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Abstract

Motivation: Disease phenotype networks play an important role in computational approaches to

identifying new disease-gene associations. Current disease phenotype networks often model dis-

ease relationships based on pairwise similarities, therefore ignore the specific context on how two

diseases are connected. In this study, we propose a new strategy to model disease associations

using context-sensitive networks (CSNs). We developed a CSN-based phenome-driven approach

for disease genetics prediction, and investigated the translational potential of the predicted genes

in drug discovery.

Results: We constructed CSNs by directly connecting diseases with associated phenotypes. Here,

we constructed two CSNs using different data sources; the two networks contain 26 790 and 13 822

nodes respectively. We integrated the CSNs with a genetic functional relationship network and pre-

dicted disease genes using a network-based ranking algorithm. For comparison, we built

Similarity-Based disease Networks (SBN) using the same disease phenotype data. In a de novo

cross validation for 3324 diseases, the CSN-based approach significantly increased the average

rank from top 12.6 to top 8.8% for all tested genes comparing with the SBN-based approach

(p < e�22). The area under the receiver operating characteristic curve for the CSN approach was

also significantly higher than the SBN approach (0.91 versus 0.87, p < e�3). In addition, we pre-

dicted genes for Parkinson’s disease using CSNs, and demonstrated that the top-ranked genes are

highly relevant to PD pathologenesis. We pin-pointed a top-ranked drug target gene for PD, and

found its association with neurodegeneration supported by literature. In summary, CSNs lead to

significantly improve the disease genetics prediction comparing with SBNs and provide leads for

potential drug targets.

Availability and Implementation: nlp.case.edu/public/data/

Contact: rxx@case.edu

1 Introduction

Real-world interconnections between objects not only differ in their

strengths, but more importantly, in the types of the links. Figure 1

shows two different ways of constructing social networks based on

shared interests. The similarity-based network (SBN) models the rela-

tionships between two people by the number of overlapping interests,

and ignores the context on how people are connected. On the other

hand, the context-sensitive network (CSN) contains both ‘people’ and

‘interest’ nodes, and explictly connects people through their common

interests. It captures the information that Chris shares different inter-

ests with Tylor and Jeremy, though he has two common interests with

both the other two people. CSNs are therefore more informative than

SBNs in data mining applications, such as social network analysis

(Sun et al., 2012) and recommendation systems (Yu et al., 2014).
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In the biomedical field, data are usually represented as SBNs for

new knowledge discovery. For example, previous studies construct

similarity-based disease phenotype networks to understand the

genotype-phenotype correlations (Barab�asi et al., 2011; Brunner and

Van Driel, 2004; Chen and Xu, 2014; Chen, Y. et al., 2015a), pre-

dict new disease-associated genes (Chen et al., 2015b, Chen and Xu,

2015; Hwuang et al., 2012; Lage et al., 2007; Li and Patra, 2010;

Ni et al., 2016; Sun et al., 2013; Vanunu et al., 2010; Wu et al.,

2008, 2009) and identify new drug indications (Chen et al., 2015c;

Gottlieb et al., 2011; Xu and Wang, 2015). They usually extract

disease-phenotype links from literature (Xu et al., 2013; Zhou et al.,

2014), ontologies (Chen et al., 2015d; Robinson et al., 2014) and

databases (van Driel et al., 2006), and quantify disease-disease simi-

larities based on the number of shared phenotypic features.

Likewise, disease genetic networks connect two disease nodes if they

share common genetic factors (Goh et al., 2007); the edge weights

represent the number of shared genes between diseases. Other ex-

amples of SBNs include drug networks, in which drug pairs are

linked if they share similar side effects (Campillos et al., 2008), gene

expression profiles (Iorio et al., 2010; Vidovi�c et al., 2013), and

chemical structures (Maggiora et al., 2013).

Similarity-based disease phenotype networks do not preserve the

context information on how the diseases are connected like the other

SBNs. For example, the SBN in Figure 2a shows that Marfan syn-

drome is connected to Keutel syndrome and Kawasaki disease with

similar strengths based on phenotype similarities provided in the

Human Phenotype Ontology (HPO) database (Köhler et al., 2013).

