
Databases and ontologies

Planning bioinformatics workflows using an

expert system

Xiaoling Chen1 and Jeffrey T. Chang1,2,3,*

1School of Biomedical Informatics and 2Department of Integrative Biology & Pharmacology, University of Texas

Health Science Center at Houston, Houston, TX 77030, USA and 3Department of Bioinformatics and Computational

Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

*To whom correspondence should be addressed

Associate Editor: John Hancock

Received on September 9, 2016; revised on November 30, 2016; editorial decision on December 19, 2016; accepted on December 21, 2016

Abstract

Motivation: Bioinformatic analyses are becoming formidably more complex due to the increasing

number of steps required to process the data, as well as the proliferation of methods that can be

used in each step. To alleviate this difficulty, pipelines are commonly employed. However, pipe-

lines are typically implemented to automate a specific analysis, and thus are difficult to use for ex-

ploratory analyses requiring systematic changes to the software or parameters used.

Results: To automate the development of pipelines, we have investigated expert systems. We cre-

ated the Bioinformatics ExperT SYstem (BETSY) that includes a knowledge base where the capabil-

ities of bioinformatics software is explicitly and formally encoded. BETSY is a backwards-chaining

rule-based expert system comprised of a data model that can capture the richness of biological

data, and an inference engine that reasons on the knowledge base to produce workflows.

Currently, the knowledge base is populated with rules to analyze microarray and next generation

sequencing data. We evaluated BETSY and found that it could generate workflows that reproduce

and go beyond previously published bioinformatics results. Finally, a meta-investigation of the

workflows generated from the knowledge base produced a quantitative measure of the technical

burden imposed by each step of bioinformatics analyses, revealing the large number of steps

devoted to the pre-processing of data. In sum, an expert system approach can facilitate exploratory

bioinformatic analysis by automating the development of workflows, a task that requires signifi-

cant domain expertise.

Availability and Implementation: https://github.com/jefftc/changlab

Contact: jeffrey.t.chang@uth.tmc.edu

1 Introduction

Due to the increasing breadth and complexity of bioinformatics

analyses, even routine pre-processing of data can be technically chal-

lenging. As one example, calling polymorphisms from next-

generation sequencing data involves many steps (quality control,

read trimming, alignment, recalibration, variant calling, annotation,

filtering, etc.) that can be carried out by a range of possible software

programs, each with technical idiosyncrasies and distinct semantic

requirements (DePristo et al., 2011; Kroigard et al., 2016; McKenna

et al., 2010; Wang et al., 2013). A great deal of expertise is required

even before the domain-specific analysis and interpretation of the

data.

To facilitate analyses, a common strategy is to develop computa-

tional pipelines that can link together series of tools in a pre-defined

manner. These range in complexity from ad-hoc scripts to more pol-

ished software made publicly available. In addition, formal systems

to develop pipelines are also used, including GenePattern, Taverna

or Galaxy (Goecks et al., 2010; Oinn et al., 2004; Reich et al.,

2006). Regardless of the underlying technology, pipelines have

been widely adopted because they reduce effort, minimize technical

VC The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1210

Bioinformatics, 33(8), 2017, 1210–1215

doi: 10.1093/bioinformatics/btw817

Advance Access Publication Date: 4 January 2017

Original Paper

https://github.com/jefftc/changlab
Deleted Text: ,
http://www.oxfordjournals.org/

errors, implicitly capture the expertise of the developer, and increase

the reproducibility of the results (Hoon et al., 2003).

The main drawback of pipelines as currently implemented is that

they are typically developed for a single purpose, within a narrow

domain, and are not designed for any substantial extensibility. In

practice, the choice of algorithms used in pipelines are relatively lim-

ited, and changing them may require re-coding one or more steps in

the pipeline. Thus, they are difficult to use for exploratory analysis,

which is critical for bioinformatics as frequently multiple

approaches need to be attempted. Further, as more methods are

being developed, the number of potential pipelines grows exponen-

tially. To manage these challenges, a new framework must be de-

veloped that can accommodate the flexibility that is demanded in an

exploratory bioinformatic analysis.

