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Several studies have investigated the relationship be-
tween genetic variation and DNAmethylation with respect
to type 2 diabetes, but it is unknown if DNA methylation is
a mediator in the disease pathway or if it is altered in
response to disease state. This study uses genotypic
information as a causal anchor to help decipher the likely
role of DNAmethylationmeasured in peripheral blood in the
etiology of type 2 diabetes. Illumina HumanMethylation450
BeadChip data were generated on 1,018 young indi-
viduals from the Avon Longitudinal Study of Parents
and Children (ALSPAC) cohort. In stage 1, 118 unique
associations between published type 2 diabetes single
nucleotide polymorphisms (SNPs) and genome-wide
methylation (methylation quantitative trait loci [mQTLs])
were identified. In stage 2, a further 226 mQTLs were
identified between 202 additional independent non–type 2
diabetes SNPs and CpGs identified in stage 1. Where
possible, associations were replicated in independent co-
horts of similar age. We discovered that around half of
known type 2 diabetes SNPs are associated with variation
in DNA methylation and postulated that methylation could
either be on a causal pathway to future disease or could
be a noncausal biomarker. For one locus (KCNQ1), we
were able to provide further evidence that methylation is
likely to be on the causal pathway to disease in later life.

Type 2 diabetes is a major global health problem, affecting
;660 million people in Europe alone (1). Several large-scale
genome-wide association studies (GWAS) have identified a
major genetic contribution to type 2 diabetes in Europeans

(2,3) and other populations (4–7). Although many of these
genetic variants have been linked to perturbed b-cell func-
tion (7,8), the molecular pathways through which they me-
diate their effects remain unclear. Increasing attention is
being paid to the potential role of epigenetic mechanisms in
mediating the influence of genetic variation on phenotype,
including complex diseases (8,9).

Epigenetic mechanisms regulate gene expression in a
variety of ways, for example via chromatin remodelling or
the control of transcription factor binding by the addition
of methyl groups to the DNA sequence. Genetic variants
may directly influence DNA methylation marks, through cis
or local effects, or by more distal trans effects, including
chromosomal looping. Indeed, it is estimated that 24% of
variance in DNA methylation in childhood and 21% of
variance in middle age is due to genetic variation (10),
and some of the genetic variants involved map to previously
identified genetic risk factors for disease. Several loci with
genetic variants predisposing to type 2 diabetes have been
examined for differences in DNA methylation patterns.
HNF4A, IRS1, KCNQ1, PPARG, FTO, and TCF7L2 are exam-
ples of type 2 diabetes loci that show differences in meth-
ylation in type 2 diabetes case subjects compared with
control subjects in various tissues (11–13). FTO has haplo-
type-specific methylation patterns, again observed when
comparing type 2 diabetes case subjects to control subjects
(14). These observations raise the possibility that DNA
methylation is causally involved in the biological pathways
contributing to type 2 diabetes. However, almost all studies
to date have investigated case and control subjects, raising
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the concern that epigenetic processes may be altered in
response to disease state, rather than vice versa.

We postulate that type 2 diabetes genetic risk variants
exert their effects on disease (or diabetes-related traits)
through perturbation of DNA methylation (Fig. 1, model
A). However, genetic risk variants may be associated with
DNA methylation through their influence on disease itself
(Fig. 1, model B). Alternatively, type 2 diabetes genetic risk
variants may be associated with both DNA methylation
and disease independently and thus not be linked through
a causal pathway (Fig. 1, model C). Genotypic information
can provide a causal anchor to allow inferences to be made
regarding the direction of the relationship between DNA
methylation and type 2 diabetes, thus helping to decipher
which of these models is most likely, an approach that
forms the basis of Mendelian randomization (15). Mende-
lian randomization has previously been applied in the con-
text of epigenetic mediation of cardiometabolic disease,
such as in the exploration of the causal direction between
BMI and HIF3A methylation (16) or, more recently, to in-
terrogate causality with respect to many BMI-associated
methylation-variable sites (17). The distinction here is
that previous studies have applied Mendelian randomiza-
tion after the identification of a methylation-variable locus.
In the current study, Mendelian randomization is used to
provide evidence of a mediating role of DNA methylation
where the relationship between the causal anchor (type 2 di-
abetes GWAS single nucleotide polymorphisms [SNPs]) and
disease outcome is already well established.