But the CSN in Figure 2b restores the context information and

shows that the two disease pairs in fact share completely different

phenotypes. In this study, we propose modeling the disease pheno-

typic relationships with CSNs and predicting disease-gene associ-

ations using CSNs. Figure 3b shows the structure of CSN, in which

disease nodes are connected via one or more shared phenotype

nodes. CSNs have two potential advantages over SBNs in disease

gene prediction: first, it consists of accurate and meaningful connec-

tions between diseases, thus offers powerful false positive reduction;

second, part of the phenotypes themselves may have known genetic

basis, which provide additional information to identify new disease-

gene associations. In addition, difference data sources may contain

complimentary disease–phenotype relationships (Chen et al.,

2015b,d). Here, we constructed two CSNs from the phenotype data

in Unified Medical Language System (UMLS) (Bodenreider, 2004)

and HPO (Köhler et al., 2013). Then we integrated the CSNs and a

protein–protein interaction (PPI) network, and ranked all the genes

for a given disease using a network-based algorithm. For compari-

son purpose, we constructed two SBNs from the same phenotype

data sources and incorporate them in the phenome-driven disease

gene prediction approach. We compared our approach with the

SBN-based approach to demonstrate the advantages of CSNs.

As a case study, we predicted genes for Parkinson’s disease (PD),

which has high worldwide prevalence (De Lau and Breteler, 2006),

complex and unclear mechanisms (Olanow et al., 2009), and no

curative treatment (Connolly and Lang, 2014). Identifying the gen-

etic basis for PD not only plays an important role in elucidating dis-

ease mechanisms (Plenge et al., 2013), but also has the translational

potential of discovering new drug targets (Hurle et al., 2013; Okada

et al., 2014). We compared the prioritized genes with PD genes that

were independently identified from Genome-wide association study

(GWAS) meta-analysis to support the relevance of our candidate

genes. We investigated the distribution of existing PD drug targets

to demonstrate the translational potential of the CSN-based ap-

proach. Finally, pathway analysis allowed us to understand the

functions of candidate genes and pin-point a candidate drug target

gene for PD, which is also supported by evidence from literature.

2 Methods

We constructed the CSNs, and integrated them with a genetic net-

work based on PPIs. For an interested disease, we identified the can-

didate genes with a network-based ranking algorithm. We evaluated

if the CSNs improve the gene prediction performance comparing

with the SBN approach in a de novo cross validation analysis.

Finally, we predicted genes for PD as a case study and investigated

the translational potenntial of the top-ranked genes.

2.1 Construct CSNs
We first constructed two CSNs using the disease-phenotype seman-

tic relationships from UMLS and HPO. The UMLS semantic net-

work provides 50 543 disease–phenotype pairs (disease and

phenotype terms are directly associated by the semantic relationship

‘has_manifestation’ in the publicly available file MRREL.RRF). We

connected diseases with their corresponding manifestations to con-

struct the context-sensitive disease manifestation network (DMN-

CSN), which contains 26 790 nodes, including 2439 diseases and 24

490 phenotypes. HPO is a different phenotype data source from

UMLS; it captures the textual descriptions of disease phenotypes in

OMIM as mimMiner (van Driel et al., 2006) does, but have signifi-

cant improvement in quality comparing with mimMiner (Oti et al.,

2009). We downloaded 98 482 disease-phenotype links from HPO

and constructed the context-sensitive human phenotype network

(HPN-CSN), in which two disease nodes were connected via their

shared phenotype nodes. HPN-CSN contains 13 822 nodes in total,

including 6947 diseases and 6875 phenotypes. Both DMN-CSN and

HPN-CSN are undirected and unweighted (we currently consider all

the disease-manifestation or disease-phenotype pairs that appear in

the databases have the same confident level). For comparison pur-

pose, we constructed DMN-SBN and HPN-SBN from the same two

disease phenotype data sources. For DMN-SBN, disease similarities

(a) (b)

Fig. 1. Similarity-based and context-sensitive interconnections between peo-

ple sharing interested sports

(a) (b)

Fig. 2. Similarity-based and context-sensitive interconnections between

Marfan syndrome and two other diseases
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were calculated as cosine similarities between disease phenotype

profiles (Chen et al., 2015d); for HPN-SBN, disease similarities

were calculated as semantic similarities in the human phenotype

ontology (Robinson et al., 2008). Different from CSNs, which con-

tain disease and phenotype ndoes, SBNs contain only one kind of

node, the disease nodes.