To facilitate pipeline development, we have investigated using ex-

pert systems. Their capabilities closely match the needs of bioinfor-

matics as they provide the ability to advise (which programs to run),

plan (the sequence of programs to run), document (what was run and

how), as well as execute (run the programs). More specifically, for a

typical bioinformatic analysis, we surmise that the desired goal (e.g. a

set of variant calls) is known a priori, and help is needed to determine

the sequence of steps required to produce the output correctly. This

can be provided by a backwards-chaining expert system.

An expert system consists of a knowledge base of rules and an in-

ference engine that operates on the rules. Each rule describes for-

mally how a set of inputs (the antecedents) is converted to an output

(the consequent), and typically corresponds to a software program.

The inference engine then reasons on the rules to produce a

workflow that generates the target of interest. In this manuscript,

we use workflow to mean the set of computations, including all

valid algorithms and parameters, that can generate a desired output.

A workflow can be represented as a graph. In contrast, a pipeline is

a linear path through a workflow representing a series of computa-

tions with a specific set of parameters.

Inference engines have previously been used in bioinformatics,

including makefiles, Snakemake or Ruffus (Feldman, 1979;

Goodstadt, 2010; Koster and Rahmann, 2012). These systems link

together a set of computational steps according to user defined con-

straints. Another project, Wings takes a different approach by

applying previously developed templates for common workflows,

and then leveraging an expert system to help users instantiate the

templates with specific algorithms and datasets by validating the

constraints imposed by their choices (Gil et al., 2011). Workflows

for genomic analysis are being developed in Wings, including those

that perform association tests, copy number variant detection, and

variant calling (Gil et al., 2013). However, these systems cannot de-

velop workflows autonomously.

One challenge in applying an expert system to bioinformatics

stems from the richness of the biological data. For example, one

commonly used data object is a matrix of gene expression values.

The matrix can be described by many orthogonal attributes (e.g. has

log transformation been applied, are there missing values, how are

the genes sorted, etc.), and the number of possible states grows ex-

ponentially with the number of attributes. Therefore, an expert sys-

tem for bioinformatics must have the ability to model the richness of

the data, and possess strategies to manage the exponential complex-

ity of the reasoning.

Outside of bioinformatics, backwards chaining inference en-

gines, such as Jess or Prolog, can represent the data objects in a

more structured format (Colmerauer and Roussel, 1996; Friedman-

Hill, 2003). However, it is difficult to manage the exponential

search in these systems. Second, they also lack an ability to integrate

with external tools that can perform introspection to ascertain the

state of the input data, which can dynamically alter the execution of

the pipeline. As an example for gene expression analysis, this intro-

spection would allow the system to check for potential batch effects

(Leek et al., 2010), and if necessary, apply the tools to remove them.

To determine the feasibility of in silico generation of workflows,

we developed an expert system, BETSY (Bioinformatics ExperT

SYstem), that combines a rich data model with an inference engine

tuned to reduce the exponential expansion of the search (Fig. 1).

Users interact with the system by specifying the desired target (e.g. a

set of differentially expressed genes), allowing BETSY to propose a

solution, and then entering a dialog with the system to refine the

proposed pipeline (e.g. indicating preferences for algorithms or par-

ameters). Finally, BETSY is able to run the pipeline and generate the

result. Currently, the BETSY knowledge base is populated with

modules focused on the analysis of microarray and next generation

sequencing data, enabling it to develop workflows to perform ana-

lyses that include differential expression analysis, clustering, classifi-

cation, variant calling, peak calling, and visualization. Importantly,

the expert system provides the ability to develop, refine and execute

these complex analyses in a flexible and reproducible manner.