In the first stage of this study (Figs. 2 and 3), we in-
vestigated whether any known type 2 diabetes SNPs are
associated with DNA methylation (i.e., identify type 2 di-
abetes SNPs that can be categorized as methylation quan-
titative trait loci [mQTLs]) in young individuals from the
Avon Longitudinal Study of Parents and Children (ALSPAC)
cohort (18–20). Because these subjects are young and do not
have diabetes, such an association is indicative of a causal role
of DNA methylation in mediating disease pathogenesis (Fig.
1, model A; although Fig. 1, model C cannot be discounted).

To find further evidence for methylation being on a
potential causal pathway to future disease, we undertook
a second stage of analysis to identify further SNPs which
were 1) associated with CpGs identified in stage 1 (i.e.,
were mQTLs) but 2) not in linkage disequilibrium (LD)
with type 2 diabetes SNPs (i.e., were independent of
known type 2 diabetes risk SNPs) (Fig. 2, stage 2, and
Fig. 3). We then assessed the relationship of these “in-
dependent mQTLs” with type 2 diabetes disease risk to
strengthen causal inference that DNA methylation is in-
deed acting as a mediating mechanism. This second step
was undertaken using publicly available summary data
from DIAbetes Genetics Replication And Meta-analysis
(DIAGRAM) (2).

Where there was evidence for type 2 diabetes disease
risk being mediated by DNA methylation, we further
evaluated this in the context of publicly available gene
expression data and phenotypic traits. All stages of anal-
ysis, including signposting to relevant results, are summa-
rized in Fig. 3.

RESEARCH DESIGN AND METHODS

Samples
ALSPAC is a large prospective cohort study based in the
South West of the U.K. ALSPAC recruited 14,541 pregnant
women resident in Avon, U.K. with expected dates of
delivery 1 April 1991 to 31 December 1992. Detailed
information was collected during pregnancy and at regular
intervals in the following years from both parents and
offspring (18,19). The study website contains details of
all the data that are available through a fully searchable
data dictionary (http://www.bris.ac.uk/alspac/researchers/
data-access/data-dictionary/).

As part of the Accessible Resource for Integrated
Epigenomic Studies (ARIES) project, Illumina HumanMe-
thylation450 BeadChip data have been generated in 1,018
mother-offspring pairs from the ALSPAC cohort (20). The

Figure 1—Potential pathways in which SNPs influence type 2 di-
abetes risk. In model A, type 2 diabetes risk variants exert their
effects on disease (or disease-related traits) through perturbation
of DNA methylation. In model B, genetic risk variants are associated
with DNA methylation through their influence on disease itself. In
model C, genetic risk variants are associated with DNA methylation
and disease independently. T2D, type 2 diabetes.

Figure 2—The primary analyses conducted in ALSPAC/ARIES. In
stage 1, 118 associations between published type 2 diabetes SNPs
and genome-wide methylation were identified. In stage 2, a further
226 mQTLs were identified between 202 additional independent
non–type 2 diabetes SNPs and the CpGs identified in stage 1.
DIAGRAM data were then used to assess the relationship of these
independent mQTLs with type 2 diabetes disease risk in order to
strengthen causal inference that DNA methylation is acting as a
mediating mechanism. T2D, type 2 diabetes.
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ARIES participants were selected based on availability of
DNA samples at two time points for the mother (antenatal
and at follow-up when the offspring were adolescents) and
three time points for the offspring (neonatal, childhood
[age 7 years], and adolescence [age 15–17 years]). Methyl-
ation data from the offspring at age 15–17 years are in-
cluded in this analysis.

Written informed consent was obtained for all ALSPAC
participants. Ethical approval for the study was obtained
from the ALSPAC Ethics and Law Committee and the
Local Research Ethics Committees.

Biological Measures and Anthropometry
Biological and anthropometric measures were collected at
the same clinics at which samples for methylation were
drawn. Fasting glucose and insulin levels were measured
from blood samples in ALSPAC participants who agreed
to give a sample and had fasted for a minimum of 4 h.

Height was measured using a Harpenden stadiometer
while weight and bioelectrical impedance were measured
using a Tanita body fat analyzer. BMI (kg/m2) was then
calculated.