CSNs and SBNs have different structures (Table 1). CSNs are

much sparser than SBNs, specially when the number of diseases is

large: a disease usually has only a small number of phenotypes, but

may share at least one phenotype with many other diseases. For

SBNs, the size of the network increases dramatically as more dis-

eases are covered, since the edges represent pairwise disease relation-

ships; the calculation of edge weights is usually based on artificial

definition of disease similarity, such as Jaccard, cosine or semantic

similarity between vectors of phenotype features. For CSNs, the

edges are defined by observational facts on disease phenotypes, and

preserve the context information of disease links. In addition, CSNs

capture the disease similarities in SBNs: if two diseases share many

phenotypes, they are likely to be connected by many viable paths,

and have a large probability to reach each other in the network. The

disease relationships that are connected by common phenotypes,

such as pain and fever, are automatically downweighted in CSNs: if

two diseases are connected by a common phenotype, the probability

of reaching one disease from the other decreases, since the pheno-

type in between distributes the probability to its many direct

neighbors.

2.2 Integrate networks
We integrated HPN-CSN, DMN-CSN, with a genetic network as in

Figure 4a. The genetic network was constructed from PPIs in

STRING (Franceschini et al., 2013); we used the weighted PPI

data, which combine different data sources, such as experiments,

pathway databases, coexpression analysis and text mining. Then

we connected the disease networks with the gene network using

disease-gene associations from OMIM. Figure 4b shows that both

disease and phenotype nodes in CSNs may link with gene nodes, be-

cause part of the phenotypes are genetic disorders themselves and

have well-studied associated genes. Disease terms in HPO-CSN

were naturally represented by OMIM identifiers and can be easily

associated with genes using the OMIM data. We performed seman-

tic mapping to obtain phenotype-gene links for phenotypes in

HPO-CSN. We mapped the HPO identifiers for the phenotype

terms first to UMLS concept unique identifiers (CUIs) using infor-

mation in the ontology file in the HPO database, then to OMIM

identifiers using UMLS metathesaurus. After that, we extracted the

phenotype-gene links using the disease-gene association data in

OMIM. A total of 3554 phenotype terms represented by HPO iden-

tifiers were found to have corresponding UMLS CUIs, and 591

were mapped to OMIM identifiers. Among them, 278 HPO identi-

fier were found to be linked with genes through 761 phenotype-

gene links. For disease and phenotype terms in DMN-CSN, which

are all represented by UMLS CUIs, we directly mapped them to

OMIM identifiers and then linked to genes. In the end, we estab-

lished 2312 edges to connect a total of 1688 nodes, including dis-

eases and phenotypes, in DMN-CSN with 1581 genes. In the same

way, 3601 nodes in HPN-CSN were connected with 2702 genes

with 4831 links.

Next, we linked the disease or phenotype nodes in HPN-CSN

and DMN-CSN if the nodes have the same semantic meanings.

UMLS provides mapping between different biomedical terminolo-

gies with the same semantic meanings. Here, disease and phenotype

nodes are represented by different identifiers based on their data

sources in the disease networks: DMN-CSN uses the UMLS unique

concept identifiers for both disease and phenotype nodes; HPN-

CSN represents diseases using OMIM, OrphenNet and DECIPHER

identifiers, and phenotypes using HPO identifiers. We extracted

8222 pairwise mappings between identifier systems from the UMLS

Metathesaurus, and connected DMN-CSN and HPN-CSN with the

mappings.

2.3 Predict disease-associated genes
Given an interested disease, the gene prediction algorithm estimates

the probability of reaching each gene from the diseases in the hetero-

geneous network that models the interconnections of diseases,

phenotypes and genes. The genes are then ranked based on the prob-

abilities, and the top-ranked genes are considered highly related

with the disease. We modeled the movements on the integrated net-

work by two kinds of jumping probabilities: the within-subnetwork

and between-subnetwork jumping probabilities. For example, a ran-

dom walker starts from a seed node in DMN-CSN, and which is

connected with other nodes in DMN-CSN, as well as with HPN-

CSN and the gene network. Then the random walker may choose to

walk to HPN-CSN with the between-subnetwork probability kP1P2
,

to the gene network with the probability kP1G, or to its direct neigh-

bors in DMN with the probability 1� kP1P2
� kP1G. If the node has

multiple direct neighbors in DMN-CSN, the within-subnetwork

probabilities (decided by the subnetwork structure) then determine

the further distribution of the 1� kP1P2
� kP1G probability within

DMN-CSN.