2 Materials and methods

2.1 BETSY knowledge base
The BETSY knowledge base is built upon data and modules that

represent computations to be applied to the data. Data objects (e.g.

Fig. 1. BETSY Architecture. (A) The BETSY knowledge base system consists

of a Rule Base that describes (1) the types of data encountered in bioinfor-

matics, and (2) the ability of bioinformatics software to transform data from

one type to another. Given these components, the Inference Engine uses a

backwards-chaining algorithm to produce a pipeline that describes how to

generate a target object of interest, given the inputs available. Then, the

Processing Engine can run the pipeline to produce the output requested. (B)

This shows the structure of an example rule from the knowledge base. This

rule describes a module that aligns next generation sequencing reads using

the Bowtie2 algorithm. It requires a set of antecedents including a folder of

the FASTQ format files to be aligned, a mapping of the files to samples, a de-

scription of the orientation of the reads, as well as the reference genome.

Given these inputs, the module produces a folder of BAM files. The

Constraints set the conditions on the antecedents that must exist before this

rule can be applied. For instance, the FASTQ files cannot be compressed.

However, the adapters may or may not be trimmed. The Consequences de-

scribe the changes that are imposed on the consequent after this module is

run. Here, the aligner attribute for the BAM files is set to bowtie2

Planning bioinformatics workflows using an expert system 1211

Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text: Figure
Deleted Text: ,
Deleted Text: .
Deleted Text: K
Deleted Text: B

a database identifier, a file containing a gene expression matrix, or a

folder of BAM files) typically correspond to files or directories. Each

data object is associated with a set of key-value attributes (e.g. for-

mat of gene expression file, whether data is logged, or the algorithm

used to preprocess) that further parameterize it for inference.

Modules convert one or more input data objects into exactly one

output data object. They are generally implemented as software pro-

grams, and the semantics of what they do are described by rules.

Rules are structured descriptions of how inputs are converted to an

output, and consist of (1) one or more input data objects (ante-

cedents), (2) exactly one output object (consequent), (3) a set of zero

or more constraints that describe restrictions on the attributes of the

input data objects (e.g. this rule only accepts gene expression matri-

ces that have not been logged) and (4) a set of zero of more conse-

quences, that describe the state of the attributes of the output data

object (e.g. this rule produces a gene expression matrix that is

logged).

2.2 Inference engine
Given a desired target data object (with specific attributes), the

BETSY inference engine applies the rules to generate a data flow

graph. To do this, it leverages a FOL-BC-Ask strategy that is modi-

fied to handle the attributes associated with the data objects (Russell

and Norvig, 2009). To minimize the exponential expansion, it uses

a heuristic to merge data objects when possible (e.g. if the down-

stream algorithms are indifferent to the log states of the gene expres-

sion matrix, then no distinction need be made between matrices

with different states). Secondly, when searching for pipelines, it ag-

gressively prunes the search in the branches where no solutions are

possible (e.g. if no BAM files are provided or can be generated, then

it does not search for any solutions requiring BAM files).

The inference engine generates a bipartite directed acyclic graph,

where one class of nodes represent data, and the other modules. To

describe the graph in a way that facilitates comparison with those of

other workflow systems, we follow a framework previously used to

review Taverna and other systems (Curcin and Ghanem, 2008). The

workflow graph generated by BETSY allows no loop structures and

no logical (e.g. AND, OR, NOT) branching constructs. IF statements

are handled and enable the system to perform introspection. They are

implemented as module nodes that produce more than one possible

alternative output data nodes. The specific one is determined at run

time. For example, a gene expression record downloaded from the

GEO database may contain Affymetrix CEL files or Illumina IDAT

files, which require different methods for preprocessing. In this situ-

ation, BETSY will generate a workflow that downloads the data, and

then executes a module (identify_type_of_expression_files) that iden-

tifies the type of data, allowing control to be directed toward the pipe-

line downstream that is capable of processing the data downloaded.

