setting (Ben-David et al., 2010), a

domain is a pair D; fð Þ, where D is a distribution on an input space

X and f : X ! f0; 1g is a labeling function. A hypothesis is a func-

tion h : X ! f0;1g. Given a domain D; fð Þ, any hypothesis is associ-

ated with an error

� hð Þ ¼ Ex�D jh xð Þ � f xð Þj½ �:

Given a hypothesis, a source domain Ds; fsð Þ and a target domain

Dt; ftð Þ, one is interested in expressing the target error

�t hð Þ ¼ Ex�Dt
jh xð Þ � ft xð Þj½ �

in terms of the source error

�s hð Þ ¼ Ex�Ds
jh xð Þ � fs xð Þj½ �:

This corresponds to expressing the error of a classifier, trained on

the source data, on the target data.

Let H be hypothesis class of finite VC dimension. Ben David

et al. (2010) prove that for every h 2 H, with a probability of at least

1� d,

�t hð Þ � �s hð Þ þ dH Ds;Dtð Þ þC;

where

Fig. 4. Top: t-SNE plots of the joint distribution of sample 7 (dark crosses) and the reference sample (light circles) before (left) and after (right) calibration (the un-

labeled cells are omitted). Bottom: Similarly to the upper panel but plots correspond to to the joint distribution of sample 15 and the reference sample. Different

cell types have different colors: B cells (light and dark blue), CD4þT cells (light and dark green), CD8þT cells (light and dark red), Monocytes cells (light and dark

orange). After calibration, same cell types are clustered together
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dH Ds;Dtð Þ ¼ 2 sup
h2H
j Pr

x�Ds

h xð Þ ¼ 1½ � � Pr
x�Dt

h xð Þ ¼ 1½ �j;

and C is a constant which does not depend on h.

By considering H to be the class of Parzen window classifiers, it

can be shown (Sriperumbudur et al., 2009; Long et al., 2015) that

dH Ds;Dtð Þ� MMDH Ds;Dtð Þ:

This implies that calibrating the data by minimizing the MMD be-

tween the source and target distribution, the target error will get

close to the source error. This is precisely the procedure

DeepCyTOF performs.

5 Conclusions and future research

In this work, we show that deep learning machinery can be very ef-

fective in classification of cell types; the performance substantially

surpasses the predictive accuracy of the methods presented in the

forth challenge of the FlowCAP-I competition. In addition, we intro-

duce DeepCyTOF, an automated framework for gating cell popula-

tions in cytometry samples. DeepCyTOF integrates deep learning

and domain-adaption concepts. The labels obtained by manual gat-

ing of the reference sample are utilized in a domain-adaptation man-

ner. These steps enable DeepCyTOF to inherently calibrate the

major cell populations of multiple samples with respect to the cor-

responding cell populations of the reference sample. We analyze 208

CyTOF samples and observed nearly identical results to those ob-

tained by manual gating (with mean F-measure � 0:98).

In practice, run-to-run variations in CyTOF experiments both in

the same instrument and between instruments are very common.

These variations lead to significant batch effects in the datasets with

samples collected at different runs. As a result, noticeable differences

between the data distributions of the training data (manually gated

reference sample) and the remaining unlabeled test data (the remain-

ing samples) are observed, and an approach such as domain-

adaptation is required to remove these biases. Bead-normalization is

an approach introduced to mass cytometry as a pre-processing step

to diminish the effect of such variations (Finck et al., 2013).

Interestingly, application of DeepCyTOF to unnormalized and

bead-normalized data did not show an advantage of using the latter

for the task of automated gating.

Flow cytometry and mass cytometry experiments involve data

with dimensionality ranging between 10 and 40. Transforming the

raw multivariate data to other representations may offer advantages

for tasks such as automated gating or calibration. Finding good rep-

resentations can be done either by manual investigation (hand craft-

ing) or automated approaches. In recent years, deep learning

approaches have been shown to be suitable for learning useful repre-

sentations of data in the sense that they provide new sets of features

that makes subsequent learning easier.

As cytometry analyses become widely used in research and clin-

ical settings, automated solutions for analyzing the high dimensional

datasets are urgently needed. Current practice in which samples are

first subjected to manual gating are slowly substituted by automatic

gating methods (Chester and Maecker, 2015). Major contributions

to between-sample variations in cytometry experiments arise not

only due to biological or medical differences but due to machine

biases. Here, we demonstrate that a novel machine learning ap-

proach based on deep neural networks and domain adaptation can

substitute manual gating as they both produce indistinguishable re-

sults. In future work, we will demonstrate that deep learning

approaches could address other challenges in analyzing cytometry

data. This includes tasks such as further development of unsuper-

vised calibration of samples, and feature extraction for classification

or visualization of multiple samples.
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Cireşan,D.C. et al. (2013) Mitosis detection in breast cancer histology images

with deep neural networks. In: Mori,K. et al. Medical Image Computing

and Computer-Assisted Intervention—MICCAI 2013. MICCAI 2013.

Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, vol. 8150,

pp. 411–418.

Cruz-Roa,A. et al. (2014) Automatic detection of invasive ductal carcinoma in

whole slide images with convolutional neural networks. In: Gurcan,M.N.

and Madabhushi,A. (eds) SPIE Medical Imaging. International Society for

Optics and Photonics, San Diego, California, vol. 9041,

pp. 904103–904103.
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