(a) (b)

Fig. 3. Structure of SBN and CSN

Table 1. Compare the nodes and edges of the SBN and CSN

version of DMN and HPO.

Network Nodes Edges

HPN-SBN 6390 12 761 463

HPN-CSN 13 822 98 482

DMN-SBN 2312 408 029

DMN-CSN 26 790 50 543
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The ranking score for each gene were calculated by an iterative

update. Assume p0 is a vector of initial scores for each node, skþ1 is

the score vector at step k þ 1 and is iteratively updated by

skþ1 ¼ aMTsk þ ð1� aÞs0; (1)

where 1� a is the probability of restarting from the seed at each

step, and M is the transition matrix defined based on the adjacency

matrix of each subnetwork. We assumed the update converges if the

score difference between iterations is smaller than e�8. We calcu-

lated the transition matrix M in (2) and (3). The off-diagonal subma-

trices in (2) were calculated in (3), where ANiNj
is the adjacency

matrix of the connection between network Ni and Nj; the diagonal

submatrices were calculated in (4), where ANi
is the adjacency ma-

trix of HPN-CSN, DMN-CSN or the PPI network.

M ¼

MG MGP1
MGP2

MP1G MP1
MP1P2

MP2G MP2P1
MP2

2
664

3
775 (2)

MNiNj

� �
kl
¼

kNiNj
ANiNj

� �
kl
=
P

l ANiNj

� �
kl

P
l ANiNj

� �
kl
6¼ 0

0 otherwise

(
(3)

MNi
ð Þkl ¼ 1�

X
INj
� kNiNj

� �
ANi
ð Þkl=

X
l

ANi
ð Þkl (4)

2.4 Evaluate gene prediction in a de novo cross

validation
We performed a de novo cross validation analysis to evaluate predic-

tion performance. Phenotype-driven gene prediction approaches, com-

paring with the conventional gene function-driven approaches, has a

major advantage that they predict novel genes for diseases without

known genetic basis. In the cross validation, we removed all disease–

gene links for a query disease each time. If the disease is connected with

other disease or phenotype nodes, we also removed their connections

with the genes through both disease networks. Then the query disease

was set as the seed, and all the genes were ranked by the algorithm.

Our approach has a few parameters to be determined, including

a in (1) and ks, the jumping probabilities between networks. We

chose the parameters that optimize the performance in cross valid-

ation. We first fixed the ks, changed the value for a, and chose the a
that lead to the highest average ranking for all tested disease–gene

associations. Table 2 shows that the ranking result is insensitive to

the variation of a; the average rank for all tested disease-gene associ-

ations in the cross validation stays the same when a is within the

range ½0:5; 0:8�. Then we fixed a and repeated the cross validation

with different combinations of ks to choose values for ks. We assume

that the two phenotype networks are equally important, thus set kP1

P2 ¼ kP2P1 and kP1G ¼ kP2G. For different combinations of k
choices, the variation in ranking performance is shown in Table 3.

Similarily, the ranking performance in cross validation is insensitive

to difference in ks. In this paper, we set the parameter

a ¼ 0:8; kP1P2
¼ 0:1; kP1G ¼ kP2G ¼ 0:7; kGP1

¼ kGP2
¼ 0:4.

We compared the performance of SBN and CSN approach in the

cross validation. For the SBN-based approach, we replaced the CSNs

in Figure 4 with the SBNs, and performed the disease gene prediction

using the same approach. Then we evaluated if the context-sensitive

disease phenotype networks improve the performance of de novo

gene prediction. We directly compared the ranks for all the retained

genes between SBN and CSN approaches, and generated a receiver

operating characteristic (ROC) curve for both approaches. Following

the previous study (Chen et al., 2011, 2015b; Hwuang et al., 2012),

an ROC curve was plotted for each prioritization, and then averaged

across all query diseases. For each curve, sensitivity is the percentage

of retained genes that are ranked above a threshold among all the re-

tained genes, and specificity is the percentage of negative genes (genes

that are not known disease genes) ranked below the threshold among

all the negative genes. Last, we calculated and compared the area

under the curve (AUC) between methods.