In the BETSY data model, there is no explicit handling of collec-

tions of data objects. The BETSY inferencing engine can only com-

pute on individual data objects. However, the data objects

themselves can be associated with either files or directories that are

handled by the modules. As an example, there is a data type called a

FastqFolder that represents a folder of FASTQ formatted files.

Although this appears as an individual unit to the inference engine,

the modules can perform operations over this entire collection of

files.

Finally, the execution of the workflow passes discretely from one

module node to the next. Each module must be completed before

the next one begins. Streaming, in which execution passes from a

partially completed module to the next, is not supported.

While the knowledge base is specific to bioinformatics, the infer-

ence engine contains no domain-specific functionality, and can, in

principle, be applied to other domains.

2.3 Processing engine
BETSY also contains a processing engine. Given a data flow graph

and set of inputs, it can execute the graph, running the appropriate

programs to generate the target output. To facilitate exploratory

analysis, where the same analysis may be re-run with few attributes

changed, it uses a caching strategy so that only the steps affected by

the changes will be re-run. Further, the processing engine can be run

concurrently. Before running a program, BETSY can detect if an-

other instance is already running the same program on the same in-

puts, and will wait for the first instance to finish rather than

replicating the computation or overwriting the result. Finally, to en-

sure reproducibility, the processing engine documents the software,

version (when available), parameters and other salient properties.

2.4 Implementation
BETSY is implemented in Python 2 and calls data analysis software

implemented on a range of platforms, including R, Matlab, LINUX

binaries and via the internet. The knowledge base, and thus the

capabilities of BETSY, is extensible by adding rules (implemented as

Python objects) that execute new analysis software.

BETSY is currently usable via a command line interface. In a typ-

ical interaction with the system, the user begins by browsing through

the knowledge base to identify the desired output data type. Then,

they ask BETSY to develop an initial workflow that can produce

this data. The user examines this workflow, which can be rendered

visually as a graph or as text. Typically, the workflow will require

further iterative refinement, which is accomplished by specifying at-

tributes of appropriate data objects. For example, when creating a

workflow to generate a heat map of a gene expression data set, the

user can specify the algorithm used to preprocess the data, the ap-

proach to normalize the data, or the number of genes to plot by set-

ting the desired attribute on the SignalFile object, Similarly, the

color scheme or size of the heatmap can be configured by setting at-

tributes on the Heatmap object. Once the user is satisfied with the

workflow, they may then elect to execute it to produce the desired

output.

The BETSY modules are implemented to take advantage of

multi-processor machines and, when possible, use as many cores

as the user allocates to the BETSY process. We typically run jobs dis-

tributed over 40 cores on a 96 core machine. It has been applied to

medium-sized next generation sequencing data sets comprised of

over 100 mammalian RNA-Seq or Whole Exome Sequencing

samples.

3 Results

3.1 Meta-analysis of the bioinformatics landscape
Within the BETSY framework, we have developed a knowledge

base focused on common bioinformatics analyses encountered by

the UTHealth Bioinformatics Service Center (Chang, 2015). The

rules are focused on microarray pre-processing (preprocessing, batch

effect removal), next generation sequencing analysis (alignment,

gene expression estimation, variant calling), as well as common

downstream processing (pathway analysis, clustering, classification,

visualization). Currently, the knowledge base consists of 233 rules

covering 119 types of data and 339 attributes on those data.

1212 X.Chen and J.T.Chang

Deleted Text: ,
Deleted Text: .
Deleted Text: E
Deleted Text: .
Deleted Text: E
Deleted Text: ,
Deleted Text: .
Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text: .
Deleted Text: Meta

To describe the BETSY knowledge base, we generated a network

that reveals the scope of bioinformatics that it can perform. Since

there is not a single target that can utilize the entire knowledge base,

we approximated the extent of the knowledge by enumerating a

broad set of targets and asked BETSY to generate graphs that can

produce those targets. Then, we merged the resultant graphs into a

single network (Fig. 2A). This network summarizes the common

tasks that we have encountered in bioinformatics and encoded into

BETSY. To understand the nature of these analyses, we categorized

the steps into different types of activities, including Acquisition

(downloading data from databases), Data Wrangling (non-statistical

conversion of data, e.g. standardizing the columns of a data file),

Preprocessing (statistical conversion of the form of the data, e.g.