Epigenetic Data
Epigenetic data were generated using the Illumina Human-
Methylation450 BeadChip (Illumina, San Diego, CA). De-
tailed methods and normalization procedures have been
described previously (20).

Genetic Data
GWAS data were generated using Illumina HumanHap550-
Quad chips by Sample Logistics and Genotyping Facilities

at the Wellcome Trust Sanger Institute and LabCorp
(Laboratory Corporation of America) using support from
23andMe. The resulting raw genome-wide genotype data
were subjected to standard quality control methods. In
brief, individuals were removed if there was evidence of sex
mismatches, minimal or excessive heterozygosity, or .3%
missingness. SNPs with a minor allele frequency of ,1%,
a call rate of ,95%, or evidence of violations of Hardy-
Weinberg equilibrium (P , 5 3 1027) were removed. Im-
putation was performed using Impute v2.2.2 software using
1000 Genomes phase 1 version 3 as a reference panel
(21,22). For imputed genotypes, dosages were converted
to “best guess” genotypes in binary plink format, filtered
to include only SNPs with minor allele frequency .1%
and imputation info score .0.8.

Sixty-two SNPs associated with type 2 diabetes
were selected for analysis based on a large recent GWAS
of type 2 diabetes (2). Sixty-one variants (excluding
rs3132524) were available in ALSPAC. Two SNPs,
rs9502570 and rs2284219, had minor allele frequencies
of 0% in the ALSPAC population and were discarded from
the analysis. Full details including allele frequencies are
shown in Supplementary Table 1.

Data From Additional Resources
DIAGRAM data were used to investigate the associations
between mQTLs identified in stage 2 and type 2 diabetes.
These data included 26,488 type 2 diabetes case subjects
and 83,964 control subjects (2). Data are freely available
from the consortium website www.diagram-consortium.
org. Data used on glycemic traits have been contributed

Figure 3—A flow diagram showing the stages of analysis conducted with signposting to relevant results.
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by Meta-analyses of Glucose and Insulin-Related Traits
Consortium (MAGIC) investigators and have been down-
loaded from www.magicinvestigators.org (23,24). Gene
expression data were derived from the Genotype-Tissue Ex-
pression (GTEx) Portal (release v6), www.gtexportal.org (25).

Statistical Analysis
For identification of epigenome-wide associations between
SNPs and DNA methylation, the Matrix expression quan-
titative trait loci (eQTL) package was implemented (26).
Methylation M-values (27) were first rank-transformed
so they followed a normal distribution. Covariates age,
sex, batch (defined as bisulphite conversion plate), cell
counts (28), and the first 10 principal components from
genetic data were regressed out. The resultant residuals
were then regressed against genotype for each CpG site
on the array.

All analyses were conducted in R, version 3.2.1 (http://
www.r-project.org). The following R packages were used:
base, stats, MatrixEQTL, plyr, snpStats, xlxs, pwr, RCircos,
Biobase, and GEOquery.

Replication Studies

Isle of Wight Birth Cohort
In 1989, a whole population birth cohort was recruited on
the Isle of Wight (IoW) to assess the impact of heredity and
environment on the development of allergic disorders and
allergen sensitization. The IoW 1989 birth cohort has been
described in detail previously (29). Exact age at 18-year
follow-up was calculated from the date of blood sample
collection for the 18-year follow-up and the date of birth.
BMI was calculated based on height and weight at the
18-year follow-up. DNA methylation was profiled in pe-
ripheral blood samples collected at the 18-year follow-up,
using Illumina’s HumanMethylation450 array in a subset
(n = 367) of subjects. DNA methylation data were prepro-
cessed using IMA (30) and batch corrected using ComBat
(31) as described previously (32). Genotyping was per-
formed in a subset of cohort subjects with DNA methyl-
ation data (n = 87) using Illumina’s OmniExpressExome
BeadChip (v1.2). Potential mQTLs were modeled using
generalized linear models for the effect of genotype (addi-
tive model) on logit-transformed DNA methylation, adjust-
ing for sex and exact age at 18-year follow-up. All analyses
used SPSS (v22.0).