CSN has two advantages comparing with SBN: the network con-

sists of meaningful and accurate phenotypic relationships between

diseases, and the phenotype-gene links offer additional information

in suggesting strong candidate disease genes. To test the contribu-

tion of each advantage, we constructed a variant for CSN, named

CSNV, by removing all the 761 and 361 phenotype-gene links in

Table 2. Average ranks for tested disease-gene associations in

cross validation with different a

a Average rank

0.1 10.9%

0.3 9.20%

0.5 8.80%

0.7 8.80%

0.8 8.80%

0.9 8.90%

(a) (b)

Fig. 4. Disease gene prediction based on multiple CSNs
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HPN-CSN and DMN-CSN. We inserted CSNV into our algorithm

and performed the cross validation experiment. Then we compared

the ranks for the retained genes generated by CSNV-based approach

with both SBN and CSN approach.

2.5 Evaluate gene prediction stratified by disease

classes
Disease phenotypes may provide leads for the genetic causes at a dif-

ferent degree for different disease classes. Accordingly, both CSN

and SBN approach, which are phenotype-driven gene prediction

approaches may have varying performance. We classified diseases in

CSN and SBN into nine groups based on International Classification

of Diseases (10th edition), and repeated the cross-validation experi-

ments for each group. Then we investigated if CSNs make the same

level improvement for different disease classes over SBNs.

2.6 Identify candidate genes and drug targets for PD
We used PD as an example to demonstrate that the CSN approach

identifies new candidate disease genes, which has translation poten-

tial for drug discovery. PD is the second most common neurodege-

nerative disorder and affects 5 million people throughout the world

(De Lau and Breteler, 2006). The disease genetic basis is highly com-

plex and heterogeneous, involving many factors for the death of

dopaminergic neuron, such as mitochondrial dysfunction and oxida-

tive stress (Olanow et al., 2009). Levodopa currently remains the

most effective agent in treating PD, but shows limited efficacy in re-

versing neuronal loss and controlling nondopamineric symptoms

(Brooks, 2008). Therefore, identifying new genetic basis and new

drugs are desired to improve the treatment of PD.

We first predicted genes for PD using the CSN approach.

Currently, 888 PD-associated genes have been identified through

GWAS meta-analysis (Lill et al., 2012) and made available online

(PDgene.org). We assumed that the set of PD genes are positive ex-

amples, and compared our gene ranking with the set. We investigated

the distribution of the 888 PD genes among our ranking to examine if

our gene ranking tend to prioritize the relevant genes above the others.

We also examined the ranks of the target genes for existing PD drugs

to evaluate if the prioritized genes represent translational potential.

Finally, we performed a pathway analysis on the top 5% candidate

genes found by CSN using the software Ingenuity Pathway Analysis

(QIAGEN Redwood City, www.qiagen.com/ingenuity) to understand

the functions of the prioritized genes. We used the pathways associ-

ated with known PD genes as a reference and identified the novel PD-

associated pathways found by our approach.

3 Results

3.1 CSN significantly improved the performance of

gene prediction in cross validation
Our approach using CSNs achieved significantly higher ranks for all

tested disease-associated genes than the SBN approach in the de

novo cross validation (Table 4). The mean average rank for retained

genes for all query diseases is top 8.8% using CSNs, comparing with

12.6% using SBNs (p ¼ 2e�23). In addition, the context preserved

connections between diseases in CSN already significantly improve

the gene ranking even after the phenotype-gene links were removed.

The CSNV-based approach achieved a mean average rank of top

9% in all prioritizations, comparing with 12.6% for the SBN ap-

proach (p ¼ 4e�21). The small average contribution of phenotype-

gene links in improving the gene ranking performance may due to

the small number of available phenotype-gene links in the networks:

the HPO-PPI connections contain 761 phenotype-gene links and

4070 disease-gene links; the DMN-PPI connections contain 361

phenotype-gene links and 1951 disease-gene links. But for individual

cases, the phenotype-gene links may still play important roles in sug-

gesting candidate disease-gene associations. Figure 5 shows the scat-

ter plot for the tested disease-gene associations. Each point represent

a gene, and the x- and y-axis shows the rank for this gene generated

by SBN- and CSN-based approach, respectively. The genes on the

red line have the same ranks generated from SBN and CSN. The fig-

ure shows that most genes are below the red line, thus have high

rankings generated from CSN (small values on y-axis) and low rank-

ings from SBN (large values on x-axis).