RMA preprocessing of microarray data), Normalization (adjusting

the values of the data for consistency or to conform with assump-

tions), Analysis (application of bioinformatic algorithms to derive

information from the data), Visualization, Summarization (organiz-

ing the data for human interpretation) and Introspection (eliciting

properties of the data for processing). While Analysis (e.g. clustering

microarray data, predicting disease outcomes, etc.) is the key step of

the pipeline, and what is typically considered bioinformatics, pre-

paring the data for analysis comprises the bulk of the network.

Indeed, the graph resembles an iceberg where the mass of data prep-

aration is hidden under the desired bioinformatic analysis.

By quantifying the type of modules included in the BETSY net-

work, we revealed that 42% of the steps are comprised of data

wrangling, roughly comparable with previous estimates of 50–80%

(Endel, 2015; Lohr, 2014). While we previously found that the ac-

tual time spent on non-analysis activities was in the minority (Chang

et al., in review), this nevertheless demonstrates quantitatively the

large technical burden imposed by data wrangling (Fig. 2B).

Further, a comparable number of steps were devoted to introspec-

tion, signifying the abundance of incremental decisions that need to

be made based on the state of the data. Taken together, this illus-

trates that the majority of the steps in performing bioinformatics do

not require creative intellectual input, but instead, expertise is

required in the construction and selection of the proper pipelines,

and the specification of the target goal.

Fig. 2. Summarization of the BETSY knowledge base. (A) This directed acyclic graph shows the common outputs that can be generated by BETSY. The square

nodes represent modules, and the intervening small circles represent the data that is computed upon. The colors of the module nodes indicate the type of work

done. Each path through this graph constitutes a pipeline that can be executed. The potential inputs to the network are shown on the bottom, and the output data

types are placed at the top; the pipelines flow from the bottom upwards. At the bottom, the figures is labeled according to the data that is handled. The text labels

show the analyses being performed. The dashed line roughly separates the Analysis nodes (on top), those that represent the algorithmic computation that pro-

duces the desired outcome, from the steps to prepare the data for analysis (on bottom). (B) (Left panel) This table shows the total number of module nodes for

each type of work (Total) column, as well as the number of transitions that originate from each type of module (rows) to the next type of module (columns).

(Right panel) This graph is a visualization the transitions shown in the table. Each circle represents a type of module, and are colored the same as panel A. The

area of the circles are relative to the number of modules. The arrows indicate transitions from one type to the next, and their relative sizes correspond to the num-

ber of transitions

Planning bioinformatics workflows using an expert system 1213

Deleted Text: Figure
Deleted Text: ,
Deleted Text: -
Deleted Text: , et al
Deleted Text: Figure

3.2 The knowledge base can recreate prior analyses
To determine whether BETSY has the capacity to perform useful

bioinformatics, we tested whether the system can reproduce the re-

sults of previously published analyses. We chose to reproduce a

landmark cancer classification result (Golub et al., 1999), as well as

two others selected from a study that identified reproducible micro-

array results (Ioannidis et al., 2009).