Brisbane System Genetics Study
A subset of 469 individuals from the Brisbane System
Genetics Study (BSGS) (33,34) aged ,20 years was used.
This consisted of monozygotic and dizygotic twin pairs and
their adolescent siblings. DNA methylation was measured
using HumanMethylation450 BeadChips, which was cleaned
as described in detail elsewhere (34). Genotype data were
imputed from Illumina 610-Quad BeadChip arrays against
1000 Genomes phase I version 3 using Impute V2 and
filtered to have R2 .0.8. Associations were tested using
logistic regression on the SNP genotype correcting for age,
sex, and technical covariates (slide and position on slide).

Power
Power calculations for the discovery (stage 1) analysis
indicate that the study had 80% power to detect a true
R2 = 0.051, where n = 896 and a = 0.05/(60 3 487,000).
No power calculation is provided for the replication of
these results in the IoW and BSGS cohorts given the
lack of independence of the two series of analyses. For
stage 2, detecting a mQTL that correlated with a meth-
ylation-variable locus in the ARIES study sample, the
study had 80% power to detect a true R2 = 0.059, where
n = 896 and a = 0.05/(118 3 8,000,000). In further anal-
yses, we then assessed the relationship of these indepen-
dent mQTLs with type 2 diabetes risk using available
summary data from DIAGRAM. At this stage, the study
had 80% power to detect a true R2 = 0. 0.00024, where
n(DIAGRAM) = 87,167 and a = 0.05/226. In MAGIC, we
estimate 80% power to detect a true R2 = 0.00030, where
n(MAGIC) = 46,186 and a = 0.05/(3 3 4).

RESULTS

Population Characteristics
Characteristics of the ALSPAC subjects selected for anal-
ysis are shown in Table 1. Measurements did not indicate
presence of diabetes in any ALSPAC subjects included in
the study.

Stage 1: Identification of Associations Between Type 2
Diabetes Genetic Risk Variants and DNA Methylation
Thirty-three of 59 individual type 2 diabetes SNPs had one or
more associations with 118 CpG sites at an epigenome-wide
significance threshold P value of P # 1.17 3 1027 for each
SNP. No single CpG site was associated with more than one
SNP, but several SNPs were associated with methylation
across clusters of CpGs; for example, rs10190052 on chro-
mosome 2 was associated with three CpG sites spanning
7.2 kb at a distance of 17.5 kb from the SNP. Full results
are shown in Supplementary Table 2. Figure 4 shows the
genomic distribution of associations identified. R2 values
showed that type 2 diabetes mQTLs explained 3–63% of
the variation in methylation. On average, SNPs in close prox-
imity to CpGs explained a greater proportion of variation in
methylation than more distant SNPs (Fig. 5). Between SNPs
and CpG sites positioned,50 kb apart, 74 associations were

Table 1—Population characteristics of ALSPAC subjects
included in analysis

N 896

Age (years) 17.1 (1.0)

BMI (kg/m2) 22.2 (3.8)

Body fat % 23.36 (10.4)

Waist circumference (cm) 76.7 (8.6)

Fasting glucose (mmol/L) 5.1 (0.4)

Fasting insulin (pmol/L) 48.2 (28.5)

Sex (% male), n (%) 434 (48.4)

Data are N or mean (SD), unless otherwise stated.
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observed. Seven associations were observed between SNPs
and CpG sites on different chromosomes and the remainder
(n = 37) are on the same chromosome but with .50 kb in
distance between the SNP and CpG site.

Stage 2: Identification of Independent mQTLs
For each CpG site associated with a type 2 diabetes SNP, we
attempted to identify a further independent set of mQTLs
(P , 1 3 10207) using ALSPAC ARIES data where the LD
R2 between the index diabetes SNP and additional mQTL
was ,0.05. To distinguish them from the type 2 diabetes
mQTLs identified initially, these mQTLs are referred to as
stage 2 mQTLs. A table documenting the stage 2 mQTLs
for each CpG is shown in Supplementary Table 3. Of the
118 type 2 diabetes–CpG associations identified in stage 1,
a further 226 independent mQTLs were identified in stage 2
for 81 of these 118 CpG sites. For each CpG, resultant mQTLs

were independent of each other and the type 2 diabetes SNP.
No stage 2 mQTLs were found for CpGs associated with
rs17106184, rs2028299, rs2075423, or rs4273712.

