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Abstract

Summary: Non-negative Matrix Factorization (NMF) algorithms associate gene expression with

biological processes (e.g. time-course dynamics or disease subtypes). Compared with univariate

associations, the relative weights of NMF solutions can obscure biomarkers. Therefore, we de-

veloped a novel patternMarkers statistic to extract genes for biological validation and enhanced

visualization of NMF results. Finding novel and unbiased gene markers with patternMarkers re-

quires whole-genome data. Therefore, we also developed Genome-Wide CoGAPS Analysis in

Parallel Sets (GWCoGAPS), the first robust whole genome Bayesian NMF using the sparse, MCMC

algorithm, CoGAPS. Additionally, a manual version of the GWCoGAPS algorithm contains analytic

and visualization tools including patternMatcher, a Shiny web application. The decomposition in

the manual pipeline can be replaced with any NMF algorithm, for further generalization of the soft-

ware. Using these tools, we find granular brain-region and cell-type specific signatures with corres-

ponding biomarkers in GTEx data, illustrating GWCoGAPS and patternMarkers ascertainment of

data-driven biomarkers from whole-genome data.

Availability and Implementation: PatternMarkers & GWCoGAPS are in the CoGAPS Bioconductor

package (3.5) under the GPL license.

Contact: gsteinobrien@jhmi.edu or ccolantu@jhmi.edu or ejfertig@jhmi.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Numerous high-throughput studies link gene expression changes to

biological processes (BPs) including regulatory networks and the cell

signaling processes. Previously shown effective at deconvoluting

multiplexed regulation and gene reuse in BPs (Kossenkov and Ochs,

2009; Ochs and Fertig, 2012; Trendafilov and Unkel, 2011), NMF

algorithms have identified genes associated with yeast cell cycle and

metabolism, cancer subtypes and perturbations to cellular signaling

in cancer (Brunet et al., 2004; Fertig et al., 2012, 2013; Kossenkov

and Ochs, 2009; Li and Ngom, 2013; Mej�ıa-Roa et al., 2008; Ochs

et al., 2009; Wang et al., 2006). However, the continuous and inter-

dependent nature of many NMF results can make biological infer-

ence challenging especially when searching for biomarkers or

genetic drivers. A method to obtaining genes that uniquely identify

NMF solutions would eliminate these challenges.

Here, we develop patternMarkers, a statistic to take the relative

gene weights output from NMF algorithms and to return only those

genes that are strongly associated with a particular pattern or with a

linear combination of patterns. Identifying unbiased biomarkers

using patternMarkers requires genome-wide transcriptional data.

To maximize the potential for novel marker detection, we set out to

expand the O(1000) gene limit, which is typical to achieve conver-

gence in NMF, to the O(10 000) genes comprising the entire human

transcriptome. Currently, NMF methods are highly dependent upon

the genes selected or compaction methods to limit the size of the

data matrices used for analysis (de Campos et al., 2013). Therefore,

we developed GWCoGAPS, a whole genome implementation of

CoGAPS (Fertig et al, 2010), a Markov chain Monte Carlo

(MCMC) NMF that encodes sparsity in the decomposed matrices

with an atomic prior (Sibisi and Skilling, 1997). Previously, we dem-

onstrated that CoGAPS analysis of datasets containing representa-

tive subsets of the genes converge with similar patterns. These

patterns can then be fixed to a consensus pattern across the datasets

to provide a robust whole-genome NMF, without the prohibitively

large computational cost of NMF factorization of a single matrix

containing the entire genome. GWCoGAPS takes advantage of

parallel computing to massively cut runtime and ensure genome-

wide convergence. We also include a Shiny web application,

patternMatcher, to compare patterns across parallel runs to increase

robustness and interpretability of the resulting patterns. Using

patternMarkers with GWCoGAPS to analyze tissues from the

Genotype-Tissue Expression Project (GTEx Consortium, 2015), we

parsed patterns of expression specific to brain regions and cell types

to demonstrate the power of these algorithms for biomarker

discovery.

2 Materials and methods

NMF decomposes a data matrix of D with N genes as rows and M

samples as columns, into two matrices, as D ~ AP. The pattern ma-

trix P has rows associated with BPs in samples and the amplitude

matrix A has columns indicating the relative association of a given

gene, where the total number of BPs (k) is an input parameter.