For the first case, the original study reported on a machine learn-

ing classifier to distinguish two leukemia subtypes, ALL and AML,

based on gene expression patterns found in microarray data. To re-

produce this, we used BETSY to generate a network that will pro-

duce classification predictions, using the same algorithm (weighted

voting) and leave-one-out cross validation (Fig. 3A). Although

BETSY opted to use a support vector machine (Noble, 2006), an al-

gorithm that is commonly used and shown to perform well across a

range of applications, we changed this to be consistent with the pre-

vious analysis by specifying that the classification results should be

generated with the weighted voting classifier, causing BETSY to re-

vise the workflow. Then, based on the inputs we provided, along

with the gene expression data and class labels that were made avail-

able with the original manuscript, BETSY selected a pipeline that

included steps for preprocessing, gene filtering and thresholding,

introspection for missing values and log normalization, and then

classification with cross validation.

Running the pipeline resulted in predicted scores for each of the

samples in the dataset (Fig. 3B). We compared the scores generated

against the published scores and found that they were identical. This

demonstrates that BETSY had the ability to create a pipeline that

could accurately generate useful bioinformatic results.

To test whether BETSY can reproduce the results of other manu-

scripts, we applied it to reproduce a result from two other manu-

scripts (Loh et al., 2006; Van Driessche et al., 2005). With the data

from these manuscripts, we used BETSY to re-create their published

heatmaps. In contrast to the classification example, these pipelines

required BETSY to acquire data, filter genes for missing values, zero

fill missing values, reorder genes, and finally create a heatmap given

specifications for color and size. The resultant heatmaps reproduced

the ones published in Figure 5 (Loh et al., 2006) and Figure 1C (Van

Driessche et al., 2005) in the original manuscripts (Fig. 3C).

3.3 Expert systems facilitate exploratory analyses
Since the ALL/AML manuscript described above was published,

there have been further advances in the development of machine

learning algorithms. Therefore, to test the flexibility by which

BETSY can alter workflows, we repeated the classification task, ex-

cept replacing the weighted voting classifier with a more modern

random forests classifier (Breiman, 2001). We requested a change in

the classification algorithm, resulting in a new workflow. After run-

ning it, we found that the random forests classifier could perform

more accurately than weighted voting (both with leave-one-out

cross validation) (Fig. 4). On the training set, random forests made

no classification errors, while weighted voting made one. On the

test, random forests had one error, while weighted voting had two.

Nevertheless, comparing the accuracy of the methods is not the goal

of this analysis, but instead, this result demonstrates that a know-

ledge based system facilitates the application of new algorithms by

dynamically generating new workflows.

We next applied BETSY to perform a pathway analysis on the

same dataset with the SIGNATURE toolkit (Chang et al., 2011;

Gatza et al., 2010). Because SIGNATURE was described in its

knowledge base, BETSY could infer and execute a new workflow

that generates pathway predictions rather than cancer type predic-

tions. As a result, while the original paper demonstrated that AML

and ALL shared distinct gene expression patterns, this new analysis

revealed that they also differ in terms of predicted pathway activ-

ities. The majority of the ALL samples cluster on the left, and ex-

hibited relatively higher E2F, b-Catenin, Myc and PI3K activation,

while the AML samples on the right have relatively higher activation

of HER2, EGFR and TNF-a. Thus, with very little work from the

user, BETSY could apply the same dataset in a different workflow

that provides further insight into the biology of the data.

Fig. 3. Reproduction of prior analyses. (A) This graph shows the workflow

that can reproduce the cancer classification problem reported in (Golub et al.,

1999). In contrast to Figure 2A, the inputs here are shown at the top of this

network, and the pipelines flow downward to the output at the bottom. The

dark blue nodes represent modules, and the light blue ones indicate data.

The highlighted yellow nodes show the pipeline given the input files (green).

(B) (Top) The predictions for the classes based on the pipeline published in

the original manuscript. (Bottom) This scatter plot compares the scores pre-

dicted from the GenePattern (x-axis) pipeline following the original manu-

script, with the scores from the pipeline produced by BETSY (y-axis). (C)

These heatmaps (but not the labels) were generated using pipelines from

BETSY. The one in the left panel is a reproduction of Figure 5 in Loh et al.