Replication of mQTLs
From the IoW birth cohort, data were available on 35 of
118 mQTL associations from stage 1 and 14 of 226 mQTL
associations from stage 2. Of the 49 potential mQTLs with
sufficient data to allow validation, 37 (76%) were nomi-
nally associated (P , 0.05) and 12 (24.5%) were associated
at P, 1.173 1027. The average age of IoW participants at
methylation analysis was 17.7 years (SD 0.48 years). Par-
ticipants had a mean BMI of 23.7 kg/m2 (SD 4) and 41.4%
were male. Results of the mQTL analysis in the IoW cohort
can be found in Supplementary Table 4.

From the BSGS, data were available on 109 of 118 mQTL
associations from stage 1 and 183 of 226 mQTL associations

Figure 4—Circos plot showing distribution of SNP methylation associations (mQTLs) throughout the genome. Wide numbered gray bands
represent chromosomes. Each SNP is labeled with its approximate genomic location. Cis associations are linked with red lines. Blue lines
connect associated CpGs and SNPs that are positioned on different chromosomes.
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from stage 2. Of the potential mQTLs with sufficient data to
allow validation, 238 (82%) were nominally associated (P ,
0.05) and 135 (46%) were associated at P , 1.17 3 1027.
The average age of BSGS participants at methylation analysis
was 13.9 years (SD 2.2). Participants had a mean BMI of
20.3 kg/m2 (SD 3.5) and 52% were male. Results of the
mQTL analysis in the BSGS cohort can be found in Supple-
mentary Table 5.

mQTL Associations With Type 2 Diabetes in DIAGRAM
For each stage 2 and type 2 diabetes mQTL, the association
between the mQTL and diabetes was extracted from
DIAGRAM consortium data (2). A summary of SNPs available
from DIAGRAM data are shown in Supplementary Table 6.

One methylation site associated with a type 2 diabetes
risk variant in KCNQ1 also showed association between
an independent mQTL and diabetes in DIAGRAM. One
methylation site associated with a risk variant in IGF2BP2
showed a nominal association not withstanding adjust-
ment for multiple testing in DIAGRAM. This suggests
that for at least one of these two loci, there is evidence
that methylation is implicated in the causal pathway
between the common genetic variant and type 2 diabetes
(Fig. 1, model A). These findings are summarized in Table 2
(below) with full details for all SNPs shown in Supplemen-
tary Table 6. However, the majority of independent
mQTLs did not show any associations between the SNP
and diabetes in DIAGRAM, giving no further supporting
evidence to suggest that methylation may be on a causal
pathway from these type 2 diabetes SNPs to disease.

Cross-Tissue DNA Methylation Patterns
DNA methylation patterns may vary across tissue type,
defining tissue-specific transcriptional regulation. We there-
fore sought to evaluate methylation at the 118 CpG sites
most strongly associated with type 2 diabetes SNPs to
identify if they have tissue-specific methylation profiles.
A subset of data from the Gene Expression Omnibus
data entry GSE48472 was used, which included data from
blood and a range of type 2 diabetes–relevant tissues,
including pancreas, fat, and muscle (35). Although sample
numbers were small, mean methylation in blood versus
other tissues showed high levels of correlation (Pearson
correlation coefficients 0.66–0.91), suggesting measure-
ment in blood was a good proxy for methylation levels
in other tissues at the sites under investigation (Fig. 6).
This was also true of the two CpG sites for which we
have any evidence of mediation (Fig. 1, model A). These
CpG sites are indicated in red (cg23956648) and blue
(cg14637411) in Fig. 6.

Associations Between mQTLs and Type 2 Diabetes–
Related Traits in MAGIC
To evaluate whether the SNPs in KCNQ1 and IGF2BP2 that
may increase risk of type 2 diabetes via methylation are
associated with glycemic traits, summary data from the
MAGIC consortium was used (23,24). There was no strong
evidence to suggest that the SNPs tested are associated with
fasting glucose, fasting insulin, or HbA1c (Supplementary
Table 7), although effect sizes were of the same magnitude
and direction in each locus.