CoGAPS is a Bayesian NMF that incorporates both non-negativity

and sparsity in A and P as described in (Fertig et al., 2010). Both

patternMarkers and GWCoGAPS are in the CoGAPS Bioconductor

package as of version 3.5 and are generalized for other NMF

algorithms.
The patternMarkers statistic (sij) scores the association of the ith

gene’s values in the amplitude matrix (Ai) with the jth pattern or lin-

ear combination of patterns by computing

sij wj
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where i indices all the genes in the original data matrix, k indices all

the patterns in the NMF solution, and wj is a vector of components

specifying the jth linear combination of patterns that is constrained

to sum to 1, and j indices the total number of linear combinations

for which patternMarkers statistics are computed. The default set-

ting for Eq. (1) sets j ¼ f1; . . . ; kg, such that w is a set containing a

unit vector for each pattern and sij(wj) is an l2 norm indicating the

exclusivity of the contribution of gene i to the pattern j and the cor-

responding BP. Scaling by the maximum value of each gene in the

NMF solution (max Ai) decouples the effect of overall gene expres-

sion level without impacting the quality of the factorization. Genes

are ranked by increasing sij(wj) such that the higher the rank of

the gene, the less it is associated with the considered pattern. Users

can output a list of data frames containing the scores and ranks

for every gene using the ‘All’ option of the ‘threshold’ argument.

Alternatively, unique gene sets can be generated by either subsetting

each gene by its lowest ranking sij(wj) In the case where j>1, the

ranked list for each pattern can also be thresholded by the highest

value for which si(wj) is the lowest.

The GWCoGAPS function automates and parallelizes the whole-

genome CoGAPS analysis from Fertig et al. (2013) in a single R

function. GWCoGAPS has three parameters: the number of sets for

partitioning the whole genome data, the seed for each Markov

Chain, and the method for determining the consensus patterns. A

new modification to CoGAPS, setting the seed both ensures that

each set of genes is run with a different set of random numbers

and that runs on any dataset are reproducible. A default pattern

matching function is provided along with a Shiny-based web

application patternMatcher for recompiling the parallelized

results (Supplementary Fig. S1A). Additional runtime options, input

and manual implementations are described in the GWCoGAPS

vignette.

RPKM RNAseq data for the seven samples with most brain re-

gions was downloaded from dbGaP. GWCoGAPS was run for a

range of k patterns with k¼10 selected and uncertainty as 10% of

the data (Fertig et al., 2013). The code to reproduce this analysis

and the GWCoGAPS results are in Supplementary Files S3 and S4.

3 Results

We apply GWCoGAPS to analyze patterns related to brain regions

for different individuals in GTEx. The GWCoGAPS solutions for

the initial parallel runs of the patterns are used to illustrate the

strong association between patterns identified from the subsets using

patternMatcher (Supplementary Fig. S1A). The first pattern high-

lights GWCoGAPS’ ability to deconvolute tissue specific signatures

(Supplementary Fig. S1B). This pattern uniquely identifies the cere-

bellum, determined to be the most distinct region by the consortium

(GTEx Consortium, 2015). GTEx found that strong individual spe-

cific effects increase with tissue relatedness as illustrated by their in-

ability to achieve tissue specific clusters of the different brain regions

by expression alone (GTEx Consortium, 2015; Melé et al., 2015).

By allowing for gene reuse across different patterns, GWCoGAPS is

able to overcome these effects to isolate the cerebellums signature as

confirmed by gene set enrichment (Subramanian et al., 2005) in

cerebellum development and morphogensis (GO:0021549 and

GO:0021587 FWER P-value<1.0E-03 and 2.6E-03, respectively,

described in Supplementary File S5) on these patternMarkers scores.
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The second pattern illustrates patternMarkers’ power as

inference is difficult from the GWCoGAPS result alone

(Supplementary Fig. S1B). This pattern depicts subpopulations of

cells in multiple brain regions derived from common pallium pre-

cursors. Progeny of the pallium are specified by transcription fac-

tors TBr1 and Emx1 (Remedios et al., 2007) ranked second and

fourth by the patternMarkers statistic. Gene set analysis on these

patternMarkers scores confirms enrichment for pallium develop-

ment (GO:0021543 FWER P-value<1.0E-03, Supplementary

File S5).

Deconvolution of cell type and tissue specific signatures from

aggregate data represent a major technical challenge. We have

illustrated the unique ability of GWCoGAPS, the first whole gen-

ome Bayesian NMF, to accomplish this. The manual pipeline and

Shiny App, patternMatcher, also expanded this methodology to

a variety of NMF techniques. Finally, the patternMarkers statis-

tic derives gene sets uniquely representative of BPs from the con-

tinuous weights of NMF solutions. Together, patternMarkers

and GWCoGAPS find data-driven biomarkers and genetic drivers

in whole genome transcriptomic data.
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