(2006), and right panel Figure 1C in Van Driessche et al. (2005)

Fig. 4. Exploratory analyses. This figure shows the results of a supervised ma-

chine learning classification (top) and pathway analysis (bottom heatmap) of

the ALL/AML test set. Each column contains an AML or ALL cancer sample. In

the bar directly below the top dendrogram, AML samples are colored with a

dark green box, and ALL white. The following rows indicate the samples,

marked with a red X, that Weighted Voting or Random Forests classifiers pre-

dicted incorrectly. The heatmap shows the results of a pathway prediction.

Red indicates high activation of pathways (rows), and blue low

1214 X.Chen and J.T.Chang

Deleted Text: .
Deleted Text: Figure
Deleted Text:
Deleted Text: Figure
Deleted Text: Figure
Deleted Text: .
Deleted Text: Figure
Deleted Text:
Deleted Text: ,
Deleted Text: ,
Deleted Text:

4 Discussion

It has been argued that spreadsheets were a boon to finance, because

they allowed users to consider ‘what if’ questions. Given the diver-

sity seen across bioinformatics projects (Chang, 2015), an analogous

ability to try a range of approaches is needed. Here, we have demon-

strated that an expert system can provide the flexibility to support

exploratory analyses.

One consequence of switching from hand crafted scripts to an

expert system to run analysis is that the maintenance of the system is

converted from a software maintenance task to knowledge base cur-

ation. Although BETSY can document what was done in an analysis,

creating the workflow itself depends on the knowledge base, which

may be frequently updated to add new rules, potentially impacting

existing capabilities. While there is a substantial literature on the de-

velopment and curation of knowledge bases, arguably the analogs in

software are currently better understood. Nevertheless, we argue

that the higher level of abstraction provided by a knowledge base

makes it easier to maintain, but this is not yet evident given the

more limited experience with this approach.

While much attention has been devoted to developing biologist

friendly software (Chang et al., 2011), we do not believe that it is

appropriate to use BETSY in this way. BETSY could in principle be

used as a black box without an understanding of the workflow de-

veloped. In most cases, this would generate correct results.

However, biology is complex, and there will always be situations

that BETSY does not understand. For example, we recently used

BETSY to call variants from RNA-Seq data. Because it had no

knowledge of RNA, it produced a workflow to call variants from

DNA-Seq data, ignorant of the splicing that occurs in the RNA tran-

scripts. This error was detected by manually reviewing the work-

flow. To handle this situation correctly, we had to expand the

BETSY knowledge base by adding attributes to distinguish RNA

and DNA data transcripts so the right alignment strategy would be

selected. This both illustrates that BETSY possesses an incomplete

(yet ever expanding) knowledge of biology, and also highlights the

value of having a theoretical framework that enables to us to expli-

citly encode and build upon expert knowledge.

Acknowledgements

We thank members of the Chang lab and the UTHealth Bioinformatics

Service Center for testing the software. We thank Micheal Hewett for helpful

discussions.

Funding

This work was supported by grants R1006 and UL1 TR000371 from the

Cancer Prevention and Research Institute of Texas and TL1TR000371 from

the National Institutes of Health.

Conflict of Interest: none declared.

References

Breiman,L. (2001) Random forests. J. Mach. Learn., 45, 5–32.

Chang,J. (2015) Core services: reward bioinformaticians. Nature, 520,

151–152.

Chang,J.T. et al. (2011) SIGNATURE: a workbench for gene expression signa-

ture analysis. BMC Bioinformatics, 12, 443.

Chang,J.T. et al. Fulfilling the need for bioinformatics in biomedical research.

in review.

Colmerauer,A. and Roussel,P. (1996) The Birth of Prolog. In: Bergin,T.J.J.

and Gibson,R.G.J. (eds) History of Programming Languages–II. ACM,

New York, NY, USA, p. 331–367.

Curcin,V. and Ghanem,M. (2008) Scientific workflow systems – can one size

fit all? In: Proceedings of the 2008 IEEE, CIBEC’08. Cairo, Egypt.