Nearly 90% query diseases in the cross validation have only one

associated genes. Table 5 shows that the CSN and CSNV approach

achieved significantly higher average and median ranks for these

disease-gene pairs. The CSN approach ranked the tested genes aver-

agely in top 9%, while the SBN approach ranked them averagely in

top 12.9% (p ¼ 2e�20). The median rank for the retained genes was

2.6% for the CSN approach comparing with 8.2% for the SBN ap-

proach (p ¼ 2e�38). CSNV also achieved significantly higher average

rank (p ¼ 7e�20) and median rank (p ¼ 2e�32) than SBN. The

phenotype-gene links in CSN improves the median rank for all

tested genes by 10% comparing with CSNV. Figure 6 shows the

scatter plot for the tests on these single-gene disease. Similar to

Table 3. Average ranks for tested disease-gene associations in

cross validation with different combination ks

kP1G kP1P2 Average rank

0.1 0.7 8.80%

0.3 0.5 8.80%

0.5 0.3 8.80%

0.7 0.1 8.80%

Table 4. Mean average rank for all the evaluated genes in the de

novo cross validation for the SBN and CSN disease gene predic-

tion approaches.

Network Number of tests Mean average rank

SBN 3268 12.60%

CSN 3324 8.80%

CSNV 3323 9.00%

Fig. 5. Scatter plot for the de novo cross validation for all disease-gene

associations
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Figure 5, most genes are under the red line, and have higher rankings

generated from CSN than from SBN.

We also compared the ROC curves between the CSN and SBN

approach in Figure 7. CSN achieved a significantly higher overall

AUC of 0.91 comparing with 0.87 obtained by the SBN approach

(p ¼ 2e�4). Since the top-ranked genes are more important than the

lower ranked genes, we examined the AUC at the false positive rate

cutoff of 10%: the CSN approach achieved an AUC of 0.59, which

was also significantly > 0.43 for the SBN approach (p ¼ 2e�5).

3.2 Case study demonstrated how CSN improves the

performance
We investigated how CSN achieved better rankings comparing to

SBN using sarcoidosis as an example. Sarcoidosis (OMIM: 181000)

is known to be associated with only one gene HLA-DRB1 in

OMIM. We removed all connections between sarcoidosis and the

gene, and used both CSN and SBN to predict the disease-gene asso-

ciation back.

Figure 8a shows the shortest paths from sarcoidosis to HLA-

DRB1 in CSN. Sarcoidosis has 24 phenotypes in total, and 6 out of

24 direct the paths to rheumatoid arthritis, which is associated with

HLA-DRB1. Since the nodes in CSN have small numbers of direct

neighbors and the paths between sarcoidosis and HLA-DRB1 are

short, HLA-DRB1 has a high probability of being reached by sar-

coidosis and is ranked highly for sarcoidosis.

Figure 8b shows that in SBN, sarcoidosis and HLA-DRB1 are

also connected by a short path via the disease node ‘rheumatoid

arthritis’. However, sarcoidosis has 5864 direct neighbors, all of

which split the total probability of jumping from sarcoidosis to

other nodes (total probability is 1). Hence, the probabilities for each

sarcoidosis’s neighbor to be reached (edge weight in between sar-

coidosis and the current neighbor normalized by the sum of edge

weights between sarcoidosis and all neighbors) are almost identical:

difference between the largest and smallest probability is only

7:1e� 4. The ranking scores are determined by the probability of

reaching each node from the seed. As a result, the ranks for all sar-

coidosis’s neighbors are sensitive to noises, since their scores are ex-

tremely close.

For example, we found the sarcoidosis—rheumatoid arthritis

connection, which leads to the identification HLA-DRB1, is buried

in the 5864 neighbors of sarcoidosis in SBN. The edge from sarcoid-

osis to rheumatoid arthritis has a weight of 1.19, and the probability

of reaching rheumatoid arthritis from sarcoidosis is 2:25e� 4. In

the SBN, a total of 356 neighbors for sarcoidosis has similar weights

(difference < 0.05); the probabilities of reaching these neighbors

from sarcoidosis is in the range between 2:2e� 4 and 2:3e� 4,

which are close to the probability for rheumatoid arthritis.

However, rheumatoid arthritis is the only disease among them that

can lead to HLA-DRB1. In the cross validation result, HLA-DRB1 is

ranked in top 10% for sarcoidosis using SBN, while it is ranked in

top 3% using CSN.