Figure 5—Plot showing the relationship between R2 and the distance in base pairs between cis mQTLs.
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Associations Between mQTLs and Gene Expression
To investigate whether the SNPs that may increase risk
of type 2 diabetes via methylation showed evidence of
association with gene expression, we obtained eQTL data for

single tissues from the GTEx Portal (release v6) for SNPs
rs4402960, rs9850770, rs163184, and rs2237896 (25).
eQTLs were included for tissues with data from .70 sam-
ples using a 61 Mb cis window around the transcription

Table 2—SNP associations in DIAGRAM

SNP Associated CpG
Type 2 diabetes

gene name
Variance in methylation
explained by SNP (R2)

LD between
SNPs (R2)

DIAGRAM associations between
SNP and type 2 diabetes

OR 95% CI P value

rs4402960* cg23956648 IGF2BP2 7.3% 0.02 1.12 1.09, 1.14 9.4 3 10218

rs9850770† 4.3% 1.04 1.01, 1.07 0.01

rs163184* cg14637411 KCNQ1 5.5% 0.03 1.11 1.08, 1.14 1.7 3 10214

rs2237896† 5.9% 1.24 1.18, 1.3 2.7 3 10219

Complete details including genomic locations for SNPs and CpG sites are included in Supplementary Table 6. *Type 2 diabetes mQTL.
†Stage 2 mQTL.

Figure 6—Pairwise comparisons across tissues of 118 CpG sites most strongly associated with type 2 diabetes SNPs. Six tissue types are
shown (blood: n = 11; muscle, omentum, and subcutaneous fat: n = 6; liver: n = 5; pancreas: n = 4). The upper panel shows the Pearson
correlation coefficient and P values; the lower panel shows the pairwise scatterplot (trend line shown in red). Data points for cg23956648
are red and for cg14637411 are blue. These data are a subset of Gene Expression Omnibus data entry GSE48472 (35).
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start site. Only one SNP, rs4402960, was identified as an
eQTL; this was for IGF2BP2 in thyroid tissue. For each
copy of the minor (type 2 diabetes risk) allele, there was
a 0.29-unit increase in rank-normalized gene expression
(95% CI 0.18, 0.40; P = 6.15 3 1027). This eQTL is within
intron 2 of the IGF2BP2 gene.

DISCUSSION

This analysis examined whether genetic variants predispos-
ing to type 2 diabetes exert their influence on disease via
changes in DNA methylation in a young cross-sectional
cohort without diabetes. Using genetic variants as causal
anchors, we identified that around half of known type 2
diabetes SNPs are associated with variation in DNA meth-
ylation and postulated that methylation could either be on a
causal pathway to future disease (Fig. 1, model A) or could be
a noncausal biomarker (36) (Fig. 1, models B and C).

We then further identified a set of independent mQTLs
and assessed their associations with type 2 diabetes in later
life using DIAGRAM data. For almost all of these associa-
tions, we were unable to provide additional strong evidence
that methylation is a key pathway through which SNPs
are having an effect. For these SNPs, methylation at the
associated CpGs could simply be noncausal biomarkers of
later disease (Fig. 1, model C), with potential utility in dis-
ease prediction. Whether such information on methylation
levels adds anything further to genotype information with
respect to risk prediction warrants a more detailed statistical
appraisal. Recent work in this area by Wahl et al. (17) dem-
onstrates that BMI-associated methylation variation is a
very effective predictor of subsequent type 2 diabetes.

To support our data, we sought replication in similarly
aged samples from the IoW cohort and BSGS. The replica-
tion samples were a smaller size, so they are likely to be
underpowered to detect some of the associations cap-
tured in the mQTL analysis of the discovery cohort (ARIES).
However, the majority of associations were replicated and
showed similar effect sizes. Secondary analysis of large-scale
GWAS consortia data (DIAGRAM and MAGIC) provided a
suitably powered analysis of the potential consequences of
variation in DNA methylation on type 2 diabetes risk and
related traits. However, power could be further improved by
increasing sample size as and when data become available.
Analysis of methylation and gene expression reference data
highlighted the broader application of our findings in other
tissues, despite the primary analyses being conducted on
DNA methylation measurements undertaken in peripheral
blood. However, in these analyses, there were insuffi-
cient data to draw conclusions about mechanisms by
which mQTLs are exerting biological effects.