DePristo,M.A. et al. (2011) A framework for variation discovery and genotyp-

ing using next-generation DNA sequencing data. Nat. Genet., 43, 491–498.

Endel,F. (2015) Data Wrangling: Making data useful again. 8th Vienna Int.

Conf. Math. Modell., 48, 111–112.

Feldman,S.I. (1979) Make—a program for maintaining computer program.

Software, 9, 255–265.

Friedman-Hill,E. (2003) Jess in Action. Manning Publications, Greenwich,

CT.

Gatza,M.L. et al. (2010) A pathway-based classification of human breast can-

cer. Proc. Natl. Acad. Sci. U. S. A., 107, 6994–6999.

Gil,Y. et al. (2011) A semantic framework for automatic generation of compu-

tational workflows using distributed data and component catalogs. J. Exp.

Theor. Artif. Intell., 23, 389–467.

Gil,Y. et al. (2013) Using Semantic Workflows to Disseminate Best Practices

and Accelerate Discoveries in Multi-Omic Data Analysis. In: Conference of

the Association for the Advancement of Artificial Intelligence. Bellevue,

WA.

Goecks,J. et al. (2010) Galaxy: a comprehensive approach for supporting ac-

cessible, reproducible, and transparent computational research in the life

sciences. Genome Biol., 11, R86.

Golub,T.R. et al. (1999) Molecular classification of cancer: class discovery

and class prediction by gene expression monitoring. Science, 286, 531–537.

Goodstadt,L. (2010) Ruffus: a lightweight Python library for computational

pipelines. Bioinformatics, 26, 2778–2779.

Hoon,S. et al. (2003) Biopipe: a flexible framework for protocol-based bio-

informatics analysis. Genome Res., 13, 1904–1915.

Ioannidis,J.P. et al. (2009) Repeatability of published microarray gene expres-

sion analyses. Nat. Genet., 41, 149–155.

Koster,J. and Rahmann,S. (2012) Snakemake–a scalable bioinformatics work-

flow engine. Bioinformatics, 28, 2520–2522.

Kroigard,A.B. et al. (2016) Evaluation of nine somatic variant callers for de-

tection of somatic mutations in exome and targeted deep sequencing data.

PLoS One, 11, e0151664.

Leek,J.T. et al. (2010) Tackling the widespread and critical impact of batch ef-

fects in high-throughput data. Nat. Rev. Genet., 11, 733–739.

Loh,Y.H. et al. (2006) The Oct4 and Nanog transcription network regulates

pluripotency in mouse embryonic stem cells. Nat. Genet., 38, 431–440.

Lohr,S. (2014) For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to

Insights. The New York Times (August 17).

McKenna,A. et al. (2010) The Genome Analysis Toolkit: a MapReduce frame-

work for analyzing next-generation DNA sequencing data. Genome Res.,

20, 1297–1303.

Noble,W.S. (2006) What is a support vector machine? Nat. Biotechnol., 24,

1565–1567.

Oinn,T. et al. (2004) Taverna: a tool for the composition and enactment of

bioinformatics workflows. Bioinformatics, 20, 3045–3054.

Reich,M. et al. (2006) GenePattern 2.0. Nat. Genet., 38, 500–501.

Russell,S. and Norvig,P. (2009) Artificial Intelligence: A Modern Approach.

Prentice Hall, Upper Saddle River, NJ.

Van Driessche,N. et al. (2005) Epistasis analysis with global transcriptional

phenotypes. Nat. Genet., 37, 471–477.

Wang,Q. et al. (2013) Detecting somatic point mutations in cancer genome

sequencing data: a comparison of mutation callers. Genome Med., 5, 91.

Planning bioinformatics workflows using an expert system 1215

Deleted Text: .
Deleted Text: &hx0022;
Deleted Text: &hx0022;