In summary, the case study shows that the difference in network

structure for CSN and SBN contributes greatly to their performance

difference. For CSN, the connections between diseases and pheno-

types are sparse and based on observational facts. For SBN, the dis-

ease nodes in SBN have large numbers of neighbors (averagely, the

Fig. 6. Scatter plot for the de novo cross validation for single gene diseases

Table 5. Average and median rank for single-gene tests in the de

novo cross validation

Network Number of tests Average rank Median rank

SBN 2935 12.90% 8.2%

CSN 2987 9.00% 2.6%

CSNV 2988 9.10% 2.9%

Fig. 7. ROC curve for the cross validation test results for SBN- and CSN-based

approach

(a)

(b)

Fig. 8. Shortest paths from sarcoidosis to HLA-DRB1 in CSN and SBN
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disease nodes have 3994 direct neighbors). Therefore, the probabil-

ities for a seed node reaching each neighbor are low, and the ranking

scores for each nodes become very similar, thus sensitive to noises.

3.3 Stratified evaluation across broad types of diseases
We evaluated the performance for the nine disease classes. The CSN

approach achieved higher gene ranking for all disease classes.

Table 6 shows the average ranks for retained genes for each disease

class in the de novo cross validation. For nervous system disorders,

CSN increased the average rank for known disease genes by 59%,

from top 10.9% to top 4.5%. The improvement from SBN to CSN

is significant for the first four disease classes in Table 6, including

nervous system disorder, malignant neoplasms, cardiovascular dis-

ease, and metabolic disorder (p < e�3). We found that the disease

classes with small improvements usually have specific phenotypes,

which can accurately direct them to phenotypically similar diseases

that also share genetic causes in SBN. On the other hand, the disease

classes with large improvements are complex diseases, which are

likely to share phenotype features with too many other diseases in

SBN. In this case, CSNs allow more informative interconnections

while SBNs tend to bury the information under large amounts of

links.

3.4 Translational implications of CSN: candidate gene

and drug target discovery for PD
We ranked the 17 906 genes in the PPI network for PD and com-

pared the result with 888 PD genes from the online database based

on GWAS meta-analysis. Figure 9a shows that the number of PD

genes drops when the rank based on our approach changes from the

top to the bottom. Among the top 5% in our rank, we found 217

overlaps with the PD genes, which is a 2.5-fold enrichment

(p < e�4) compared with the average of 1000 random gene ranks.

The result shows that our candidate genes are enriched for PD genes

obtained through statistical analysis on large-scale patient data, and

indicates that the top-ranked genes are relevant.

We also evaluated the ranking of 42 target genes for 22 approved

PD drugs in FDA label. Figure 9b shows that the top-ranked genes

are highly enriched for the PD drug targets. A total of 11 targets

were ranked within top 5%, and the number is a 5.8-fold enrich-

ment (p < e�5) comparing with the random. Among them, DRD2

was ranked within top 0.6% and is one of the target genes for levo-

dopa, which is currently the most effective drug for PD. In addition,

the top-ranked drug targets besides the 11 targets for PD approved

drugs represent translation potential of drug repositioning.

The pathway analysis software identified 407 significant path-

ways associated with the top 5% candidate genes. Highly relevant

pathways among them include ‘Parkinson’s signaling’, ‘Oxidative

stress response’, ‘dopamine receptor signaling’ and ‘mitochondrial

dysfunction’. In addition, many cancer pathways also appear in the

significant pathway list. Evidence based on previous studies support

the underlying genetic association between PD and cancers (Plun-

Favreau et al., 2010; Wirdefeldt et al., 2011). The identification of

known PD pathways also supports the relevance of our candidate

genes.

Interestingly, we found three out of the five top-ranked pathways

(ranked 1, 3 and 4) with the most significant p values are involved

with mechanistic target of rapamycin (mTOR) signaling (Table 7).

We traced back to our gene ranking list and found that mTOR is

ranked at top 2% among 17 906 human genes. The mTOR signaling

pathway has a number of important physiological functions, includ-

ing cell growth, proliferation, metabolism, protein synthesis, and

autophagy (Hay and Sonenberg, 2004). Existing knowledge sup-

ports that it is directly related to cellular proliferation, cancer, and

longevity (Lamming et al., 2012). Several previous studies discuss

the potential relationship between mTOR and neurodegeneration

(Bové et al., 2012), which shows evidence for its relationship with

PD. In addition, mTOR is a drug target gene. Previous studies point

out that rapamycin, which inhibit the mTOR signaling, shows anti-

aging and neuroprotective effects (Bové et al., 2011; Kaeberlein,

2010). These evidences from literature support our prediction.