Several recent studies have sought to identify methyl-
ation variation associated with type 2 diabetes using an
epigenome-wide association study design (37–41). These
studies have reported methylation-variable loci, including
KCNQ1, but have largely used a case-control design and
have not focused on delineating the direction of causation
from disease to methylation or vice versa. A particular

strength of this study is the use of young subjects who
are not only disease free but are unlikely to be in pre-
clinical stages of disease. This enabled exploration of SNP-
methylation relationships without measuring methylation
differences that result from reverse causation.

One potential drawback of this study is that the type 2
diabetes–associated SNPs used in the initial analysis were
drawn from only one study; however, this is one of the
largest trans-ethnic GWAS available. Data analysis in ARIES,
BSGS, and IoW was restricted to samples of predominantly
white European ancestry. It is therefore not possible to
generalize these findings to other ethnicities. The three study
cohorts were ethnically homogeneous; however, other fac-
tors such as lifestyle, demographic, or socioeconomic factors
may have affected the consistency of observations between
the cohorts. It is also possible that methylation may mediate
the risk SNP–disease relationship in an age-dependent man-
ner, and this was not addressed in this study.

In stage 2 of the analysis, we used genetic variants
tagging CpG sites as causal anchors to attempt to build on
evidence that methylation is a possible pathway through
which SNPs are influencing later disease. This adopts the
principle of Mendelian randomization but without formal
instrumental variables analysis (15,42). However, it should
be noted although the LD between stage 2 and type 2 di-
abetes mQTLs was low (,0.05), most SNP pairs identified
in this study were still in cis. As discussed in previous gene
expression studies (43), it is still possible that the stage 2
and type 2 diabetes SNPs could each have direct effects on
type 2 diabetes and methylation (Fig. 1, model C). This issue
can only be fully resolved by identification of trans variants
from larger methylation GWAS, when power will be large
enough to make stronger claims (44).

Further analysis, particularly of CpG sites in the im-
printed gene KCNQ1, will deepen our understanding of the
etiology of type 2 diabetes. For KCNQ1, there is evidence
that variation in methylation potentially plays a role in
type 2 diabetes, including differential methylation between
type 2 diabetes case and control subjects in both adipose and
pancreatic islets (11,12,45). Interestingly, KCNQ1 risk alleles
also show parent of origin–specific effects, influencing dis-
ease susceptibility when maternally inherited; these risk al-
leles also appear to impact on local DNAmethylation (46,47).
To our knowledge, there is no prior evidence that methyl-
ation variation at the IGF2BP2 locus has been associated with
type 2 diabetes. However, IGF2BP2 acts as a key regulator of
IGF2 translation (48), and IGF2 is an imprinted locus whose
methylation affects fetal growth (49–52). Genetic variance in
methylation at these CpG sites explains a relatively small
proportion of the total variation in methylation observed;
however, in the context of this study, this genetic variance
is used as an instrumental variable from which we can draw
causal inference (53). Methylation may be responsive to en-
vironmental stimuli as well as to genetic variation, which
may increase an individual’s disease risk further (11,54,55).

A further potential extension of this work is that a
methylation score predicting future type 2 diabetes risk
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could potentially be generated from the 118 type 2 diabetes
SNP–associated CpG sites identified in this study; a similar
approach has been used previously to predict exposure to
cigarette smoke from DNA methylation data (56), or could
be used in combination with a genetic risk score, as has
been applied in the context of trait prediction for BMI and
height (57). This would require more extensive statistical
appraisal involving the training and testing of such a meth-
ylation score in independent data sets.

The study design applied here provides a framework for
the exploration of DNA methylation as a causal mechanism
linking established common genetic variants with disease
outcomes and is relevant to a wide range of common
complex diseases. This study design focused on the iden-
tification of methylation variation that may be implicated in
the pathogenesis of type 2 diabetes. Given that only one
stage 2 mQTL was identified (in KCNQ1), it is highly un-
likely that methylation mediates the genetic effects on type 2
diabetes identified to date. A set of probable noncausal
biomarkers of later disease were identified. Further work is
required to identify any potential predictive utility of these
methylation sites. For one locus (KCNQ1), we were able to
provide further evidence that methylation is likely to be on
the causal pathway to disease in later life. Further confir-
mation of this finding could be achieved with further re-
search including laboratory analyses. Further work is also
required to establish whether DNA methylation changes
might be induced as a consequence of type 2 diabetes
(Fig. 1, model B) and whether such changes might be im-
plicated in downstream comorbidities of this disease.
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