Driven by the prediction result, we are currently examining the

Table 6. Average rank for retained genes in the de novo cross valid-

ation for nine disease classes

Disease class SBN CSN Improvement

Nervous system disorder 10.90% 4.50% 59%

Malignant neoplasms 10.20% 4.40% 57%

Cardiovascular disease 10.10% 4.60% 54%

Metabolic disorder 11.30% 5.70% 50%

Mental disorder 18.30% 10.90% 40%

Musculoskeletal and connective

tissue disorders

8.10% 5.30% 35%

Digestive system disorders 13.40% 8.90% 34%

Congenital malformations

and deformations

8% 5.70% 29%

Skin and subcutaneous

tissue diseases

12.70% 9.10% 28%

(a)

(b)

Fig. 9. The ranking for the 888 PD genes and PD drug targets based on GWAS

meta-analysis
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implication of mTOR pathway in PD pathophysiology and validat-

ing if rapamycin rescue neurodegeneration in PD animal models.

4 Discussion

In this study, we explored a novel strategy to predict disease-gene as-

sociations based on the CSNs, which capture both the semantic

meaning and the strength of the links between diseases. We con-

structed CSNs using the disease-phenotype semantic relationships

from UMLS and HPO, and integrated them with a PPI network.

Cross validation shows that the CSN-based disease gene prediction

achieved significantly better performance and SBN-based approach.

A specific example shows that the context-sensitive interconnections

between diseases and the phenotype-links in CSNs both contribute

to improve the performance. A case study on PD shows that CSN-

predicted genes have translational implications and have the poten-

tial to become drug targets.

Our study has a few future works. First, we currently used the

most specific phenotype concepts in constructing the network and

have not considered the semantic similarities between phenotypes

based on the ontology hierarchy. In HPO, if two terms have the

same parent in the hierarchy, they may also share commonalities

and indicate overlapping genetic basis. In addition, we have not

weighted the phenotype nodes in CSNs by their frequency as the pre-

vious approaches did (Chen et al., 2015b; Robinson et al., 2014;

van Driel et al., 2006). We assumed that the network-based gene

ranking algorithm will automatically down-weight the common

phenotypes, which are less informative in implying genetic basis

than the rare phenotypes: the common phenotypes are connected

with more disease nodes than the rare ones, and a path that passes

through the common phenotypes have lower probability of reaching

the goal. In the future, we will explore different ways to leverage the

relationships between phenotypes as well as weighting the import-

ance of phenotype nodes in the network.

Second, we currently extend the standard random walk model to

predict genes based on the CSNs, assuming that that paths that com-

bining different kinds of nodes are reasonable. For example, the path

‘disease-phenotype-disease-gene’ and ‘disease-gene-disease-phenotype-

gene’ are treated equally valid to make predictions on new disease-

gene associations. In practice, different paths may lead to different

prediction power, and should be assigned different importance.

However, identifying the paths with high prediction power is not triv-

ial. One possible approach is to automatically learn from existing

disease-gene associations. Besides random walking, other advanced

network ranking and clustering algorithms (Ni et al., 2014, 2015),

which has extensive applications in disease gene prediction and drug

discovery, may also be improved when combined with our concept of

content-sensitive networks. In the future, we will explore improved al-

gorithm to further take the advantages of CSNs.

Third, the genes identified by the computational approach need

to be further validated and investigated. The computational disease

gene prediction approach only provides leads on possible genetic

basis for the disease. How the candidate genes affect the disease is

still unclear and requires biological experiments to demonstrate.

After disease mechanism is figured out, we will be able to consider

the drug targets on the relevant pathway. In this study, we pin-

pointed mTOR as a candidate gene and drug target for PD. Though

a number of evidences support the anti-aging and neuroprotective

effect of mTOR, we will further validate the result through more

animal model studies.

5 Conclusion

We constructed CSNs and used them to predict disease genes. Our

approach significantly improves the gene prediction comparing with

the approach using similarity-based disease networks. Both the

context-sensitive disease connections and the phenotype-gene links

contribute in improving the gene prediction performance. We used

the approach to predict genes for PD. The top ranked candidate

genes are enriched for independently identified PD genes. We also

identified a novel candidate drug target for PD that may have neuro-

protective effects.
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